1 Decision Problem as a Subset

Definition 1 The set of all binary strings, is defined as \{0,1\}∗ = \{0,1,00,01,10,11,000,…\} For any \(\pi \subseteq \Sigma^*\), \(\bar{\pi}\) denotes its complement in the set \(\Sigma^*\).

Next, let’s give following examples of decision problems: Given a graph \(G = (V,E)\),

\[ST = \{ < G, s, t > : \text{There is a path from } s \text{ to } t \text{ in graph } G \} \]

\(ST\), the complement of \(ST\) is given by:

\[\bar{ST} = \{ < G, s, t > : \text{There is no path from } s \text{ to } t \text{ in graph } G \} \]

Therefore given any \(<G,s,t>\) finding whether \(<G,s,t>\in ST\) or not is a decision problem.

As another example, consider Linear Programming (LP) problem:

\[LP = \{ <A,b> : \exists x, \text{s.t. } Ax \leq b \} \]

Note that for LP, \(\Sigma^*\) is the set of all possible \(<A,b>\) and \(\bar{LP}\) is given by

\[\bar{LP} = \{ <A,b> : \forall x, Ax \not\leq b \} \]

Hence, given any \(<A,b>\in \Sigma^*\) deciding whether \(<A,b>\in LP\) or not is a decision problem.

Similarly, a linear optimization problem may also viewed as a decision problem. Consider following optimization problem:

\[\max c^T x, \text{ subject to } Ax \leq b. \]

If we define \(\pi\) as

\[\pi = \{ <A,b,c,t> : \text{There is a solution } x \text{ s.t. } Ax \leq b \text{ and } c^T x \geq t \} \]

and beginning from \(t = -\infty\) decide whether \(<A,b,c,t>\in \pi\) or not, we can find optimal solution \(t^*\) as the point where the answer “switches” from YES to NO.

2 Definition of Polynomial Time

If we denote a computational problem as \(\pi\), then the set of polynomial time problems, denoted by \(\mathcal{P}\), is defined as:

\[\mathcal{P} = \{ \pi : \text{There is an algorithm to decide } \pi \text{ in polynomial time} \} \]

A necessary and sufficient condition for a problem to be an element of polynomial time is given by

\[[\pi \in \mathcal{P}] \Leftrightarrow [\exists A \text{ s.t. running time of } A \text{ on all inputs of length } n \text{ is } \leq n^d \text{ and } \pi = \{ x \in \Sigma^* : A(x) = \text{YES} \}] \]

where \(d\) is a constant. The aforementioned algorithm \(A\) is called polynomial time acceptor for \(\pi\).

Examples: \(ST\) problem defined in previous part.

\(MWST = \{ <G,W> : \exists \text{ a spanning tree such that weight is } \leq W \}\), where \(MWST\) stands for “minimum cost spanning tree”.
3 Definition of Non-deterministic Polynomial Time

The following is a necessary and sufficient condition for a computational problem \(\pi \) to be an element of \(\mathcal{NP} \):

\[
\pi \in \mathcal{NP} \iff \exists B \text{ with running time } |x|^d \text{ and } \pi = \{ x \in \Sigma^* : \exists c_x, \text{ s.t. } B(x, c_x) = \text{YES} \},
\]

where \(c_x \) is called certificate (proof, hint).

Example: \(\pi = \text{SAT} \) (Satisfiability). Before defining SAT problem, we should state following

- Variables: \(x_1, x_2, \ldots, x_n \).
- Literals: \(l_1, l_2, \ldots, l_n \), where \(\forall i, l_i \in \{ x_i, \bar{x}_i \} \).
- Clauses: \(c_1, c_2, \ldots, c_n \), where \(\forall i, c_i = (l_{j_1} \lor \ldots \lor l_{j_n}) \).
- Formula: \(\Phi = c_1 \land \ldots \land c_n \).

Now we are ready to define SAT problem as follows:

\(\text{SAT} = \{ \Phi : \text{We can assign } 0, 1 \text{ to variables of } \Phi \text{ s.t. all clauses are satisfied} \} \),

where by satisfying we mean at least one one clause has a positive literal \(x_i \) assigned to 1, or a negative literal \(\bar{x}_j \) assigned to 0.

Claim 1 \(\text{SAT} \in \mathcal{NP} \)

Proof: We construct an algorithm with following parameters:

Input: \(< \Phi, n \text{ bit vector } v >\).

Procedure: Check whether \(v \) satisfies \(\Phi \) or not.

Output: YES - NO.

A couple of observations next. First of all note that \(B \) is polynomial time. Indeed its running time is linear, since it simply scans thorough vector \(v \) and decides YES if it encounters a 1 and NO otherwise. Furthermore, if \(\Phi \in \text{SAT} \), then \(\exists v, \text{ s.t. } B(\Phi, v) = \text{YES} \), where \(v \) is a satisfying assignment. Moreover, if \(\Phi \not\in \text{SAT} \), then \(\forall v, B(\Phi, v) = \text{NO} \). Using all these there observations, we conclude that \(\text{SAT} \in \mathcal{NP} \).

Note that definition of \(\mathcal{NP} \) is asymmetric, i.e.

\[
\Phi \in \text{SAT} \Rightarrow \exists c_\Phi, \text{ which leads to acceptance.}
\]

\[
\Phi \not\in \text{SAT} \Rightarrow \forall c_\Phi, B \text{ rejects.}
\]

As another example of \(\mathcal{NP} \) problem, consider LP problem. Recall that we have

\(\text{LP} = \{ < A, b > : \text{ system } Ax \leq b \text{ is feasible.} \} \)

Certificate for LP is a feasible solution \(x \). An algorithm \(B \) calculates \(Ax \) and decides whether \(x \) is feasible or not. Running time of \(B \) is quadratic in length of \(x \) (by recalling the complexity of matrix vector multiplication).

Another example of a problem in \(\mathcal{NP} \) is the following:

\(\text{COMPOSITE} = \{ n \in \mathbb{N} : n \text{ is composite} \} \).

A certificate for COMPOSITE problem is \(n_1, n_2 \in \mathbb{N}, \text{ s.t. } n_1, n_2 \not\in \{ 1, n \} \text{ and } n_1n_2 = n \).

4 \(\mathcal{NP}, \text{ CO-} \mathcal{NP} \)

Definition 2

\[
[\pi \subseteq \Sigma^*, \text{ s.t. } \pi \in \text{CO-NP}] \iff [\pi \in \mathcal{NP}].
\]
As an example of a computational problem which is in CO-NP, consider $\text{PRIME} = \text{COMPOSITE}$. Since $\text{COMPOSITE} \in \text{NP}$ (as argued above), $\text{PRIME} \in \text{CO-NP}$. Therefore, for any given input $n \in \mathbb{N}$, we have certificate that states that n is not a prime.

As another example of a problem in CO-NP, consider LP defined as follows:

$$\text{LP} = \{<A, b>: Ax \leq b \text{ is not feasible}\}.$$

If $<A, b> \notin \text{LP}$, there exists a short certificate to verify $<A, b> \notin \text{LP}$, which implies that $\text{LP} \in \text{CO-NP}$.

Claim 2 $\text{LP} \in \text{NP} \cap \text{CO-NP}$.

Proof: Consider following systems

$$Ax \leq b, \quad (1)$$

and

$$A^T y = 0, \quad y \geq 0, \quad b^T y < 0. \quad (2)$$

Using Farkas’ lemma, we know that either (1) or (2) is feasible but not both. In the same way as above, we can write a polynomial time acceptor for (2), so we know that detecting the infeasibility of an LP is in NP, or rather $\text{LP} \in \text{NP}$. Hence, we have $\text{LP} \in \text{NP} \cap \text{CO-NP}$.

Before discussing NP–completeness, we state two long standing open problems in computer science:

First, is $P = \text{NP} \cap \text{CO-NP}$?

Second, is $P = \text{NP}$?

It’s clear that $P \subseteq \text{NP} \cap \text{CO-NP}$ and that $P \subseteq \text{NP}$, but it’s unclear whether equality holds.

5 NP–Completeness

Intuitively, NP–complete problems may be considered as ‘the hardest’ problems in NP, in the sense that every problem in NP can be reduced to a NP–complete problem in polynomial time. Before stating the definition of NP–completeness, we need following definition.

Definition 3 $\pi, \pi \subseteq \Sigma^*$, π' is reducible to π, denoted as $\pi' \leq \pi$, provided that

$$\exists f : \Sigma^* \rightarrow \Sigma^*, \text{ s.t. } x \in \pi' \iff f(x) \in \pi \text{ and } f \text{ runs in polynomial time}.$$

Next, we state the rigorous definition of NP–completeness:

Definition 4 π is NP–complete provided that:

1. $\pi \in \text{NP}$.

2. $\forall \pi' \in \text{NP}$, $\pi' \leq \pi$,

Claim 3 If π is NP–complete and $\pi \in \mathcal{P}$, then $\mathcal{P} = \text{NP}$.

Proof: Suppose we have an NP–complete π, such that $\pi \in \mathcal{P}$, which implies that $\exists A_\pi$, which runs in n^d. Using this A_π, we can construct the following algorithm for any $\pi' \in \text{NP}$:

Given input x for π',
- Compute $f(x)$
- Run A_π on $f(x)$
- If $A_\pi(f(x)) = \text{YES}$, then output YES, if $A_\pi(f(x)) = \text{NO}$, then output NO.

Now, observe that from the definition of NP–completeness, the aforementioned algorithm works correctly; moreover, since $x \in \mathcal{P}$, we have n^d as the running time of A_π and n^d for f (recall the definition of reducibility). Hence, the algorithm’s running time is n^{e+d}, which is also polynomial. Therefore, we conclude that $\pi' \in \mathcal{P}$. If $\pi \in \mathcal{P}$ for any NP–complete π, then we have $\forall \pi' \in \text{NP}$, $\pi' \in \mathcal{P}$. Hence the claim follows. \square
6 Steps for \mathcal{NP}–Completeness Proofs

In this part, we will show that $SAT \leq 0 - 1 IP$, where IP stands for ‘integer program’. We should construct a polynomial time algorithm with following properties:

Input: Φ.
Output: A $0 - 1 IP$.

For each x_i of SAT, we have $y_i \in \{0, 1\}$ for $0 - 1 IP$, where $y_i = 0$ means x_i is false and $y_i = 1$ means x_i is true. For any clause $c_j = \bigvee_{i \in P_j \subseteq [n]} x_i \lor \bigvee_{k \in N_j \subseteq [n]} \neg x_i$, we have $\sum_{i \in P_j} y_i + \sum_{k \in N_j} (1 - y_k)$ for $0 - 1 IP$.

Observe that the aforementioned algorithm is polynomial time. Therefore, we conclude $SAT \leq 0 - 1 IP$, which implies that $0 - 1 IP \in \mathcal{NP}$.

Theorem 4 (Cook, Levin '71) SAT is \mathcal{NP}–complete.

Since $SAT \leq 0 - 1 IP$ (as we have argued above), $0 - 1 IP$ is also \mathcal{NP}–complete. Therefore, intuitively speaking it is also one of the ‘hardest problems in \mathcal{NP}'.