ORIE 6300 Mathematical Programming I November 11, 2008

Lecture 20
Lecturer: Yogeshwer Sharma Scribe: Yucel Altug

1 Decision Problem as a Subset

Definition 1 The set of all binary strings, is defined as {0,1}* = {0,1,00,01,10,11,000,...} For any
T C ¥*, 7 denotes its complement in the set 3.

Next, let’s give following examples of decision problems: Given a graph G = (V, E),
ST = {< G, s,t >: There is a path from s to ¢ in graph G}.
ST, the complement of ST is given by:
ST = {< G, s,t >: There is no path from s to ¢ in graph G}.

Therefore given any < G, s,t > finding whether < G, s,t >€ ST or not is a decision problem.
As another example, consider Linear Programming (LP) problem:

LP={<A,b>:3x, st. Ax < b}.
Note that for LP, ¥* is the set of all possible < A,b > and LP is given by
LP ={<A,b>:Vx,Ax £ b}.

Hence, given any < A, b > ¥* deciding whether < A;b >& LP or not is a decision problem.
Similarly, a linear optimization problem may also viewed as a decision problem. Consider following
optimization problem:
max c’x, subject to Ax < b.

If we define 7 as
7w ={< A,b,c,t > . There is a solution x s.t. Ax <b and cTx > t},

and beginning from ¢ = —oo decide whether < A, b, c,t >€ 7 or not, we can find optimal solution ¢t* as the
point where the answer “switches” from YES to NO.

2 Definition of Polynomial Time

If we denote a computational problem as m, then the set of polynomial time problems, denoted by P, is
defined as:
P = {m : There is an algorithm to decide 7 in polynomial time}.

A necessary and sufficient condition for a problem to be an element of polynomial time is given by
[T € P] & [JA s.t. running time of A on all inputs of length n is < n and 7 = {z € * : A(z) = YES}|,

where d is a constant. The aforementioned algorithm A is called polynomial time acceptor for x.
Examples: ST problem defined in previous part.

MWST = {< G,W >: 3 a spanning tree such that weight is < W}, where MW ST stands for “minimum
cost spanning tree”.

20-1

3 Definition of Non-deterministic Polynomial Time
The following is a necessary and sufficient condition for a computational problem 7 to be an element of N'P:
[7 € N'P] & [3B with running time |z|? and 7 = {z € ¥* : 3c,, s.t. B(z,¢,) = YES}],

where ¢, is called certificate (proof, hint).
Example: m = SAT (Satisfiability). Before defining SAT problem, we should state following

e Variables: x1,x2,...,Zy.
e Literals: I1,la,...,1,, where Vi, l; € {x;,T;}.
e Clauses: ¢1,c¢2,..., ¢y, where Vi, ¢; = (I;, V... V1)

e Formula: ® =ci A ... Ac,

Now we are ready to define SAT problem as follows:
SAT = {® : We can assign 0,1 to variables of ® s.t. all clauses are satified},

where by satisfying we mean at least one one clause has a positive literal x; assigned to 1, or a negative
literal z; assigned to 0.

Claim 1 SAT e NP

Proof: We construct an algorithm with following parameters:

Input: < ®,n bit vector v >.

Procedure: Check whether v satisfies ® or not.

Output: YES - NO.

A couple of observations next. First of all note that B is polynomial time. Indeed its running time is linear,

since it simply scans thorough vector v and decides YES if it encounters a 1 and NO otherwise. Furthermore,

if ® € SAT, then Jv, s.t. B(®,v) = YES, where v is a satisfying assignment. Moreover, if ® ¢ SAT, then

Vv, B(®,v) = NO. Using all these there observations, we conclude that SAT € N'P. O
Note that definition of AP is asymmetric, i.e.

® € SAT = dcg, which leads to acceptence.
® ¢ SAT = Veg, B rejects.

As another example of NP problem, consider LP problem. Recall that we have
LP ={<A,b>: system Ax < b is feasible.}

Certificate for LP is a feasible solution x. An algortihm B calculates Ax and decides whether x is fea-
sible or not. Running time of B is quadratic in length of x (by recalling the complexity of matrix vector
multiplication).

Another example of a problem in AP is the following:

COMPOSITE = {n € N: n is composite}.

A certificate for COM POSITE problem is ny,ng € N, s.t. ny,ns ¢ {1,n} and nyny = n.

4 NP, CO-NP

Definition 2
[Tt C X%, s.t. 1€ CO-NP] & [€ NP

20-2

As an example of a computational problem which is in CO-N"P, consider PRIME = COMPOSITE. Since
COMPOSITE € NP (as argued above), PRIME € CO-N'P. Therefore, for any given input n € N, we
have certificate that states that n is not a prime.

As another example of a problem in CO-N"P, consider LP defined as follows:

LP={<A,b>: Ax <b is not feasible}.
If < A,b >¢ LP, there exists a short certificate to verify < A, b >€& LP, which implies that LP € CO-NP.
Claim 2 LP ¢ NPNCO-NP.

Proof: Consider following systems
Ax <b, (1)

and
ATy =0,y>0, bly <. (2)

Using Farkas’ lemma, we know that either (1) or (2) is feasible but not both. In the same way as above,
we can write a polynomial time acceptor for (2), so we know that detecting the infeasibility of an LP is in
NP, or rather LP € N'P. Hence LP € CO-NP. Hence, we have LP € NP N CO-NP. O

Before discussing ANP—completeness, we state two long standing open problems in computer science:
First, is

P=NPNCO-NP?

Second, is

P = NP?
It’s clear that P C NP N CO-N'P and that P C NP, but it’s unclear whether equality holds.

5 NP—-Completeness

Intuitively, NP—complete problems may be considered as 'the hardest’ problems in AP, in the sense that
every problem in NP can be reduced to a NP—complete problem in polynomial time. Before stating the
definition of N"P—completeness, we need following definition.

Definition 3 w,7 C X*, 7’ is reducible to 7, denoted as ©' < 7, provided that
Af : T* = 3% stz en’ & f(x) € and f runs in polynomial time.
Next, we state the rigorous definition of A"P—completeness:
Definition 4 7 is N'P—complete provided that:
1. me NP.
2.¥r' e NP, o’ <m,
Claim 3 If 7 is NP—complete and © € P, then P = N'P.

Proof: Suppose we have an N'P—complete 7, such that m € P, which implies that 3A, which runs in
n?. Using this A, we can construct the following algorithm for any ©’ € N'P:

Given input z for 7/,

- Compute f(x)

- Run A, on f(z)

-If A (f(z)) = YES, then output YES, if A,(f(z)) = NO, then output NO.

Now, observe that from the definition of A"P-completeness, the aforementioned algorithm works correctly;
moreover, since 2 € P, we have n? as the running time of A, and n® for f (recall the definition of reducibility).
Hence, the algorithm’s running time is n°t?, which is also polynomial. Therefore, we conclude that 7’ € P.
If # € P for any N"P—complete 7, then we have Vr’ € NP, n’ € P. Hence the claim follows. O

20-3

6 Steps for N'P—Completeness Proofs

In this part, we will show that SAT < 0—11P, where I P stands for ‘integer program’. We should construct
a polynomial time algorithm with following properties:

Input: &.

Output: A0—11P.

For each x; of SAT, we have y; € {0,1} for 0 — 1 IP , where y; = 0 means z; is false and y; = 1 means z;
is true. For any clause ¢; = V;_p () %i V Vien, cln) Tir We have > Zicp i + 3 5y, (1= y) for 0—11P .
Observe that the aforementioned algorithm is polynomial time. Therefore, we conclude SAT < 0—11P,
which implies that 0 — 1 IP € N'P.

Theorem 4 (Cook, Levin '71) SAT is N'P—complete.

Since SAT < 0—11IP (as we have argued above), 0 — 1 IP is also N'P—complete. Therefore, intuitively
speaking it is also one of the ‘hardest problems in N'P’.

20-4

