1 Decision Problem as a Subset

Definition 1 The set of all binary strings, is defined as $\{0,1\}^{*}=\{0,1,00,01,10,11,000, \ldots\}$ For any $\pi \subseteq \Sigma^{*}, \bar{\pi}$ denotes its complement in the set Σ^{*}.

Next, let's give following examples of decision problems: Given a graph $G=(V, E)$,

$$
S T=\{<G, s, t>: \text { There is a path from } s \text { to } t \text { in graph } G\}
$$

$\overline{S T}$, the complement of $S T$ is given by:

$$
\overline{S T}=\{<G, s, t>: \text { There is no path from } s \text { to } t \text { in graph } G\} .
$$

Therefore given any $<G, s, t>$ finding whether $<G, s, t>\in S T$ or not is a decision problem.
As another example, consider Linear Programming (LP) problem:

$$
L P=\{<\mathbf{A}, \mathbf{b}\rangle: \exists \mathbf{x}, \text { s.t. } \mathbf{A x} \leq \mathbf{b}\}
$$

Note that for LP, Σ^{*} is the set of all possible $<\mathbf{A}, \mathbf{b}>$ and $\overline{L P}$ is given by

$$
\overline{L P}=\{<\mathbf{A}, \mathbf{b}\rangle: \forall \mathbf{x}, \mathbf{A} \mathbf{x} \not \leq \mathbf{b}\} .
$$

Hence, given any $<\mathbf{A}, \mathbf{b}>\in \Sigma^{*}$ deciding whether $<\mathbf{A}, \mathbf{b}>\in L P$ or not is a decision problem.
Similarly, a linear optimization problem may also viewed as a decision problem. Consider following optimization problem:

$$
\max \mathbf{c}^{T} \mathbf{x}, \text { subject to } \mathbf{A} \mathbf{x} \leq \mathbf{b}
$$

If we define π as

$$
\left.\pi=\{<\mathbf{A}, \mathbf{b}, \mathbf{c}, t\rangle . \text { There is a solution } \mathbf{x} \text { s.t. } \mathbf{A x} \leq \mathbf{b} \text { and } \mathbf{c}^{T} \mathbf{x} \geq t\right\}
$$

and beginning from $t=-\infty$ decide whether $<\mathbf{A}, \mathbf{b}, \mathbf{c}, t>\in \pi$ or not, we can find optimal solution t^{*} as the point where the answer "switches" from YES to NO.

2 Definition of Polynomial Time

If we denote a computational problem as π, then the set of polynomial time problems, denoted by \mathcal{P}, is defined as:

$$
\mathcal{P}=\{\pi: \text { There is an algorithm to decide } \pi \text { in polynomial time }\} .
$$

A necessary and sufficient condition for a problem to be an element of polynomial time is given by

$$
[\pi \in \mathcal{P}] \Leftrightarrow\left[\exists A \text { s.t. running time of } A \text { on all inputs of length } n \text { is } \leq n^{d} \text { and } \pi=\left\{x \in \Sigma^{*}: A(x)=\mathrm{YES}\right\}\right],
$$

where d is a constant. The aforementioned algorithm A is called polynomial time acceptor for π. Examples: $S T$ problem defined in previous part.
$M W S T=\{<G, W\rangle: \exists$ a spanning tree such that weight is $\leq W\}$, where $M W S T$ stands for "minimum cost spanning tree".

3 Definition of Non-deterministic Polynomial Time

The following is a necessary and sufficient condition for a computational problem π to be an element of $\mathcal{N} \mathcal{P}$:

$$
[\pi \in \mathcal{N} \mathcal{P}] \Leftrightarrow\left[\exists B \text { with running time }|x|^{d} \text { and } \pi=\left\{x \in \Sigma^{*}: \exists c_{x} \text {, s.t. } B\left(x, c_{x}\right)=\mathrm{YES}\right\}\right],
$$

where c_{x} is called certificate (proof, hint).
Example: $\pi=S A T$ (Satisfiability). Before defining $S A T$ problem, we should state following

- Variables: $x_{1}, x_{2}, \ldots, x_{n}$.
- Literals: $l_{1}, l_{2}, \ldots, l_{n}$, where $\forall i, l_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$.
- Clauses: $c_{1}, c_{2}, \ldots, c_{n}$, where $\forall i, c_{i}=\left(l_{j_{1}} \vee \ldots \vee l_{j_{n}}\right)$
- Formula: $\Phi=c_{1} \wedge \ldots \wedge c_{n}$

Now we are ready to define $S A T$ problem as follows:

$$
S A T=\{\Phi: \text { We can assign } 0,1 \text { to variables of } \Phi \text { s.t. all clauses are satified }\},
$$

where by satisfying we mean at least one one clause has a positive literal x_{i} assigned to 1 , or a negative literal \bar{x}_{j} assigned to 0 .

Claim $1 S A T \in \mathcal{N} \mathcal{P}$
Proof: We construct an algorithm with following parameters:
Input: $<\Phi, n$ bit vector $v>$.
Procedure: Check whether v satisfies Φ or not.
Output: YES - NO.
A couple of observations next. First of all note that B is polynomial time. Indeed its running time is linear, since it simply scans thorough vector v and decides YES if it encounters a 1 and NO otherwise. Furthermore, if $\Phi \in S A T$, then $\exists v$, s.t. $B(\Phi, v)=$ YES, where v is a satisfying assignment. Moreover, if $\Phi \notin S A T$, then $\forall v, B(\Phi, v)=$ NO. Using all these there observations, we conclude that $S A T \in \mathcal{N} \mathcal{P}$.

Note that definition of $\mathcal{N P}$ is asymmetric, i.e.

$$
\begin{aligned}
\Phi \in S A T & \Rightarrow \exists c_{\Phi}, \text { which leads to acceptence. } \\
\Phi \notin S A T & \Rightarrow \forall c_{\Phi}, B \text { rejects. }
\end{aligned}
$$

As another example of $\mathcal{N P}$ problem, consider $L P$ problem. Recall that we have

$$
L P=\{<\mathbf{A}, \mathbf{b}\rangle: \text { system } \mathbf{A} \mathbf{x} \leq \mathbf{b} \text { is feasible. }\}
$$

Certificate for $L P$ is a feasible solution \mathbf{x}. An algortihm B calculates $\mathbf{A x}$ and decides whether \mathbf{x} is feasible or not. Running time of B is quadratic in length of \mathbf{x} (by recalling the complexity of matrix vector multiplication).

Another example of a problem in $\mathcal{N P}$ is the following:

$$
C O M P O S I T E=\{n \in \mathbb{N}: n \text { is composite }\}
$$

A certificate for $C O M P O S I T E$ problem is $n_{1}, n_{2} \in \mathbb{N}$, s.t. $n_{1}, n_{2} \notin\{1, n\}$ and $n_{1} n_{2}=n$.

$4 \mathcal{N P}, C O-\mathcal{N P}$

Definition 2

$$
\left[\pi \subseteq \Sigma^{*}, \text { s.t. } \pi \in C O-\mathcal{N P}\right] \Leftrightarrow[\bar{\pi} \in \mathcal{N} \mathcal{P}] .
$$

As an example of a computational problem which is in $C O-\mathcal{N} \mathcal{P}$, consider PRIME $=\overline{C O M P O S I T E}$. Since $C O M P O S I T E \in \mathcal{N P}$ (as argued above), PRIME $\in C O-\mathcal{N} \mathcal{P}$. Therefore, for any given input $n \in \mathbb{N}$, we have certificate that states that n is not a prime.

As another example of a problem in $C O-\mathcal{N P}$, consider $\overline{L P}$ defined as follows:

$$
\overline{L P}=\{<\mathbf{A}, \mathbf{b}>: \mathbf{A} \mathbf{x} \leq \mathbf{b} \text { is not feasible }\} .
$$

If $<\mathbf{A}, \mathbf{b}>\notin \overline{L P}$, there exists a short certificate to verify $<\mathbf{A}, \mathbf{b}>\in L P$, which implies that $\overline{L P} \in C O-\mathcal{N} \mathcal{P}$.
Claim $2 \overline{L P} \in \mathcal{N} \mathcal{P} \cap C O-\mathcal{N} \mathcal{P}$.
Proof: Consider following systems

$$
\begin{equation*}
\mathbf{A} \mathbf{x} \leq \mathbf{b} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{A}^{T} \mathbf{y}=\mathbf{0}, \mathbf{y} \geq 0, \mathbf{b}^{T} \mathbf{y}<0 \tag{2}
\end{equation*}
$$

Using Farkas' lemma, we know that either (1) or (2) is feasible but not both. In the same way as above, we can write a polynomial time acceptor for (2), so we know that detecting the infeasibility of an LP is in $\mathcal{N} \mathcal{P}$, or rather $\overline{L P} \in \mathcal{N} \mathcal{P}$. Hence $L P \in C O-\mathcal{N} \mathcal{P}$. Hence, we have $L P \in \mathcal{N} \mathcal{P} \cap C O-\mathcal{N} \mathcal{P}$.

Before discussing $\mathcal{N} \mathcal{P}$-completeness, we state two long standing open problems in computer science: First, is

$$
\mathcal{P}=\mathcal{N} \mathcal{P} \cap C O-\mathcal{N} \mathcal{P} ?
$$

Second, is

$$
\mathcal{P}=\mathcal{N} \mathcal{P} ?
$$

It's clear that $\mathcal{P} \subseteq \mathcal{N} \mathcal{P} \cap C O-\mathcal{N} \mathcal{P}$ and that $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$, but it's unclear whether equality holds.

$5 \quad \mathcal{N} \mathcal{P}$-Completeness

Intuitively, $\mathcal{N} \mathcal{P}$-complete problems may be considered as 'the hardest' problems in $\mathcal{N} \mathcal{P}$, in the sense that every problem in $\mathcal{N \mathcal { P }}$ can be reduced to a $\mathcal{N} \mathcal{P}$-complete problem in polynomial time. Before stating the definition of $\mathcal{N} \mathcal{P}$-completeness, we need following definition.
Definition $3 \pi, \pi \subseteq \Sigma^{*}$, π^{\prime} is reducible to π, denoted as $\pi^{\prime} \leq \pi$, provided that

$$
\exists f: \Sigma^{*} \rightarrow \Sigma^{*}, \text { s.t. } x \in \pi^{\prime} \Leftrightarrow f(x) \in \pi \text { and } f \text { runs in polynomial time. }
$$

Next, we state the rigorous definition of $\mathcal{N} \mathcal{P}$-completeness:
Definition 4π is $\mathcal{N P}$-complete provided that:

1. $\pi \in \mathcal{N} \mathcal{P}$.
2. $\forall \pi^{\prime} \in \mathcal{N P}, \pi^{\prime} \leq \pi$,

Claim 3 If π is $\mathcal{N} \mathcal{P}$-complete and $\pi \in \mathcal{P}$, then $\mathcal{P}=\mathcal{N} \mathcal{P}$.
Proof: \quad Suppose we have an $\mathcal{N} \mathcal{P}$-complete π, such that $\pi \in \mathcal{P}$, which implies that $\exists A_{\pi}$, which runs in n^{d}. Using this A_{π}, we can construct the following algorithm for any $\pi^{\prime} \in \mathcal{N} \mathcal{P}$:
Given input x for π^{\prime},

- Compute $f(x)$
- Run A_{π} on $f(x)$
- If $A_{\pi}(f(x))=$ YES, then output YES, if $A_{\pi}(f(x))=\mathrm{NO}$, then output NO.

Now, observe that from the definition of $\mathcal{N} \mathcal{P}$-completeness, the aforementioned algorithm works correctly; moreover, since $x \in \mathcal{P}$, we have n^{d} as the running time of A_{π} and n^{c} for f (recall the definition of reducibility). Hence, the algorithm's running time is n^{c+d}, which is also polynomial. Therefore, we conclude that $\pi^{\prime} \in \mathcal{P}$. If $\pi \in \mathcal{P}$ for any $\mathcal{N} \mathcal{P}$-complete π, then we have $\forall \pi^{\prime} \in \mathcal{N} \mathcal{P}, \pi^{\prime} \in \mathcal{P}$. Hence the claim follows.

6 Steps for $\mathcal{N} \mathcal{P}$-Completeness Proofs

In this part, we will show that $S A T \leq 0-1 I P$, where $I P$ stands for 'integer program'. We should construct a polynomial time algorithm with following properties:
Input: Φ.
Output: A $0-1 I P$.
For each x_{i} of $S A T$, we have $y_{i} \in\{0,1\}$ for $0-1$ IP, where $y_{i}=0$ means x_{i} is false and $y_{i}=1$ means x_{i} is true. For any clause $c_{j}=\bigvee_{i=P_{j} \subseteq[n]} x_{i} \vee \bigvee_{k \in N_{j} \subseteq[n]} \bar{x}_{j}$, we have $\sum_{i \in P_{j}} y_{i}+\sum_{k \in N_{j}}\left(1-y_{k}\right)$ for $0-1$ IP . Observe that the aforementioned algorithm is polynomial time. Therefore, we conclude $S A T \leq 0-1 \mathrm{IP}$, which implies that $0-1$ IP $\in \mathcal{N} \mathcal{P}$.

Theorem 4 (Cook, Levin '71) SAT is $\mathcal{N} \mathcal{P}$-complete.
Since $S A T \leq 0-1$ IP (as we have argued above), $0-1$ IP is also $\mathcal{N} \mathcal{P}$-complete. Therefore, intuitively speaking it is also one of the 'hardest problems in $\mathcal{N} \mathcal{P}$ '.

