
ORIE 6300 Mathematical Programming I November 11, 2008

Lecture 20
Lecturer: Yogeshwer Sharma Scribe: Yucel Altug

1 Decision Problem as a Subset

Definition 1 The set of all binary strings, is defined as {0, 1}∗ = {0, 1, 00, 01, 10, 11, 000, . . .} For any
π ⊆ Σ∗, π̄ denotes its complement in the set Σ∗.

Next, let’s give following examples of decision problems: Given a graph G = (V, E),

ST = {< G, s, t >: There is a path from s to t in graph G}.

ST , the complement of ST is given by:

ST = {< G, s, t >: There is no path from s to t in graph G}.

Therefore given any < G, s, t > finding whether < G, s, t >∈ ST or not is a decision problem.
As another example, consider Linear Programming (LP) problem:

LP = {< A,b >: ∃x, s.t. Ax ≤ b}.

Note that for LP, Σ∗ is the set of all possible < A,b > and LP is given by

LP = {< A,b >: ∀x,Ax 6≤ b}.

Hence, given any < A,b >∈ Σ∗ deciding whether < A,b >∈ LP or not is a decision problem.
Similarly, a linear optimization problem may also viewed as a decision problem. Consider following

optimization problem:
max cT x, subject to Ax ≤ b.

If we define π as

π = {< A,b, c, t > . There is a solution x s.t. Ax ≤ b and cT x ≥ t},

and beginning from t = −∞ decide whether < A,b, c, t >∈ π or not, we can find optimal solution t∗ as the
point where the answer “switches” from YES to NO.

2 Definition of Polynomial Time

If we denote a computational problem as π, then the set of polynomial time problems, denoted by P, is
defined as:

P = {π : There is an algorithm to decide π in polynomial time}.
A necessary and sufficient condition for a problem to be an element of polynomial time is given by

[π ∈ P] ⇔ [∃A s.t. running time of A on all inputs of length n is ≤ nd and π = {x ∈ Σ∗ : A(x) = YES}],

where d is a constant. The aforementioned algorithm A is called polynomial time acceptor for π.
Examples: ST problem defined in previous part.
MWST = {< G,W >: ∃ a spanning tree such that weight is ≤ W}, where MWST stands for “minimum
cost spanning tree”.

20-1

3 Definition of Non-deterministic Polynomial Time

The following is a necessary and sufficient condition for a computational problem π to be an element of NP:

[π ∈ NP] ⇔ [∃B with running time |x|d and π = {x ∈ Σ∗ : ∃cx, s.t. B(x, cx) = YES}],

where cx is called certificate (proof, hint).
Example: π = SAT (Satisfiability). Before defining SAT problem, we should state following

• Variables: x1, x2, . . . , xn.

• Literals: l1, l2, . . . , ln, where ∀i, li ∈ {xi, x̄i}.
• Clauses: c1, c2, . . . , cn, where ∀i, ci = (lj1 ∨ . . . ∨ ljn)

• Formula: Φ = c1 ∧ . . . ∧ cn

Now we are ready to define SAT problem as follows:

SAT = {Φ : We can assign 0, 1 to variables of Φ s.t. all clauses are satified},

where by satisfying we mean at least one one clause has a positive literal xi assigned to 1, or a negative
literal x̄j assigned to 0.

Claim 1 SAT ∈ NP

Proof: We construct an algorithm with following parameters:
Input: < Φ, n bit vector v >.
Procedure: Check whether v satisfies Φ or not.
Output: YES - NO.
A couple of observations next. First of all note that B is polynomial time. Indeed its running time is linear,
since it simply scans thorough vector v and decides YES if it encounters a 1 and NO otherwise. Furthermore,
if Φ ∈ SAT , then ∃v, s.t. B(Φ, v) = YES, where v is a satisfying assignment. Moreover, if Φ /∈ SAT , then
∀v, B(Φ, v) = NO. Using all these there observations, we conclude that SAT ∈ NP. 2

Note that definition of NP is asymmetric, i.e.

Φ ∈ SAT ⇒ ∃cΦ, which leads to acceptence.
Φ /∈ SAT ⇒ ∀cΦ, B rejects.

As another example of NP problem, consider LP problem. Recall that we have

LP = {< A,b >: system Ax ≤ b is feasible.}

Certificate for LP is a feasible solution x. An algortihm B calculates Ax and decides whether x is fea-
sible or not. Running time of B is quadratic in length of x (by recalling the complexity of matrix vector
multiplication).

Another example of a problem in NP is the following:

COMPOSITE = {n ∈ N : n is composite}.

A certificate for COMPOSITE problem is n1, n2 ∈ N, s.t. n1, n2 /∈ {1, n} and n1n2 = n.

4 NP, CO–NP
Definition 2

[π ⊆ Σ∗, s.t. π ∈ CO–NP] ⇔ [π̄ ∈ NP].

20-2

As an example of a computational problem which is in CO–NP, consider PRIME = COMPOSITE. Since
COMPOSITE ∈ NP (as argued above), PRIME ∈ CO–NP. Therefore, for any given input n ∈ N, we
have certificate that states that n is not a prime.

As another example of a problem in CO–NP, consider LP defined as follows:

LP = {< A,b > : Ax ≤ b is not feasible}.

If < A,b >/∈ LP , there exists a short certificate to verify < A,b >∈ LP , which implies that LP ∈ CO–NP.

Claim 2 LP ∈ NP ∩ CO–NP.

Proof: Consider following systems
Ax ≤ b, (1)

and
AT y = 0, y ≥ 0, bT y < 0. (2)

Using Farkas’ lemma, we know that either (1) or (2) is feasible but not both. In the same way as above,
we can write a polynomial time acceptor for (2), so we know that detecting the infeasibility of an LP is in
NP, or rather LP ∈ NP. Hence LP ∈ CO–NP. Hence, we have LP ∈ NP ∩ CO–NP. 2

Before discussing NP–completeness, we state two long standing open problems in computer science:
First, is

P = NP ∩ CO–NP?

Second, is
P = NP?

It’s clear that P ⊆ NP ∩ CO–NP and that P ⊆ NP, but it’s unclear whether equality holds.

5 NP–Completeness

Intuitively, NP–complete problems may be considered as ’the hardest’ problems in NP, in the sense that
every problem in NP can be reduced to a NP–complete problem in polynomial time. Before stating the
definition of NP–completeness, we need following definition.

Definition 3 π, π ⊆ Σ∗, π′ is reducible to π, denoted as π′ ≤ π, provided that

∃f : Σ∗ → Σ∗, s.t. x ∈ π′ ⇔ f(x) ∈ π and f runs in polynomial time.

Next, we state the rigorous definition of NP–completeness:

Definition 4 π is NP–complete provided that:

1. π ∈ NP.

2. ∀π′ ∈ NP, π′ ≤ π,

Claim 3 If π is NP–complete and π ∈ P, then P = NP.

Proof: Suppose we have an NP–complete π, such that π ∈ P, which implies that ∃Aπ, which runs in
nd. Using this Aπ, we can construct the following algorithm for any π′ ∈ NP:
Given input x for π′,
- Compute f(x)
- Run Aπ on f(x)
- If Aπ(f(x)) = YES, then output YES, if Aπ(f(x)) = NO, then output NO.
Now, observe that from the definition of NP-completeness, the aforementioned algorithm works correctly;
moreover, since x ∈ P, we have nd as the running time of Aπ and nc for f (recall the definition of reducibility).
Hence, the algorithm’s running time is nc+d, which is also polynomial. Therefore, we conclude that π′ ∈ P.
If π ∈ P for any NP–complete π, then we have ∀π′ ∈ NP, π′ ∈ P. Hence the claim follows. 2

20-3

6 Steps for NP–Completeness Proofs

In this part, we will show that SAT ≤ 0−1 IP , where IP stands for ‘integer program’. We should construct
a polynomial time algorithm with following properties:
Input: Φ.
Output: A 0− 1 IP .
For each xi of SAT , we have yi ∈ {0, 1} for 0 − 1 IP , where yi = 0 means xi is false and yi = 1 means xi

is true. For any clause cj =
∨

i=Pj⊆[n] xi ∨
∨

k∈Nj⊆[n] xj , we have
∑

i∈Pj
yi +

∑
k∈Nj

(1 − yk) for 0 − 1 IP .
Observe that the aforementioned algorithm is polynomial time. Therefore, we conclude SAT ≤ 0 − 1 IP,
which implies that 0− 1 IP ∈ NP.

Theorem 4 (Cook, Levin ’71) SAT is NP–complete.

Since SAT ≤ 0− 1 IP (as we have argued above), 0− 1 IP is also NP–complete. Therefore, intuitively
speaking it is also one of the ‘hardest problems in NP’.

20-4

