Next, let's give following examples of decision problems: Given a graph G = (V, E),

Therefore given any $\langle G, s, t \rangle$ finding whether $\langle G, s, t \rangle \in ST$ or not is a decision problem. As another example, consider Linear Programming (LP) problem:

 $LP = \{ < \mathbf{A}, \mathbf{b} >: \exists \mathbf{x}, \text{ s.t. } \mathbf{A}\mathbf{x} \le \mathbf{b} \}.$

Note that for LP, Σ^* is the set of all possible $\langle \mathbf{A}, \mathbf{b} \rangle$ and \overline{LP} is given by

$$\overline{LP} = \{ \langle \mathbf{A}, \mathbf{b} \rangle : \forall \mathbf{x}, \mathbf{Ax} \leq \mathbf{b} \}.$$

Hence, given any $\langle \mathbf{A}, \mathbf{b} \rangle \in \Sigma^*$ deciding whether $\langle \mathbf{A}, \mathbf{b} \rangle \in LP$ or not is a decision problem.

Similarly, a linear optimization problem may also viewed as a decision problem. Consider following optimization problem:

max $\mathbf{c}^T \mathbf{x}$, subject to $\mathbf{A}\mathbf{x} \leq \mathbf{b}$.

If we define π as

 $\pi = \{ \langle \mathbf{A}, \mathbf{b}, \mathbf{c}, t \rangle \}$. There is a solution \mathbf{x} s.t. $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ and $\mathbf{c}^T \mathbf{x} \geq t \}$,

and beginning from $t = -\infty$ decide whether $\langle \mathbf{A}, \mathbf{b}, \mathbf{c}, t \rangle \in \pi$ or not, we can find optimal solution t^* as the point where the answer "switches" from YES to NO.

2 Definition of Polynomial Time

If we denote a computational problem as π , then the set of polynomial time problems, denoted by \mathcal{P} , is defined as:

 $\mathcal{P} = \{\pi : \text{There is an algorithm to decide } \pi \text{ in polynomial time} \}.$

A necessary and sufficient condition for a problem to be an element of polynomial time is given by

 $[\pi \in \mathcal{P}] \Leftrightarrow [\exists A \text{ s.t. running time of } A \text{ on all inputs of length } n \text{ is } \leq n^d \text{ and } \pi = \{x \in \Sigma^* : A(x) = \text{YES}\}],$

where d is a constant. The aforementioned algorithm A is called *polynomial time acceptor* for π . **Examples:** ST problem defined in previous part.

 $MWST = \{ \langle G, W \rangle : \exists$ a spanning tree such that weight is $\leq W \}$, where MWST stands for "minimum cost spanning tree".

November 11, 2008

Scribe: Yucel Altug

Lecture 20

Definition 1 The set of all binary strings, is defined as $\{0,1\}^* = \{0,1,00,01,10,11,000,...\}$ For any

 $ST = \{ \langle G, s, t \rangle : \text{There is a path from } s \text{ to } t \text{ in graph } G \}.$

Lecturer: Yogeshwer Sharma

1

Decision Problem as a Subset

 $\pi \subseteq \Sigma^*, \, \bar{\pi} \, denotes \, its \, complement \, in \, the \, set \, \Sigma^*.$

 \overline{ST} , the complement of ST is given by:

3 Definition of Non-deterministic Polynomial Time

The following is a necessary and sufficient condition for a computational problem π to be an element of \mathcal{NP} :

 $[\pi \in \mathcal{NP}] \Leftrightarrow [\exists B \text{ with running time } |x|^d \text{ and } \pi = \{x \in \Sigma^* : \exists c_x, \text{ s.t. } B(x, c_x) = \text{YES}\}],$

where c_x is called *certificate* (proof, hint).

Example: $\pi = SAT$ (Satisfiability). Before defining SAT problem, we should state following

- Variables: x_1, x_2, \ldots, x_n .
- Literals: l_1, l_2, \ldots, l_n , where $\forall i, l_i \in \{x_i, \bar{x}_i\}$.
- Clauses: c_1, c_2, \ldots, c_n , where $\forall i, c_i = (l_{j_1} \lor \ldots \lor l_{j_n})$
- Formula: $\Phi = c_1 \wedge \ldots \wedge c_n$

Now we are ready to define SAT problem as follows:

 $SAT = \{ \Phi : \text{ We can assign } 0, 1 \text{ to variables of } \Phi \text{ s.t. all clauses are satisfied} \},$

where by satisfying we mean at least one one clause has a positive literal x_i assigned to 1, or a negative literal \bar{x}_i assigned to 0.

Claim 1 $SAT \in \mathcal{NP}$

Proof: We construct an algorithm with following parameters:

Input: $< \Phi, n$ bit vector v >.

Procedure: Check whether v satisfies Φ or not.

Output: YES - NO.

A couple of observations next. First of all note that B is polynomial time. Indeed its running time is linear, since it simply scans thorough vector v and decides YES if it encounters a 1 and NO otherwise. Furthermore, if $\Phi \in SAT$, then $\exists v$, s.t. $B(\Phi, v) =$ YES, where v is a satisfying assignment. Moreover, if $\Phi \notin SAT$, then $\forall v, B(\Phi, v) =$ NO. Using all these there observations, we conclude that $SAT \in \mathcal{NP}$.

Note that definition of \mathcal{NP} is asymmetric, i.e.

 $\Phi \in SAT \quad \Rightarrow \quad \exists c_{\Phi}, \text{ which leads to acceptence.} \\ \Phi \notin SAT \quad \Rightarrow \quad \forall c_{\Phi}, B \text{ rejects.}$

As another example of \mathcal{NP} problem, consider LP problem. Recall that we have

 $LP = \{ < \mathbf{A}, \mathbf{b} >: \text{ system } \mathbf{A}\mathbf{x} \le \mathbf{b} \text{ is feasible.} \}$

Certificate for LP is a feasible solution **x**. An algorithm B calculates $A\mathbf{x}$ and decides whether **x** is feasible or not. Running time of B is quadratic in length of **x** (by recalling the complexity of matrix vector multiplication).

Another example of a problem in \mathcal{NP} is the following:

$$COMPOSITE = \{n \in \mathbb{N} : n \text{ is composite}\}.$$

A certificate for *COMPOSITE* problem is $n_1, n_2 \in \mathbb{N}$, s.t. $n_1, n_2 \notin \{1, n\}$ and $n_1 n_2 = n$.

4 $\mathcal{NP}, CO-\mathcal{NP}$

Definition 2

$$[\pi \subseteq \Sigma^*, \ s.t. \ \pi \in CO - \mathcal{NP}] \Leftrightarrow [\bar{\pi} \in \mathcal{NP}].$$

As an example of a computational problem which is in CO-NP, consider $PRIME = \overline{COMPOSITE}$. Since $COMPOSITE \in NP$ (as argued above), $PRIME \in CO-NP$. Therefore, for any given input $n \in \mathbb{N}$, we have certificate that states that n is not a prime.

As another example of a problem in $CO-\mathcal{NP}$, consider \overline{LP} defined as follows:

$$\overline{LP} = \{ \langle \mathbf{A}, \mathbf{b} \rangle : \mathbf{Ax} \leq \mathbf{b} \text{ is not feasible} \}.$$

If $\langle \mathbf{A}, \mathbf{b} \rangle \notin \overline{LP}$, there exists a short certificate to verify $\langle \mathbf{A}, \mathbf{b} \rangle \in LP$, which implies that $\overline{LP} \in CO - \mathcal{NP}$.

Claim 2 $\overline{LP} \in \mathcal{NP} \cap CO - \mathcal{NP}$.

Proof: Consider following systems

$$\mathbf{A}\mathbf{x} \le \mathbf{b},\tag{1}$$

and

$$\mathbf{A}^T \mathbf{y} = \mathbf{0}, \ \mathbf{y} \ge 0, \ \mathbf{b}^T \mathbf{y} < 0.$$

Using Farkas' lemma, we know that either (1) or (2) is feasible but not both. In the same way as above, we can write a polynomial time acceptor for (2), so we know that detecting the infeasibility of an LP is in \mathcal{NP} , or rather $\overline{LP} \in \mathcal{NP}$. Hence $LP \in CO-\mathcal{NP}$. Hence, we have $LP \in \mathcal{NP} \cap CO-\mathcal{NP}$.

Before discussing \mathcal{NP} -completeness, we state two long standing open problems in computer science: First, is

$$\mathcal{P} = \mathcal{NP} \cap CO - \mathcal{NP}?$$

Second, is

$$\mathcal{P} = \mathcal{NP}^{2}$$

It's clear that $\mathcal{P} \subseteq \mathcal{NP} \cap CO - \mathcal{NP}$ and that $\mathcal{P} \subseteq \mathcal{NP}$, but it's unclear whether equality holds.

5 \mathcal{NP} -Completeness

Intuitively, \mathcal{NP} -complete problems may be considered as 'the hardest' problems in \mathcal{NP} , in the sense that every problem in \mathcal{NP} can be reduced to a \mathcal{NP} -complete problem in polynomial time. Before stating the definition of \mathcal{NP} -completeness, we need following definition.

Definition 3 $\pi, \pi \subseteq \Sigma^*, \pi'$ is reducible to π , denoted as $\pi' \leq \pi$, provided that

 $\exists f : \Sigma^* \to \Sigma^*, \text{ s.t. } x \in \pi' \Leftrightarrow f(x) \in \pi \text{ and } f \text{ runs in polynomial time.}$

Next, we state the rigorous definition of \mathcal{NP} -completeness:

Definition 4 π is \mathcal{NP} -complete provided that:

1.
$$\pi \in \mathcal{NP}$$
.

2. $\forall \pi' \in \mathcal{NP}, \ \pi' \leq \pi,$

Claim 3 If π is \mathcal{NP} -complete and $\pi \in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.

Proof: Suppose we have an \mathcal{NP} -complete π , such that $\pi \in \mathcal{P}$, which implies that $\exists A_{\pi}$, which runs in n^d . Using this A_{π} , we can construct the following algorithm for any $\pi' \in \mathcal{NP}$:

Given input x for π' ,

- Compute f(x)

- Run A_{π} on f(x)

- If $A_{\pi}(f(x)) = \text{YES}$, then output YES, if $A_{\pi}(f(x)) = \text{NO}$, then output NO.

Now, observe that from the definition of \mathcal{NP} -completeness, the aforementioned algorithm works correctly; moreover, since $x \in \mathcal{P}$, we have n^d as the running time of A_{π} and n^c for f (recall the definition of reducibility). Hence, the algorithm's running time is n^{c+d} , which is also polynomial. Therefore, we conclude that $\pi' \in \mathcal{P}$. If $\pi \in \mathcal{P}$ for any \mathcal{NP} -complete π , then we have $\forall \pi' \in \mathcal{NP}, \pi' \in \mathcal{P}$. Hence the claim follows. \Box

6 Steps for \mathcal{NP} -Completeness Proofs

In this part, we will show that $SAT \leq 0 - 1IP$, where IP stands for 'integer program'. We should construct a polynomial time algorithm with following properties: Input: Φ .

Output: A 0 - 1 *IP*.

For each x_i of SAT, we have $y_i \in \{0, 1\}$ for 0 - 1 IP, where $y_i = 0$ means x_i is false and $y_i = 1$ means x_i is true. For any clause $c_j = \bigvee_{i=P_j \subseteq [n]} x_i \lor \bigvee_{k \in N_j \subseteq [n]} \overline{x}_j$, we have $\sum_{i \in P_j} y_i + \sum_{k \in N_j} (1 - y_k)$ for 0 - 1 IP. Observe that the aforementioned algorithm is polynomial time. Therefore, we conclude $SAT \leq 0 - 1$ IP, which implies that 0 - 1 IP $\in \mathcal{NP}$.

Theorem 4 (Cook, Levin '71) SAT is \mathcal{NP} -complete.

Since $SAT \leq 0 - 1$ IP (as we have argued above), 0 - 1 IP is also \mathcal{NP} -complete. Therefore, intuitively speaking it is also one of the 'hardest problems in \mathcal{NP} '.