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1 Dantzig-Wolfe Decomposition

Recall from last time that we consider LPs of the following form:

min dz; + gz + o+ L,
st. Apix1 + Agze + ... + Aopmzs =1bo
Az =b
Agoxo =by
Apm®m = by,
T >0 Vj=12,...,m,

where A;; € R™*", ¢j,x; € R, and b; € ™. So we have a set of linking constraints (row 1)
followed by m smaller systems. Recall that each of the A;; are matrices of size m; x n;; these blocks
are not necessarily square. Similarly, the cq, ..., ¢, T1, ..., Tm, and by, ..., by, are vectors. Our goal is
to reformulate this problem so that we can take advantage of its special structure to solve it more
easily. Our main assumption in doing this is that the following subproblem is relatively easy to
solve for any cost vector ¢:

min ¢ a;
s.t. A“.IZ = bl
xX; > 0

The feasible region of this subproblem is @Q; = {x; € R™ : Ajx; = bi,x; > 0}. We will
assume for simplicity that @; is bounded. Then if we enumerate its vertices {v;1, vj2, ..., Vin; }, these
v;;’s completely define the feasible region. That is, for any z; € Q; we can write x; as a convex
combination of the v;;. That is, z; = Zj\f:zl Ai;jvi; for some A;; such that Z;V:ll Aij = Land A;; > 0.
Thus we can rewrite the original LP in terms of the variables \;; as follows:

min >, Zjvzll Aij (¢ivig)

st Doty gt Ay (Aoivig) = bo
SN =1 Vi=12..m
Aij >0  Vi,j.

This is sometimes called the master problem.

This new formulation reduces the number of constraints to mg + m, since there are now mg
constraints for the linking constraints and only 1 constraint for each of the m subproblems. However,
the number of variables is now huge! Therefore, to solve this problem we will want to use the
revised simplex method, so that we do not need to keep track of all of these variables at once. As
in the cutting stock problem, to do this, we need to be able to check whether the reduced cost
corresponding to each variable is negative.
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We first create the dual variables y € R™0 corresponding to the mg linking constraints, and we
create z € R™ corresponding to the m subproblem constraints (which set the sums of the A;; to 1).
To check the reduced cost corresponding to variable \;;, we consider

Gj = oy — ((Aoivij)y +ef 2)
= oy —y" (Aovig) — 2

= (Ci — A(j);y)TUij — Zi.
which we get from taking the inner product of the dual variables with column for A;;:
[vo 2] | Aoivij
€;
Does there exist v;; such that ¢;; < 0 or equivalently such that (¢; — yoAoi)T
we answer this? Consider ¢; = ¢; — Ag;y in the following subproblem:

v;j < 2;7 How can

: =T
mm ¢; r;
s.t. Aul‘l = bl
€Z; Z 0.

Since we assume that ; is nonempty and bounded, this problem must have an optimal solution
which is a vertex; call it v = v, for some k. If the optimal value ¢;v < z; then ¢;; < 0, which
implies that the index of variable \;; should enter the basis. If ¢;v > z;, then this implies that
¢i; > 0 for all vertices v;; for j =1,..., N;.

Therefore, by solving the auxiliary optimization problem for each of Q1, ..., @, we either find a
negative reduced cost column or else we prove that the current solution to the master problem is
optimal.

Notice that what we have really done here is simply the revised simplex method. Using this
method is good because it vastly reduced the amount of space required to solve the problem. Also,
it is good computationally because the slave problems can be solved in parallel; we simply choose
the column corresponding to whichever problem answers back first with negative reduced cost to
enter the basis.

2 Good algorithms

Our next task will be to consider provably efficient algorithms for solving linear programs. What
do we mean by this? We have said that the simplex method works very well in practice. Why isn’t
this enough? We’d like to get some mathematical sense of when problems have good algorithms —
or are not like to have them — as long as there is roughly a correspondence between this and reality.

One of the first definitions of a good algorithm was given in the context of the perfect matching
problem. In this problem, we are given an undirected graph G = (V, E), with edge costs ¢, > 0 for
all e € E, and |V| even. The goal is to find a minimum-cost set of edges M C E such that each
vertex has exactly one edge of M incident to it.

Definition 1 (Edmonds (1965)) An algorithm for this problem is good if for any input, the
amount of time necessary for the algorithm to complete is no more than some polynomial function
of the input size. That is run time < p(n), where n is the input size and p is some polynomial.
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Figure 1: Example of a matching problem

Edmonds gave an O(n”) time algorithm for the perfect matching problem, where n = |V|. Note
that this is much better than consider all possible matchings, which in a complete graph can be as
many as (n — 1) - (n — 3)--- 1 possibilities. We could not possibly consider all of these possibilities
in O(n®) time, so somehow the algorithm is circumventing the complete enumeration of all options.

Now to ask the question: is the simplex method a good algorithm under this definition? The
answer is no, since as we’ve seen, there are examples for which most of the known pivot rules require
2" — 1 pivots.

There are some subtleties in the definition of a good algorithm of which we should be aware.
For instance, Euclid gave an algorithm for computing the greatest common denominator (ged)
of two numbers. It takes two numbers as input. What makes this a good algorithm? What is
the corresponding input size? Unless the algorithm runs in constant time, we’ll need to consider
something different than simply saying that it is the number of input numbers. Euler gave an
algorithm for this. What is the input size n for this algorithm?

In this case, the input size is the total number of bits needed to write the input numbers in
binary. Then we can show that the running time of Euclid’s algorithm is bounded by a polynomial
in this input size.

Now for the question: Are there good algorithms for solving linear programs? The answer is
yes! There are two kinds which we will be discussing in the coming weeks. The first is called the
Ellipsoid Method, due to Khachiyan in 1979. The algorithm is not practical, but still has some
nice theoretical properties. The second is a class of algorithms called interior-point methods, which
started with a paper of Karmarkar in 1984. Both have running times bounded by polynomials in
n, m, and L, where L is the number of bits needed to encode the inputs A,b, and ¢ in binary.

Here’s one more definition. A strongly polynomial time algorithm for LP would have a running
time bounded by a polynomial in m and n; that is, the algorithm would depend only on the number
of inputs, and not their size. It is a significant open research problem to show whether there exists
a strongly polynomial-time algorithm for linear programming or not.

Another interesting question is to know when there does not exist a good algorithm for a
problem. For instance, we can ask if there exists a good algorithm for the knapsack problem. We
saw in a previous class an algorithm for the knapsack problem running in O(mW?2) time, where W
is the size of the knapsack. This is not a good algorithm, since the input size of the knapsack is
O(log W), not W. Does there exist a good algorithm for the knapsack problem? This is currently
unknown. There are many problems in this class that are of interest. We will discuss this in future
lectures when we discuss NP-completeness.
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