
ORIE 6300 Mathematical Programming I October 30, 2008

Lecture 17

Lecturer: David P. Williamson Scribe: Ross Anderson

1 The Cutting Stock Problem

Recall from last lecture the cutting stock problem. Paper is produced in long rolls, or raws, of some
fixed length W . The customers demand bj rolls of length sj < w, called finals, for j = 1, . . . , m.
The producer cuts the finals from the raws, trying to use as few raws as possible while producing
all demanded finals.

1.1 A Formulation

Suppose we define a pattern (or configuration) p ∈ Rm : pi ∈ N+ to be a cutting of a raw producing
pi finals of type i, where i = 1, . . . , m enumerates the sizes of the finals demanded. A pattern is
feasible if

∑m
i=1 piwi ≤ W and maximal if

∑m
i=1 piwi > W −mini wi. Clearly, there are only finitely

many feasible patterns, enumerated by j = 1, . . . , n. We define the matrix A ∈ Rm×n to have the
jth column as the jth feasible pattern. Letting xj ∈ N for j = 1, . . . , m be the decision variable
indicating the number of times pattern j is cut from a raw, and b ∈ Rm where bi is the total demand
for finals of size i, this leads to the alternate formulation:

min
n∑

i=1

xi

subject to Ax ≥ b

x ∈ Nm.

Note that while the constraint could be an equality constraint, by making it a greater than or equal
to constraint we ensure that the integer program always has a solution with a basis of maximal
patterns. A basis in this problem will consist of m patterns.

Clearly if we relax the integrality constraint on x, we will get a smaller optimal value. However, the
relaxation is a very good approximation. There is no known instance of the cutting stock problem
where the optimal value and the linear programming relaxation differ by more than just above 1,
and it is suspected (but remains to be shown) that the optimal value and the relaxation can never
differ by more than some fixed constant.

As there are exponentially many feasible patterns, we do not want to consider them all simulta-
neously. To run the revised simplex method, we need only to find an initial basis of columns, and
efficiently find a column with negative reduced cost.

We can generate an initial basis of feasible patterns A = [A1, . . . , Am], where Aj is a pattern that
produces bw/sjc finals of type j and no other finals, so Ajj = bw/sjc and Aij = 0 for all i 6= j. As
the sub-matrix of these columns is diagonal with positive diagonal entries, it is full rank and forms
a basis. A feasible x for these patterns is xj = bj/bw/sjc, and xi = 0 for i 6∈ B, as then Ax = b.

17-1



Given a basis, we can compute the reduced costs directly from the formulas y = (AT
B)−1cB and

c̄j = cj − AT
j y. As there are exponentially many cj and Aj , we need an efficient method to find a

c̄j which will be negative. However, cj = 1 for every j, so the reduced cost for j is non-negative if
and only if AT

j y ≤ 1. Thus all reduced costs are non-negative if and only if AT
j y ≤ 1 for all j. This

motivates the integer program:

max
n∑

i=1

yiai

subject to
n∑

i=1

siai ≤ W

a ∈ Nn.

where ai is the number of finals of size i to cut for pattern a, si is the size of the ith final type,
and the constraint ensures that the pattern is feasible. As any such feasible pattern a will be a
column of A, so solving this integer program will give us the column with the least reduced cost.
Thus if the optimal objective function value is less than 1, then there are no columns with negative
reduced costs, otherwise the optimal a is a column with negative reduced cost. We have reduced
to problem of finding a negative reduced cost column to enter the basis to solving this new integer
programming problem. This technique is called column generation. The new integer program is in
fact the Knapsack Problem, which can be solved via dynamic programming.

1.2 The Knapsack Problem

In the Knapsack Problem, we have items 1 = 1, . . . , m with size si and value yi, a knapsack of size
W , and want to maximize the value of the goods that fit in the knapsack by taking ai of each type
of good. We can efficiently solve the knapsack problem with a dynamic programming algorithm.

We assume si and W are integers and each si > 0.1 We then define Fi(v) to be the optimum value
of the knapsack if the knapsack size is v and we only can take items from {1, . . . , i}. Ultimately,
we want Fm(w). First, we compute directly F1(v) for v = 0, . . . , W directly, as

F1(v) =

{⌊
v
s1

⌋
y1 y1 > 0,

0 otherwise.

For each i = 1, . . . , m − 1, for each v = 0, . . . , W , we can compute the remaining terms by the
recurrence

Fi+1(v) = max
ai+1=0,...,

j
v

si+1

k yi+1ai+1 + Fi(

Space left over
after taking ai+1
items of type i + 1︷ ︸︸ ︷
v − ai+1si+1 )︸ ︷︷ ︸

Optimal value of items 1, . . . , i
fitting in the remaining space

As we have mW entries and we must maximize over at most w terms in computing each entry (if
for example, every si = 1), the algorithm will run in O(mW 2). By modifying the algorithm to store
items that were selected, we can obtain the optimal a as well, or alternatively, we can reconstruct
a directly from the dynamic programming table F .

1More generally, we need only assume si and W are rationals where si > 0, as we can multiply our constraints by
a common denominator to make everything integer valued. We cannot in general extend this algorithm for irrational
si or w.

17-2



2 Dantzig-Wolfe Decompositions

Consider a linear program of the form

min
m∑

i=1

cT
i xi

subject to
m∑

i=1

A0ixi = b0

Aiixi = bi ∀i = 1, . . . ,m

xi ≥ 0 ∀i = 1, . . . ,m

where Aij ∈ Rmi×nj , cj , xj ∈ Rnj , and bi ∈ Rmi . The first type of constraint is called a linking
constraint. Such an LP is quite reasonable. For example, consider a bakery chain minimizing its
costs. Each bakery in the chain has its own requirements for production, and there are global
constraints on shared resources, perhaps flour. We want to minimize the costs of the entire chain.

In such linear programs, we assume that the local optimization problems

min ĉT xj

subject to Ajjxj = bj

xj ≥ 0

can be solved easily for any cost function ĉ, and use this to solve the global optimization problem.

17-3


