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1 Sensitivity Analysis (continued)

Last time, we looked at what happens to optimal solutions when we make small changes to b. We
continue by examining changes in A and c.

1.1 Changes in c

Suppose we change cj → cj + δ. Then x stays feasible. There are now two cases:

1. j ∈ N. The objective function stays the same, since xj = 0. cB is unchanged, so y = (AT
B)−1cB

stays the same, and therefore complementary slackness still holds. Is y feasible? Yes, if
AT

j y ≤ cj + δ. If so, then x, y are still optimal.

2. j ∈ B. Then cB → cB + δej and then y = (AT
B)−1cB → ỹ = (AT

B)−1cB + δej). This new y is
feasible if AT

k ỹ ≤ ck for all k ∈ N, i.e. if AT
k y + δAT

k(AT
B)−1ej ≤ ck. So there are bounds on

δ such that y stays feasible. Note that the objective function changes by δxj .

1.2 Changes in A

Now suppose we change a single entry of the constraint matrix A; suppose aij → aij + δ. Once
again there are two cases:

1. j ∈ N . In this case, x stays feasible (since xj = 0). Then y = (AT
B)−1cB stays the same, so

that complementary slackness still holds. y is feasible if AT
j y + δyi ≤ cj .

2. j ∈ B. In this case, both xB = AB
−1b and y = (AT

B)−1cB change. We need to check
whether AB + δeie

T
j remains singular! If so, we can solve for both x and y and check whether

they remain feasible; if so, they will be optimal because they both still obey complementary
slackness.

2 The Cutting Stock Problem

This is a problem from the paper industry. Paper is produced in W inch long rolls called raws in
which W is very large. These raws are cut into smaller lengths called finals for sale according to
demand. Suppose there is demand for bi rolls of length si ≤ W , where i = 1, . . . , m. The goal is to
find a way to cut raws into finals such that we use the minimum possible number of raws. A clear
upper-bound for this problem is

∑m
i=1 bi = N (i.e., using one complete roll of paper to produce

each one of the rolls needed).
How can we use LP to solve this problem? We start out by formulating this as an integer

program. Here is one possible formulation (which is not very good, as we will see). Let wj denote
the length of the jth final to be produced (i.e. it is si for some i). We set up decision variables yi
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and xij in which we use yi ∈ {0, 1}, i = 1, 2, ..., N to denote whether or not the i-th roll is used in a
solution and xij ∈ {0, 1}, j = 1, 2, ..., N to denote whether or not the j-th desired roll is obtained by
cutting that length from the i-th complete raw. Thus we may formulate the integer programming
problem as:

min
∑N

i=1 yi

s.t. (1):
∑N

j=1 xijwj ≤ W for i = 1, . . . , N (maximum available per roll)
(2):

∑N
i=1 xij = 1 for j = 1, . . . , N (all demands must be satisfied)

(3): 0 ≤ xij ≤ yi ∀ i, j (must cut from a complete roll which is used)
(4): xij , yi integers.

It turns out this is a bad integer programming formulation, but to understand why, we need to
know a little about how integer programs are solved using linear programs as a subroutine. First,
we solve the LP relaxation of the IP: Relax xij ∈ {0, 1} → 0 ≤ xij ≤ 1, yi ∈ {0, 1} → 0 ≤ yi ≤ 1.
The value of the LP relaxation is at most the value of the IP, since the optimal IP solution is feasible
for the LP relaxation. If the optimal LP solution is integral (i.e. it has xij ∈ {0, 1}, yi ∈ {0, 1}), then
the optimal LP solution is the optimal IP solution. If the LP solution is not integer, then we can
use a branch-and-bound algorithm. In branch-and-bound, we take some fraction variable (say yi),
and solve two subproblems, one in which yi = 0 and the other in which yi = 1. Clearly, the cheaper
of the two subproblems should be the solution to our overall problem. We solve the subproblem
as we started out solving the general problem; i.e., solving a linear programming relaxation, and
hoping to obtain an integral solution, and “branching” on a fractional variable if needed.

For this process to work well, it desirable to have at least two things:

1. The value of the LP relaxation is close to the IP optimal solution, so that we don’t need to
enumerate many subproblems before we find an integer solution.

2. The two possible branches partition the space of solutions, so we aren’t considering the same
possibilities under both branches (this will slow things down otherwise).

Neither is true of the above IP formulation of the problem. First, a trivial solution to the LP
relaxation is xij = yi = 1/N ∀i, j, which has LP value of 1. So no matter what the true IP
solution is, our LP solution can be quite far away from it. Second, there are lots of different ways
of representing the same integer solution.

2.1 An alternate formulation

We switch our attention to one raw of length W . We use a column vector Aj to represent a feasible
cutting pattern or configuration pj . The i-th component of Aj (aij) corresponds to the number
of pieces of length si cut in one roll of configuration pj . For pj to be a feasible cutting pattern,
the elements of Aj must all be non-negative integers and the sum of them must be at most W
(
∑m

i=1 aij ≤ W ).
Taking W = 10, s1 = 5, s2 = 3 and s3 = 2 as an example, it is easy to verify that the set of all

maximal feasible cutting patterns (expressed in rows) is
{(2, 0, 0), (1, 1, 1), (0, 3, 0), (1, 0, 2), (0, 0, 5), (0, 1, 3), (0, 2, 2), (1, 0, 2)} = A union with all possible
subsets of each of the elements of A. (These patterns are maximal in the sense that we can’t cut
any more finals from the raw than are given by the pattern; we can easily derive all the non-maximal
patterns from these, since they are any vector a ≤ Aj for some j). Let n be the total number of
distinct feasible cutting patterns (that is, the number of vectors Aj satisfying the constraints) and
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let xj denote the number of rolls cut according to the j-th pattern. We may now formulate the
1-dimensional cutting stock problem as the following IP:

min
∑n

j=1 xj

s.t.
∑n

j=1 aijxj ≥ bi for i = 1, . . . , m (demand constraint)
xj ≥ 0 integer-valued

Solving the LP-relaxation will give us another lower bound for the IP. Recall that since there are
only m constraints, there are at most m non-zero variables. Given the LP-solution, we may round
up decision variables with fractional values to the next integer and conclude that IP-optimal ≤
LP-optimal + m.

However, this new formulation has the drawback that there are potentially a lot of variables!
Next time we will see how we can solve this linear program.
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