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1 Pivot Rules

A key factor in the performance of the simplex method is the rule we use to decide which j (st
c̄j < 0) should enter the basis on each pivot. We know, from the last lecture, that the time spent in
checking c̄j < 0, for each j, is O(m), and if we check all possible j’s, the total time is O(mn). This
compares with the O(km) time needed to complete the rest of the pivot, where k is the number
of pivots performed since we last computed A−1

B . However, the selection of a pivot rule not only
will affect the performance of each pivot, but also, the total number of pivots needed to reach the
optimum (if it exists). The following are common practices on how to do this; however, remember
that these methods are only heuristics. Below (+)=Advantage and (−)=Disadvantage.

1. Use first negative reduced cost c̄j found.
(+) It is computationally cheap.
(−) We are not sure whether we are making progress or not.

2. Use most negative reduced cost c̄j found.
(−) It is more expensive than the first.
(−) We are not sure of progress.

3. Use greatest improvement c̄jε found.
(+) We are clearly making progress.
(−) Needs even more computation. We need to compute: ABd = Aj , ∀j s.t. c̄j < 0.
Then for each j compute: max εj s.t. εjd ≤ b̄ = xB and set ε = argmaxεj

c̄jεj

4. Use the steepest edge:

min
j

c̄j

‖d‖2

The reasoning for this method is that d = A−1
B Aj represents the vector of change.

x̂B = xB − Ā(εej) = xB − εd

Consequently, the steepest edge method gives the greatest objective value improvement per
amount of current solution perturbation.
(−) Computationally expensive. Less than ”greatest improvement” (we only compute d for
each j, not ε).
(+) Works well in practice. Seems to lead to fewer overall pivots than greatest improvement.

2 Pivot Pool

For LP problems with many variables, the use of a “pivot pool” often works well. This is how a
pivot pool works. Periodically, the algorithm computes the reduced costs for all the variables, and
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among those with c̄j < 0 a subset of “best” variables are chosen. This subset is used in all further
iterations of the simplex method until the pivot pool either becomes empty or grows too old. This
allows the algorithm to choose entering variables quickly (by one of rules (2), (3), or (4), above, for
example), but only considering a tuned subset of the entire set of variables.

3 Cycling & Bland’s Rule

Consider a linear programming problem input in standard form: minimize cT x subject to Ax = b,
x ≥ 0. S
Recall: A basic feasible solution, x, is degenerate if ∃ i such that x̂i = 0 and i is in the basis
corresponding to x. Alternatively, a basic feasible solution is degenerate if there exist different
bases B0,. . . ,Bκ (with κ ≥ 1) corresponding to x.

Possible Problem: If x is degenerate and i ∈ B, s.t. xi = 0, is chosen to leave the basis, then
the objective function doesn’t change.

Another Problem: Degeneracy can potentially cause cycling in the simplex method.

Definition 1 A cycle in the simplex method is a sequence of κ + 1 iterations with corresponding
bases B0,. . . ,Bκ,B0 and κ ≥ 1.

This isn’t a theoretical concern; this can actually happen; see the attached example. In our
example, we used the following rules for pivot selection:

1. Choose a column whose reduced cost is the most negative to enter the basis.

2. Out of all variables eligible to exit, choose one with the smallest subscript.

As a result, a sequence of pivots leads back to the initial basis. (i.e. cycling occurs). See the
example for details.

There are a couple of ways of avoiding cycling. One way is the “Perturbation Method”. In
this, we perturb the right-hand side b by small amounts different for each bi. Then, xi 6= 0 ∀i ∈ B
since xi will always have some linear combination of these small amounts. See the textbook for
details. This is equivalent to a lexicographic method for breaking ties in choosing entering and
exiting variables.

Another way to avoid cycling is a lexicographic method known as Bland’s Rule.

Definition 2 (Bland’s Rule) Choose the entering basic variable xj such that c̄j < 0 and j =
min{i : c̄i < 0}; i.e., the variable with the smallest index of all those eligible to enter. Choose the
leaving basic variable, in the event of a tie, again with the smallest index.

Theorem 1 (Termination with Bland’s Rule) If the simplex method is implemented with Bland’s
Rule, then it is guaranteed to terminate.

Proof: Suppose the simplex method is implemented with Bland’s rule and a cycle exists. Then
there exist bases B0,. . . ,Bκ,B0 that form the cycle. Additionally, recall that the objective value
and the current solution x∗ remain constant throughout the cycle.

Definition 3 A variable xj is fickle if it is in some, but not all, bases Bi in the cycle.
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Clearly, if x∗j is fickle, then x∗j=0 throughout the cycle.
Let xt be the fickle variable with the largest index. Then we know:

(1) There exists a basis B such that t ∈ B, but is not in the basis for the next iteration. Let xs

be the entering basic variable in this iteration (for some s). As before, we have Ā = A−1
B AN ,

b̄ = A−1
B b and the reduced cost c̄ s.t. c̄B = 0 and c̄N = cN −AT

N ((AT
B)−1cB). Note that, since

s is entering the basis, c̄s < 0 and Āst > 0. Further more, s is also fickle, and by definition of
t, s < t.

(2) There exists a basis B̂ such that t /∈ B̂ and t is selected to be the entering variable for the
next basis. Let ĉ denote the reduced costs in this iteration. Again, since t is entering the
new basis, ĉt < 0. And ĉs ≥ 0, since if s /∈ B̂, then it must be the case where ĉs ≥ 0 (o.w.
wouldn’t have chosen t), and if s ∈ B̂, by definition of reduced cost ĉs = 0 .

Recall that by our formulation of reduced costs, the objective function cT x, for any x satisfying
Ax = b (not necessarily feasible), is offset from the reduced costs by some constant. Thus

cT x = v̄ + c̄T x = v̂ + ĉT x,

where v̄ and v̂ are constants. Even more, since x∗ satisfies Ax∗ = b, c̄B = ĉB = 0 and x∗N = x∗
N̂

= 0,
we have v̄ = v̂ since

c̄T x∗ + v̄ = ĉT x∗ + v̂

⇒ c̄T
Bx∗B + c̄T

Nx∗N + v̄ = ĉT
B̂

x∗
B̂

+ ĉT
N̂

x∗
N̂

+ v̂

⇒ v̄ = v̂.

Finally, this implies c̄T x = ĉT x.
Now, consider the following family of (not necessarily basic or feasible) solutions that do satisfy

Ax̃ = b: x̃s = ε, and x̃B = b̄ − εĀs where A−1
B As = Ās. (It is very important to recall that the

equivalence of the objective functions was with respect to any solution to Ax = b, and this did not
require feasibility.) Now we can use our previous result for x̃. Then,

c̄T x̃ = ĉT x̃

⇒ c̄T
Bx̃B + c̄T

N x̃N = ĉT
Bx̃B + ĉT

N x̃N

⇒ 0 + c̄sε = ĉT
B(b̄− εĀs) + ĉsε

Since the last equality holds for any ε, then c̄s = −ĉBĀs + ĉs. But, we know that c̄s < 0 and ĉs ≥ 0,
so it must be the case that ĉBĀs > 0. Then there exists r ∈ B s.t. ĉrĀsr > 0, which implies ĉr 6= 0.
Therefore, r /∈ B̂. However, r ∈ B, so r must be fickle and r ≤ t.

We then have two cases:

Case 1: r = t. But, we know ĉt < 0 and Āst > 0, then, ĉtĀst < 0, which is a contradiction.

Case 2: r < t. Since we didn’t choose r to enter B̂, then ĉr ≥ 0. Using ĉrĀsr > 0, we get ĉr > 0
and Āsr > 0. But, r is fickle, which implies x∗r = 0 and b̄r = 0. By the ratio rule, r has a
ratio of zero, and thus, r is a candidate to leave B, which is a contradiction since r < t and
we chose t to leave B.

¤
Therefore, if we make our entering and leaving variables selections according to Bland’s rule, we

never create a cycle, and hence the simplex algorithm terminates after a finite number of iterations.
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