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Lecture 12

Lecturer: David P. Williamson Scribe: Joonkyum Lee

1 Finding an initial basic feasible solution

Recall our discussion from last time about how to find an initial basic feasible solution of a linear
program. Suppose we want to find a basic feasible solution of

min Tx
st. Ax =150
xz > 0.

We modify the LP so that there is an easy choice of basic solution. We start by solving

T

min e z
st. Ax+1z=0b
x>0
z >0,

where e is the vector of all ones, and b > 0 (if not, then we can multiply the constraints by
—1 to achieve this). The z variables are called artificial variables, and the x’s are called real vari-
ables. Define 2’ := [27 27]T and A’ := [A I] so that the constraints of the modified LP can be
written as A’z’ = b, 2’ > 0.

Let B be the indices corresponding to the artificial variables. Then B is a basis, since the
corresponding columns of A’ are I, the identity, and thus linearly independent. The corresponding
basic feasible solution is x = 0, z = b. We use this to initialize the simplex algorithm.

The simplex method can one of two possible results (note that the modified LP is never un-
bounded: since z > 0, the objective function is bounded from below by 0.)

Case (1): The value of the LP is non-zero (and thus strictly greater than zero). Then there
are no feasible solutions for the original LP, i.e., there are no x such that Az = b. Indeed, if there
were, we could take z = 0 and thus obtain a new feasible solution to the modified LP with value 0,
a contradiction.

Case (2): The value of the LP is zero. Then there are two subcases:

(i) The Good Case: All artificial variables are non-basic. Then A%z = Ap, so that B is a basis
also for the original problem: a5 = (A%)~1b, 2y, = 0 is feasible, so x5 = Aglb, zy=01is a
basic feasible solution. for Az = b.

We can now run the simplex method for the original problem, starting with the basis B.
(ii) The Bad Case: Some artificial variables are in the basis.

In the bad case, we know that all the artificial variables z; = 0. Therefore, the idea is that we

should perform pivots, taking artificial variables out of basis, putting “real” variables in.
Recall: A’ = (A) "' Ay
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Now we again have two cases. First, suppose there exists a “real” variable 7 € N such that
A;j # 0 for artificial variable ¢ € B. Consider pivot B «— B — {i} U{j}.

Claim 1 Current solution 2’ is also a solution associated with B
Proof:  All we need to show is that 2’ satisfies A’z =b and 2}, =0 Vk ¢ B. A'z’ = b since no
change to #’. 2}, =0 Vk ¢ B since either k ¢ B or k =i. For k ¢ B, z}, = 0 (same as before). For

k=1, = 0 (since ¢ an artificial variable). O

Claim 2 B is a basis

Proof: We use the same proof we used to show that a pivot leads to a new basis. We have

LAy
1 Al
A;;, = Al -

1

1
1
ith column

where A’; is non-singular (it was a basis), and the next matrix is also non-singular (because its
determinant value is A;; # 0 by assumption. O

Now we suppose for artificial variable ¢ € B, for all real j € N, A;j = 0. Let a; be i*" row of
(A%5)"!. Then for each real j € N

ozZ-A; = /fl-j = 0. (A; : 5 column of A

For each real j € B
OzlA; =0

since (Ajg)flAB =1, and i # j since j real and ¢ artificial. So then, o; A = 0, which implies that
the rows of A not linearly independent. Either this violates an assumption (if we assumed that A
has linearly independent rows) or we can find a linearly dependent row and eliminate it.

Finding an initial basic feasible solution an associate basis is called Phase I of the simplex
method. Finding an optimal solution given the initial basic feasible solution is called Phase I1I.

2 The complexity of a pivot

We now turn to thinking about the complexity (number of arithmetic operations) needed to perform
a single pivot. Assume we have a basic feasible solution z and associated basis B. Recall the steps
of a pivot:

e Step 1: Solve Agzp = b for zp.
e Step 2: Solve A’y = cp for y.

e Step 3: Compute ¢ = ¢ — ATy. If ¢ > 0, stop. Else find ¢ <0
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A,
e Step 4: Solve Apd = A; for d. This computes column : of A= (Ap~1)An.

Amj
e Step 5: Compute max ¢ s.t. ed <b=zxp

e Step 6: Update solution to & where #; = €. 2’5 = x5 — ed, Basis B = B — {i*} U {j}

Let’s now consider the total work involved:

e Step 1,2, and 4: need to solve m x m system of equations. : O(m?) (this is faster if Ap is
sparse, lots of zeros)

e Step 5 and 6: check O(m) inequalities: O(m) work

e In Step 3, to compute any component of ¢ is O(m) work, but there are n of them. Overall,
O(mn) times if we look through all entries.

Therefore, the overall work involved is O(m? + mn) per pivot.
Suppose initially Ag = I. (If not true, we can multiply the constraints by Ap~! to make it
true). Suppose By, B, Ba, - - - By, be bases in a sequence of k pivots.

Recall that
1

— Ap, d

i+1

AN

called an eta matrix

Let FE; be it eta matrix. Given that this, is the case how hard is it to solve the systems
Apz=0b forz

Ap,Ty=cp fory
ABld:Aj for d

We know that Ap, = E; for E; an eta matrix. So Ap,x = b is equivalent to

1

jth

This implies
ri+dix; =b; (i #j) and djzj =b; (i =j).
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b Solving this then takes O(m) time.

Then to solve this system, set z; = % and then x; = b; — 7

dijw
Now consider solving Ap, Ty = cp for y. Then

10 0 0
01 0 0
d Y = CB
00 10
0 0 0 1

This implies
n
yi=c 1#] and > diyi = ¢,
i=1

which we can easily solve in O(m) time.

In the general case, we want to solve equations of the form Ap, x = b. Note that we can solve
(Ap,E1Es>...E)x = b if we solve (E1Es...Ex)x = b. Let z1 denote the product Es--- Exz (where
we still don’t know x). Then Ejx; = b. We can solve this system for z; in O(m) time. Now we
iteratively solve Es ... Epx = x; for . Thus we can solve for = in O(km) time.

Hence in general, after k pivots, we can perform a pivot in O(km 4+ mn) time. Note that this
running time gets larger after we have performed a large number of pivots, so in practice, after
some number of iterations, we recompute Ag !, make the current basis I, and start over again.

12-4



