
ORIE 6300 Mathematical Programming I October 7, 2008

Lecture 11

Lecturer: David P. Williamson Scribe: Martin Larsson

1 Simplex Method to Solve LPs

Recall the standard form of primal and dual LPs:

min cT x max yT b
s.t. Ax = b s.t. AT y ≤ c

x ≥ 0

Given a basic feasible solution x, and a basis B, we compute y = (AT
B)−1cB, reduced costs

c̄ = c − AT y, and observe that then c̄B = cB − AT
B(AT

B)−1cB = 0. Recall that xN = 0 and
xB = A−1

B b.
As we’ve discussed, if c̄ ≥ 0, then x is optimal. Otherwise, consider b̄ = A−1

B b, and Ā = A−1
B AN .

Then we showed that the primal problem corresponds to the linear program min c̄+NT xN : ĀxN ≤
b̄, xN ≥ 0. We pick j ∈ N such that c̄j < 0.

Check for Unboundedness If Āij ≤ 0 for all i, then the LP is unbounded. Otherwise, continue
to the next step.

Ratio Test: Compute ε := mini:Āij>0
b̄i

Āij
. Fix i∗ ∈ B as the row corresponding to the first con-

straint becoming tight as we increase the value of variable j. We construct a new solution x̂j ← ε,
x̂k ← 0 for all k ∈ N − {j}, and x̂B = b̄− Āx̂N .

Update Basis: Create a new basis B̂ = B − {i∗} ∪ {j}.

2 Example

min -x1 + 2x2 −x3

s.t. x1 ≤ 4
x2 ≤ 4

x1 + x2 ≤ 6
−x1 + 2x3 ≤ 4

Throughout there is the additional constraint that all variables be nonnegative. We convert
the above problem to standard form, introducing slack variables. Notice that these slack variables
form an identity matrix which corresponds to a basis.

min −x1 +2x2 −x3

s.t. x1 + x4 = 4
x2 + x5 = 4

x1 +x2 + x6 = 6
−x1 + 2x3 + x7 = 4
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In matrix form:


1 0 0 1 0 0 0
0 1 0 0 1 0 0
1 1 0 0 0 1 0
−1 0 2 0 0 0 1





x1

x2

x3

x4

x5

x6

x7


=


4
4
6
4



The first three columns of the coefficient matrix refer to N and the last four columns refer to
B.

Initialization of Simplex: xN = 0 and xB = A−1
B b = b =

[
4 4 6 4

]T

Solve AT
By = cB with cB = 0. Thus y = cBA−1

B = 0 and c̄ = c− yA = c.
c̄ is not strictly positive. Intuitively this makes sense because we can increase either x1 or x3

to decrease the objective function since we still have slack in all of the constraints.

Iteration 1 of Simplex: Choose a variable j corresponding to a negative reduced cost to en-
ter the basis. Let’s take j = x1 and increase it until one of our constraints holds with equality.
We can increase x1 by mini:Āij>0

b̄i

Āij
= 4. This corresponds to constraint 1 and thus i∗ = 1. The

variable which leaves the basis is j∗ = x4.

Now do simple row operations to get a unit vector in the first column.


1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 −1 0 1 0
0 0 2 1 0 0 1





x1

x2

x3

x4

x5

x6

x7


=


4
4
2
8



Columns 2, 3, and 4 now refer to N and columns 1, 5, 6, and 7 now refer to B. Our new basic
feasible solution is:

[
4 0 0 0 4 2 8

]T
.

We need to have c̄B = 0. Recall our old objective function: −x1 + 2x2 − x3. Since x1 is in the
basis, the corresponding coefficient needs to be zero. Substitute x1 = 4−x4 (which we get from the
first constraint) into the objective function. Note that we will always be able to express the new
entering basic variable in terms of strictly non-basic variables. From this we get our new (reduced)
objective function: −4+2x2−x3+x4, or c̄ =

[
0 2 −1 1 0 0 0

]
which is equivalent to solving

yAb = cB.

Iteration 2 of Simplex: Choose a variable j corresponding to a negative reduced cost to enter
the basis. The only negative reduced cost corresponds to j = x3. Let’s increase x3 until one of our
constraints holds with equality. We can increase x3 by mini:Āij>0

b̄i

Āij
= 4. Our limiting constraint

is constraint 4 and thus i∗ = 4. The variable which leaves the basis is j∗ = x8.

Now do simple row operations to get a unit vector in the third column. In this case, all we have
to do is divide the last row by 2.
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
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 −1 0 1 0
0 0 1 1/2 0 0 1/2





x1

x2

x3

x4

x5

x6

x7


=


4
4
2
4



Columns 2, 4, and 7 now refer to N and columns 1, 3, 5, and 6 now refer to B. Our new basic
feasible solution is:

[
4 0 4 0 4 2 0

]T
.

Recall our old objective function: −4 + 2x2 − x3 + x4. Since x3 is now in the basis, the
corresponding coefficient needs to be zero. Substitute x3 = 4− 1/2x4 − 1/2x7 (which we get from
the fourth constraint) into the objective function. From this we get our new (reduced) objective
function: −8 + 2x2 − 3/2x4 + 1/2x7, or c̄ =

[
0 2 0 3/2 0 0 1/2

]
.

Since c̄ ≥ 0 we are finished with simplex; optimal solution x∗ is
[
4 0 4 0 4 2 0

]T
.

Figure 1: 3-D Diagram of the Feasible Region

The diagram above shows the simplex pivots graphically. We started at x =
[
0 0 0

]
and then

moved to x =
[
4 0 0

]
and finally to x =

[
4 0 4

]
.

3 Finding an Initial Basic Feasible Solution

We now start addressing various issues with the simplex method. To start the Simplex algorithm,
we need an initial basic feasible solution. The idea for achieving this is to modify the LP such that
there is an easy initial basic feasible solution, and such that solving the modified LP gives some
(not necessarily optimal) basic feasible solution to the original LP.

Without loss of generality we can assume b ≥ 0; if bj < 0 for some j, we multiply that constraint
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by −1 (this is okay since there are only equality constraints). Consider the problem

min eT z

s.t. Ax + Iz = b

x ≥ 0
z ≥ 0,

where e = [1 1 · · · 1]T is a column of ones. The z variables are called artificial variables, and the
x’s are called real variables. Define x′ := [xT zT ]T and A′ := [A I] so that the constraints of the
modified LP can be written as A′x′ = b, x′ ≥ 0.

Let B be the indices corresponding to the artificial variables. Then B is a basis, since the
corresponding columns of A′ are I, the identity, and thus linearly independent. The corresponding
basic feasible solution is x = 0, z = b. We use this to initialize the simplex algorithm.

The simplex method can one of two possible results (note that the modified LP is never un-
bounded: since z ≥ 0, the objective function is bounded from below by 0.)

Case (1): The value of the LP is non-zero (and thus strictly greater than zero). Then there
are no feasible solutions for the original LP, i.e., there are no x such that Ax = b. Indeed, if there
were, we could take z = 0 and thus obtain a new feasible solution to the modified LP with value 0,
a contradiction.

Case (2): The value of the LP is zero. Then there are two subcases:

(i) The Good Case: All artificial variables are non-basic. Then A′
B = AB, so that B is a basis

also for the original problem: x′B = (A′
B)−1b, x′N = 0 is feasible, so xB = A−1

B b, xN = 0 is a
basic feasible solution. for Ax = b.

We can now run the simplex method for the original problem, starting with the basis B.

(ii) The Bad Case: Some artificial variables are in the basis.

We’ll deal with the bad case next time.
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