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Lecture 10

Lecturer: David P. Williamson Scribe: Rolf Waeber

1 Recap of last class

Last time, we introduced the simplex method. In this class we are going to prove that the simplex
method indeed works.

Let us first recall what the simplex method does. Consider the standard primal and its dual
linear programs:

min cT x max yT b
s.t. Ax = b s.t. AT y ≤ c.

x ≥ 0

We assume that we already have a starting point for the simplex method (we will address the
issue of finding an initial basic feasible solution later on). Suppose we have a basic feasible solution
x with associated basis B. We then have xN = 0 and xB = A−1

B b ≥ 0. Now we consider

y = (AT
B)−1cB.

We showed last time that if y is dual feasible (i.e. AT y ≤ c) then x is an optimal solution to the
primal. In the case that y is not dual feasible we introduced the concept of reduced cost:

Definition 1 For any y ∈ Rm, the reduced cost c̄, with respect to y, is c̄ = c−AT y.

Observation 1 The reduced cost c̄ ≥ 0, with respect to y, iff y is dual feasible.

Lemma 1 Consider the LP [min cT x s.t. Ax = b, x ≥ 0] and the alternative LP [min c̄T x s.t.
Ax = b, x ≥ 0]. Then x̂ is an optimal solution for one iff it is optimal for the other.

We showed that the primal LP can be rewritten as:

min c̄T
NxN

s.t. ĀxN ≤ b̄
xN ≥ 0,

where
Ā = A−1

B AN , and b̄ = A−1
B b ≥ 0.

Note that this program is equivalent to the original primal. Set xB = b̄− ĀxN .
We saw last time that cB = 0. We considered different cases. If c̄ ≥ 0, then xN = 0 is an

optimal solution to this new LP and therefore x is an optimal solution to the original primal (see
also Observation 1).

In the case that c̄ � 0, there exists a j ∈ N , such that cj < 0. This means that if we increase xj

and keep all other variables in xN set to zero, we can decrease the value of the solution. How much
can we increase xj? We need to keep the solution feasible, that means that we need to maintain
the constraints Āijxj ≤ b̄i for all i.
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If Āij ≤ 0 for all i, then as we increase xj , x remains feasible, so as xj → ∞, the value of the
solution goes to minus infinity. Therefore the LP is unbounded.

Now suppose there exists some i such that Āij > 0. Then xj can be no larger than b̄i

Āij
for any

i where Āij > 0. Thus we increase xj to the maximum feasible value:

ε = min
i:Āij>0

b̄i

Āij
.

This is called the ratio test. Let i∗ be the index that achieves the minimum ratio. Recall xB =
b̄− ĀxN . Setting xj = ε implies that some variable in xB will be driven down to 0. In other words,
after increasing xj as much as possible, we will have xi∗ = 0 for some i∗ ∈ B.

Since we now have the same number of variables set to 0 as when we began, this suggests that
we have moved to a new “basis”

B̂ = B − {i∗} ∪ {j} .

We will show in the next section that B̂ is indeed a basis. From this new basis, we get a new
associated solution x̂. We will also show that this x̂ is exactly the solution we constructed by
increasing xj as much as possible. The process of switching bases is called “making a pivot”.
Repeatedly doing this gives us an algorithm for solving LPs, called the simplex method.

2 Proving the Simplex Method

Let x̂ be the new solution found by the method described above, i.e. x̂j = ε, x̂k = 0 for all
k ∈ N, k 6= j, and x̂B = b̄ − Āx̂N . Now we want to prove that the simplex method, under some
mild conditions, leads to the optimal solution. In order to do this we are going to show 5 claims:

(i) cT x̂ ≤ cT x, i.e. the new solution is not worse than the old solution;

(ii) If x is nondegenerate, then ε > 0, i.e. we make progress in our algorithm;

(iii) If all basic feasible solutions are nondegenerate then the simplex method is finite, i.e. we make
enough progress and the algorithm terminates in finite time;

(iv) Updated basis B̂ after a pivot is indeed a basis;

(v) x̂ is the unique solution corresponding to B̂.

Claim 2
cT x̂ ≤ cT x

Proof: By Lemma 1 the LP with objective function cT x and the LP with objective function c̄T x
and the same constraints are equivalent LPs. Moreover we know that c̄T x̃ = cT x̃ + C, where C is
some constant and x̃ is a feasible solution for both LPs. Therefore it is enough to show c̄T x̂ ≤ c̄T x;
i.e. we have

c̄T x̂ ≤ c̄T x ⇒ cT x̂ ≤ cT x.

We have

c̄T x̂ = c̄T
Bx̂B + c̄T

N x̂N = 0 + c̄jε

≤ c̄T x = c̄T
BxB + c̄T

NxN = 0,
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where the inequality holds because by assumption c̄j < 0 and ε ≥ 0.
In fact, if ε > 0, then the inequality holds strict: c̄T x̂ < c̄T x. ¤

This means that at least our solution becomes not worse by applying the simplex method, but
do we in fact make progress? For this we need to recall the definition of degeneracy: A basic
solution x is degenerate if there are more than n constraints met with equality.

Claim 3 If x is nondegenerate, then ε > 0.

Proof: Since x is a nondegenerate basic solution we know that exactly n constraints are met
with equality. This means xj > 0 for all j ∈ B, i.e. xB > 0. Recall

xB = A−1
B b = b̄ > 0,

then
b̄i

Āij
> 0

for all i with Āij > 0, therefore ε > 0. ¤

Let us for now assume that all basic feasible solutions are nondegenerate. We will treat the case
of degenerate solutions in a later lecture. So far, we know that we make progress with the simplex
method, but do we make enough progress?

Claim 4 If all basic feasible solutions are nondegenerate then the simplex method is finite.

Proof: We know from the previous claim that the objective function improves at every pivot
and that each basis implies a unique solution, so we will see each basis at most once:

#pivots ≤ #bases ≤
(

n

m

)
.

We still need to show that B̂ after performing a pivot is still a basis. We are going to show this in
the next claim. ¤

Claim 5 New B̂ after a pivot is a basis.

Proof: By definition of a basis, B̂ is a basis if and only if AB̂ has full rank. To get AB̂ we
substituted the j-th column of A for the i∗-th column into AB.

AB̂ =
[

old columns Aj old columns
]

= AB




1 0 · · · · · · 0 0
0 1 0 0
...

...
. . . A−1

B Aj
. . .

...
...

0 0 1 0
0 0 · · · · · · 0 1




(recall that Ā = A−1
B AN ),

= AB




1 0 · · · Ā1j · · · 0 0
0 1 Ā2j 0 0
...

...
. . .

...
. . .

...
...

0 0 Ā(n−1)j 1 0
0 0 · · · Ānj · · · 0 1




.
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B is a basis so AB is non-singular. In order to show that AB̂ is non-singular we need to show
that the big matrix on the right-hand-side is non-singular. But we chose i∗ in the ε ratio such that
Āi∗j > 0 and therefore the matrix is non-singular and B̂ is a basis. ¤

Claim 6 x̂ is the unique solution corresponding to B̂.

Proof: Note x̂k = 0 for all k /∈ B̂ (i.e. for all k ∈ N − {j} ∪ {i∗}). We have

Āx̂N + x̂B = Ā(εej) + (b̄− Ā(εej)) = b̄.

Recall that Ā = A−1
B AN , b̄ = A−1

B b, and therefore

AN x̂N + ABx̂B = b

and we get Ax̂ = b, x̂ ≥ 0, so x̂ is a feasible solution with corresponding basis B̂. ¤

3 Some Issues

There are some issues we have to address when using the simplex method. We will go over these
issues in the coming lectures.

(i) What happens in the case of degenerate solutions?

(a) During the simplex method the case of cycling may encounter; i.e. the case where we
keep revisiting the same basis and the objective function does not decrease.

(ii) Starting point: We need a basic feasible solution to begin our algorithm.

(iii) Assume we are in the case where c̄ � 0, i.e. there exists j such that c̄j < 0. Which one of
these cj ’s do we choose?

(a) First j such that c̄j < 0?

(b) j that gives the most improvement?

(c) j such that c̄j most negative?

(iv) How much work is involved in every pivot step?
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