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1 Recap of last class

Last time, we developed a test for optimality; what we want now is a way of improving a feasible
solution. This is the most popular way of solving linear programs. As a recap, we were looking at
the following standard primal and dual linear programs:

min cT x max yT b
s.t. Ax = b s.t. AT y ≤ c

x ≥ 0

Lemma 1 A feasible primal solution x is optimal iff there exists a feasible dual solution y such
that complementary slackness holds, i.e. xj > 0 implies

∑m
i=1 aijyi = cj.

Definition 1 If A has m linearly independent rows, a set B ⊆ {1, . . . , n} where |B| = m is a basis
if these columns are linearly independent. Let N = {1, . . . , n} −B.

The basic idea is that a basis will correspond to the solution obtained with m equalities Ax = b
and n−m equalities xj = 0,∀j ∈ N . Let us define AB as the matrix composed of the columns Aj

for j ∈ B and AN as the matrix composed of the columns Aj′ for j′ ∈ N . We break apart x and c
in the same manner into xB, xN , cB, and cN .

Observation 1 Since A has m linearly independent rows, AB has m linearly independent columns,
AB is an m×m matrix with full rank. This implies that both A−1

B and (AT
B)−1 exist.

Lemma 2 For any basis B, there exists a unique corresponding basic solution (not necessarily
feasible), where xN = 0 and some

ABxB + ANxN = b

ABxB = b

xB = A−1
B b

To see this, note that any such solution has to satisfy

 AB AN






xB

−
0


 = b

Thus, if Ax = b then ABxB = b, and since AB is a matrix of full rank, the solution xB = A−1
B b is

uniquely determined.

Lemma 3 Let x be a basic solution corresponding to a basis B. Then if AT
By = cB has a solution

ȳ such that AT ȳ ≤ c (i.e. ȳ is dual feasible), then x is optimal.

This gives rise to the following optimality condition: Given x and a basis B, compute ȳ = (AT
B)−1cB.

If AT ȳ ≤ c then x is optimal.
Now, however, suppose the test fails. What do we do then? We will rewrite the optimality

condition to make it obvious what you’re supposed to do to move to a more optimal solution.
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2 Rewriting the Optimality Condition

Here we introduce the idea of reduced costs, which will be very useful later.

Definition 2 For any y ∈ Rm, the reduced cost c̄ with respect to y is c̄ = c−AT y.

Observation 2 Reduced costs c̄ ≥ 0 with respect to y iff y is dual feasible.

Lemma 4 Consider the LP [min cT x s.t. Ax = b, x ≥ 0] and the alternative LP [min c̄T x s.t.
Ax = b, x ≥ 0] for some y ∈ Rm. Then x̂ is an optimal solution for one iff it is optimal for the
other.

Proof: We have

c̄T x = (c−AT y)T x = cT x− yT Ax = cT x− yT b

since x satisfies Ax = b. So cT x− c̄T x = yT b, which is constant since both y and b are given. Since
the objective function is just shifted from the other by some constant, an optimal solution for one
must be optimal for the other. ¤

Note 1 What we have just proved is rather remarkable, for any feasible x the objective function
values cT x and c̄T x move in tandem, hence minimizing one of them also minimizes the other.

3 Finding a Better Solution

The main idea now is that given some feasible solution x associated with some basis B, set y =
(AT

B)−1cB. We are now interested in solving the linear problem with the new cost c̄:

min c̄T x
s.t. Ax = b

x ≥ 0

Let us rewrite in terms of the basis B:

min c̄T
BxB + c̄T

NxN

s.t. ABxB + ANxN = b
x ≥ 0

We can multiply the first set of constraints with A−1
B to yield

min c̄T
BxB + c̄T

NxN

s.t. IxB + A−1
B ANxN = A−1

B b
x ≥ 0.

Since by definition c̄B = cB − AT
By and because we set y = (AT

B)−1cB, we have that c̄B = cB −
AT

B(AT
B)−1cB = 0. We can again rewrite the linear program as the following.

min 0xB + c̄T
NxN

s.t. IxB + A−1
B ANxN = A−1

B b
x ≥ 0.

(1)
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Next, we simplify the LP by letting Ā = A−1
B AN and b̄ = A−1

B b. Now we can do the opposite of what
we usually do when starting with inequality constraints. View the variables xB as slack variables
that are constrained to be non-negative and transform the equality constraints into inequality
constraints to yield the equivalent minimization problem

min c̄T
NxN

s.t. ĀxN ≤ b̄
xN ≥ 0

To get a solution of the same value for the previous LP, we set xB = b̄ − ĀxN , which implies the
constraint xB ≥ 0. We now have a couple of cases.

First, if b̄ ≥ 0 and c̄ ≥ 0, then xN = 0 is optimal because it is feasible and minimizes c̄T
NxN ≥ 0.

As a result, xB = b̄ = A−1
B b. xB is feasible since by assumption b̄ ≥ 0. Thus the solution x

associated with B is feasible and x is optimal since c̄ ≥ 0.
For the second case, suppose c̄ � 0, then there must exist some j ∈ N such that c̄j < 0. This

means that if we increase xj and keep all other variables in xN set to zero, we can decrease the
value of the solution. How much can we increase xj? We need to keep the solution feasible, so we
need to maintain the constraint Āijxj ≤ b̄i for all i.

If Āij ≤ 0 ∀i, then we can increase xj as much as we want and still have a feasible solution
and a better objective value, which implies that the LP is unbounded in value. Now suppose there
exists some i such that Āij > 0. Then xj can be no larger than b̄i

Āij
for any i where Āij > 0. Thus

we increase xj to the maximum feasible value:

min
i:Āij>0

b̄i

Āij

Let i∗ be the index that achieves the minimum ratio. Recall xB = b̄− ĀxN . Setting xj to this new
value implies that some variable in xB will be driven down to 0. In other words, after increasing
xj as much as possible, we will have xi∗ = 0 for some i∗ ∈ B.

Since we now have the same number of variables set to 0 as when we began, this suggests that
we have moved to a new “basis” B̂ = B − {i∗} ∪ {j}. Next lecture, we will show that B̂ is indeed
a basis. From this new basis, we get a new associated solution x̂. We will also show that this x̂ is
exactly the solution we constructed by increasing xj as much as possible. The process of switching
bases is called “making a pivot”. Repeatedly doing this gives us an algorithm for solving LPs,
called the simplex method.
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