ORIE 6300 Mathematical Programming I September 30, 2008

Lecture 9

Lecturer: David P. Williamson Scribe: Katherine Lai

1 Recap of last class

Last time, we developed a test for optimality; what we want now is a way of improving a feasible
solution. This is the most popular way of solving linear programs. As a recap, we were looking at
the following standard primal and dual linear programs:

min 'z max y’b
st. Az =0 s.t. ATy <c
x>0

Lemma 1 A feasible primal solution x is optimal iff there exists a feasible dual solution y such
that complementary slackness holds, i.e. xj > 0 implies > " | a;jy; = ¢;.

Definition 1 If A has m linearly independent rows, a set B C {1,...,n} where |B| = m is a basis
if these columns are linearly independent. Let N ={1,...,n} — B.

The basic idea is that a basis will correspond to the solution obtained with m equalities Az = b
and n — m equalities z; = 0,Vj € N. Let us define Ap as the matrix composed of the columns A;
for j € B and Ay as the matrix composed of the columns A;s for j* € N. We break apart « and ¢
in the same manner into zg, N, cp, and cy.

Observation 1 Since A has m linearly independent rows, Ag has m linearly independent columns,

Ap is an m x m matriz with full rank. This implies that both Az_al and (AL)™L exist.

Lemma 2 For any basis B, there exists a unique corresponding basic solution (not necessarily
feasible), where xxy = 0 and some
Aprp+Anxn =)
Aprp =10
T = Aélb
To see this, note that any such solution has to satisfy
TB

Ap | An —| =b
0

Thus, if Ax = b then Agxp = b, and since Apg is a matrix of full rank, the solution zg = A;b is
uniquely determined.

Lemma 3 Let x be a basic solution corresponding to a basis B. Then if Agy = cp has a solution
g such that ATy < c (i.e. ¥ is dual feasible), then x is optimal.

This gives rise to the following optimality condition: Given x and a basis B, compute § = (Ag)_lc B.
If ATy < ¢ then x is optimal.

Now, however, suppose the test fails. What do we do then? We will rewrite the optimality
condition to make it obvious what you’re supposed to do to move to a more optimal solution.
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2 Rewriting the Optimality Condition

Here we introduce the idea of reduced costs, which will be very useful later.
Definition 2 For any y € R™, the reduced cost ¢ with respect to y is ¢ = c — ATy.
Observation 2 Reduced costs ¢ > 0 with respect to y iff y is dual feasible.

Lemma 4 Consider the LP [min ¢’z s.t. Az = b, x > 0] and the alternative LP [min ¢’z s.t.
Az = b, © > 0] for some y € R"™. Then & is an optimal solution for one iff it is optimal for the
other.

Proof: We have

e = (c—ATyTe = Te—yTAz = Tz —ylb

since x satisfies Az = b. So ¢z — &'z = yT'b, which is constant since both y and b are given. Since
the objective function is just shifted from the other by some constant, an optimal solution for one
must be optimal for the other. O

Note 1 What we have just proved is rather remarkable, for any feasible x the objective function

values ¢z and 'z move in tandem, hence minimizing one of them also minimizes the other.

3 Finding a Better Solution

The main idea now is that given some feasible solution x associated with some basis B, set y =
(AL)~lcp. We are now interested in solving the linear problem with the new cost ¢:

T

min c'x
st. Axr =190
x>0
Let us rewrite in terms of the basis B:
min ngB + E{,xN
st. Aprp+ Anyzny =b
x>0

We can multiply the first set of constraints with Agl to yield

min ngB + E%x]v
st. Ixp+ AglANxN = A]}lb

x> 0.

Since by definition ég = cg — Agy and because we set y = (Ag)_ch, we have that ¢g = cp —
A%(AE)ACB = 0. We can again rewrite the linear program as the following.

min Oxp —i—é%xN
st. Irp+ Ag'Ayzy = AG'b (1)
x> 0.
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Next, we simplify the LP by letting A = A;A yand b= Aglb. Now we can do the opposite of what
we usually do when starting with inequality constraints. View the variables xp as slack variables
that are constrained to be non-negative and transform the equality constraints into inequality
constraints to yield the equivalent minimization problem

min E%mN
s.t. A:L’N < b
TN > 0

To get a solution of the same value for the previous LP, we set £ = b — Az, which implies the
constraint zg > 0. We now have a couple of cases.

First, if b > 0 and & > 0, then 2y = 0 is optimal because it is feasible and minimizes E%xN > 0.
As a result, 2p = b = A]_Blb. xp is feasible since by assumption b > 0. Thus the solution x
associated with B is feasible and «x is optimal since ¢ > 0.

For the second case, suppose ¢ # 0, then there must exist some j € N such that ¢; < 0. This
means that if we increase x; and keep all other variables in xy set to zero, we can decrease the
value of the solution. How much can we increase z;7 We need to keep the solution feasible, so we
need to maintain the constraint flijmj < b; for all i.

If flij < 0 Vi, then we can increase x; as much as we want and still have a feasible solution
and a better objective value, which implies that the LP is unbou%ded in value. Now suppose there

exists some 4 such that A;; > 0. Then z; can be no larger than % for any ¢ where A;; > 0. Thus
ij

we increase x; to the maximum feasible value:

. b
min —
i:A;;>0 Aij

Let i* be the index that achieves the minimum ratio. Recall xg = b— Az . Setting z; to this new
value implies that some variable in xp will be driven down to 0. In other words, after increasing
x; as much as possible, we will have x;+ = 0 for some i* € B.

Since we now have the same number of variables set to 0 as when we began, this suggests that
we have moved to a new “basis” B = B — {i*} U {j}. Next lecture, we will show that B is indeed
a basis. From this new basis, we get a new associated solution . We will also show that this & is
exactly the solution we constructed by increasing x; as much as possible. The process of switching
bases is called “making a pivot”. Repeatedly doing this gives us an algorithm for solving LPs,
called the simplex method.
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