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Consider a primal and dual LP in the generic form in which we have been studying LPs so far
in the course, in the case when both are feasible. We know the optimal values of the LPs are equal,
but is there a good procedure to tell whether a given x is optimal?

1 Degeneracy

It will be useful to take a short detour before we get started with this question. Recall that we said
that a point z in a polyhedron is a basic solution if rank(A~=) = n, where for z € P = {z € R" :

Az < b}, A— are the rows a; such that a;z = b;. Why did we say that we needed the rank of A— to
be n? Why not just say there are n constraints? In part because it is possible that at some basic
solution z, there are more than n constraints met with equality. See the figures for examples.

Definition 1 We say that a basic solution x is degenerate if there are more than n constraints
met with equality.

In the figure below, a vertex is defined by four planes although there are only three variables.
This is an example of a general phenomenon called degeneracy.

=

Figure 1: Degeneracy

2 Verifying optimality

Let’s look at the following LP primal and dual pair:

min ¢’z max ylb
st. Az =0 st. ATy=c (1)
x>0

Answer 1 We know x is optimal if there exists a dual feasible y such that ¢’z = by, by strong
duality.
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This is true as far as it goes, but it doesn’t seem that useful. Let’s think about other ways in
which we can show the optimality of x.
Let x and y be feasible for the primal and dual, respectively. Recall our proof of strong duality:

n

n m m n m
EEDILEDY (Z aiﬂ/i> wi= ) yi ) airy =y yibi =bly.
j=1 \i=1 i=1 j=1 i=1

=1

where the inequality follows from ATy < ¢. From the strong duality theorem, we know if z and
y are optimal, then ¢’z = bTy. For this to be true, in the inequalities above, we need that if
Yot aijy; < ¢j then z; > 0. Call these conditions ().

Definition 2 We say that a primal feasible solution x, and a dual feasible solution y obey the
complementary slackness conditions if (x) holds.

So we see from the above that if z and y are optimal solutions, then complementary slackness
holds. But actually we can say something stronger than this.

Lemma 1 Given a primal feasible solution x, and a dual feasible solution y, x and y are optimal
if and only if the complementary slackness conditions hold.

Hence we have another answer to our question.

Answer 2 x is optimal if there exists a dual feasible y such that the complementary slackness
conditions hold.

This still doesn’t seem like such a useful way of verifying optimality, but it will prove to be a
step in the right direction.

So far we haven’t been taking advantage of something that we know about optimal solutions.
We’ve said that there exists an optimal solution that is a vertex, and have shown this on a problem
set for bounded polyhedra, and in a recitation for pointed polyhedra. We’ve also shown in a problem
set that if z is not a vertex, we can find a vertex  such that ¢’ & < ¢'z. So we can assume that z
is a vertex.

Recall that z is a vertex if and only if rank(A=) = n. Note that ajo = b; for j =1,...,m.
The remaining n — m inequalities met with equality (modulo linear dependence) must be of the
form x; = 0. Assume that the variables are numbered such that x1,...,x; > 0 and xgy1,...,2, = 0.
Then

A, b
0 1 o
This matrix, A=, has rank n, so all its columns are linearly independent. So the columns of A
corresponding to positive x; variables are linearly independent. This gives us the following lemma.

Lemma 2 A feasible solution x is a vertex iff the columns corresponding to its positive coordinates
are linearly independent.

This gives us an easy way to check if a feasible solution is a vertex or not. It’s worth encoding this
into a definition. First, we need an assumption though. We assume without loss of generality that
the m rows of A are linearly independent. It’s without loss of generality since otherwise a constraint
is redundant (if a constraint can be expressed as a linear combination of other constraints) or the
system Ax = b is infeasible (if the right-hand side of the
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Definition 3 A set B of m columns of A is a basis if these columns are linearly independent.

We will focus on a subset of columns of A which correspond to a basis B.

A: m lin. ind. rows |A A; — Ap

T 11

m columns B

We will denote by xp the coordinates of x corresponding to basis B. We do the same for the
nonbasic variables N, which correspond to all the columns of A not in B, and define Ay and =y
similarly. In the basic solution corresponding to basis B, we set the nonbasic variables to zero, so
that Ay = 0.

Lemma 3 For any basis B, there is a unique corresponding basic solution to Ax = b.

Proof: To see this, notice that any such solution has to satisfy
B
[ApfAn ]| =] =0
TN

Notice that Ayey =0, Ar =b = Aprp+ Ayrxy =b = Apxp =b. Since Ag isanm x m
matrix of rank m, the solution zg = Aglb is uniquely determined. ]
What if xp = Aglb has some ¢ € B such that x; = 07

Definition 4 x is a degenerate basic solution if z; =0 fori € B.
We can finally give another optimality criterion.

Lemma 4 Let x be a basic feasible solution and let B be the associated basis. Then:

1. If there is a solution y to the system ATy = cp such that ATy < ¢, then x is optimal.
2. If x is nondegenerate and optimal, then there is a y such that Agy =cp and ATy < c.

Proof:  Suppose we have a y such that ALy = cp and ATy < c. Then for all i € B, Yo aijyi =
¢;. Note that z; = 0 for all j € N. Thus for all ¢ such that z; > 0, we have Zﬁl aijyi = ¢;.
Therefore since z is primal feasible and y is dual feasible and the complementary slackness conditions
are obeyed, then z and y must be optimal.

If z is optimal, then there is a dual feasible solution y such that complementary slackness
conditions are obeyed. Thus z; > 0 implies that Y ", a;;4; = ¢;. Because z is nondegenerate,
xz; >0 for all i € B. Thus >, a;jy; = ¢; for all i € B, and ATy = cp. Since y is dual feasible, it
is also the case that ATy < e. O

This brings us to our final answer on how to determine if z is optimal. Since Ap is an m x m
matrix of rank m, (AL)~! exists. So we can solve ALy = cp for y by setting y = (AL)"lep. If y
is dual feasible, then the lemma above tells us that x must be optimal.

Answer 3 Given a basic feasible solution x and associated basis B, if y = Ag)_ch 1s dual feasible
(ATy < c¢), then x must be optimal.

Finally, this seems like an answer such that we can actually carry out a reasonably short
computation and determine if x is optimal. The real question then is what do we do if z is not
optimal. Next time, we will see a way of reformulating this optimality criterion such that it becomes
clear how we can improve z if it is not optimal.
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