Lecture 7

Lecturer: David P. Williamson

Scribe: Gabriel Zayas-Caban

We are now finally almost able to prove strong duality. We will first need to show two lemmas before we are able to do this.

Theorem 1 (Farkas' Lemma) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m \times 1}$. Then exactly one of the following two condition holds:

(1) $\exists x \in \mathbb{R}^{n \times 1}$ such that $Ax = b, x \ge 0;$ (2) $\exists y \in \mathbb{R}^{1 \times m}$ such that $A^T y \ge 0, y^T b < 0.$

Proof: First we show that we can't have both (1) and (2). Note that $y^T A x = y^T (A x) = y^T b < 0$ since by (1), Ax = b and by (2) $y^T b < 0$. But also $y^T A x = (y^T A) x = (A^T y)^T x \ge 0$ since by (2) $A^T y \ge 0$ and by (1) $x \ge 0$.

Now we must show that if (1) doesn't hold, then (2) does. To do this, let v_1, v_2, \ldots, v_n be the columns of A. Define

$$Q = cone(v_1, \dots, v_n) \equiv \{s \in \Re^m : s = \sum_{i=1}^n \lambda_i v_i, \lambda_i \ge 0, \forall i\}.$$

This is a conic combination of the columns of A, which differs from a convex combination since we don't require that $\sum_{i=1}^{n} \lambda_i = 1$. Then $Ax = \sum_{i=1}^{n} x_i v_i$, there exists an x such that Ax = b and $x \ge 0$ if and only if $b \in Q$.

So if (1) does not hold then $b \notin Q$. We show that condition (2) must hold. We know that Q is nonempty (since $0 \in Q$), closed, and convex, so we can apply the separating hyperplane theorem. The theorem implies that there exists $\alpha \in \Re^m$, $\alpha \neq 0$, and β such that $\alpha^T b > \beta$ and $\alpha^T s < \beta$ for all $s \in Q$. Since $0 \in Q$, we know that $\beta > 0$. Note also that $\lambda v_i \in Q$ for all $\lambda > 0$. Then since $\alpha^T s < \beta$ for all $s \in Q$, we have $\alpha^T(\lambda v_i) \in Q$ for all $\lambda > 0$, so that $\alpha^T v_i < \beta/\lambda$ for all $\lambda > 0$. Since $\beta > 0$, as $\lambda \to \infty$, we have that $\alpha^T v_i \leq 0$. Thus by setting $y = -\alpha$, we obtain $y^T b < 0$ and $y^T v_i \geq 0$ for all i. Since the v_i are the columns of A, we get that $A^T y \geq 0$. Thus condition (2) holds.

We will also need a similar result, which follows from Farkas' Lemma.

Theorem 2 (Farkas' Lemma') Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m \times 1}$. Then exactly one of the following two condition holds:

- (1') $\exists x \in \mathbb{R}^{n \times 1}$ such that $Ax \leq b$;
- $(2') \exists y \in \mathbb{R}^{1 \times m} \quad such that \quad A^T y = 0, \ y^T b < 0, \ y \ge 0.$

The following condition is equivalent to (2'):

 $(2'') \exists y \in \mathbb{R}^{1 \times m} \quad such that \quad yA = 0, \ y^T b = -1, \ y \ge 0.$

Proof: First we prove that (2') if and only if (2"). Clearly if (2") is true, then (2') is true. If (2') is true, let $\hat{y} = -\frac{1}{y^T b} y$. Then $\hat{y} \ge 0$ since $y \ge 0$ and $y^T b < 0$. Also

$$\hat{y}^T b = -\frac{y^T b}{y^T b} = -1,$$

and

$$A^T \hat{y} = \frac{-1}{y^T b} (A^T y) = 0$$

As before, we cannot have both (1') and (2'). Suppose otherwise. Then

$$y^T A x = y^T (A x) \le y^T b < 0,$$

since Ax = b and $y^T b < 0$, and also

$$y^{T}Ax = (y^{T}A)x = (A^{T}y)^{T}x = 0,$$

since $A^T y = 0$.

Now suppose (2') does not hold, so (2") does not hold either. Define Rewrite the system $A^T y = 0, y^T b = -1$ as:

$$\bar{A} = \begin{bmatrix} A^T \\ b^T \end{bmatrix} \qquad \bar{b} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ -1 \end{bmatrix}.$$

Then since (2'') holds, there does not exist $z \in \Re^m$ such that $z \ge 0$ and $\bar{A}z = \bar{b}$. This is just a rewriting of condition (1) of the original Farkas' Lemma such that (1) does not hold. Therefore condition (2) must hold, which implies that there exists s such that $\bar{A}^T s \ge 0$ and $\bar{b}^T s < 0$. Set

$$s = \begin{bmatrix} x \\ \lambda \end{bmatrix}$$

for $x \in \Re^n$ and $\lambda \in \Re$. Then $\bar{b}^T s < 0$ implies that

$$\begin{bmatrix} 0\\ \vdots\\ 0\\ -1 \end{bmatrix}^T \begin{bmatrix} x\\ \lambda \end{bmatrix} < 0,$$

which implies that $\lambda > 0$. Also, $\bar{A}^T s \ge 0$ implies that

$$\begin{bmatrix} A^T \\ b^T \end{bmatrix}^T \begin{bmatrix} x \\ \lambda \end{bmatrix} \ge 0,$$

which implies that

$$\begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} \ge 0,$$

or that $Ax + \lambda b \ge 0$, or that $Ax \ge -\lambda b$, or that $A(\frac{-x}{\lambda}) \le b$. Therefore $-x/\lambda$ satisfies (1'), so that (1') holds.

We are finally, finally ready to prove strong duality. Consider these LPs:

Pı	rimal]	Dual
max s.t.	$c^T x \\ Ax \le b$	min s.t.	$y^T b A^T y = c y \ge 0$

Theorem 3 (Strong Duality) There are four possibilities:

- 1. Both primal and dual have no feasible solutions (are infeasible).
- 2. The primal is infeasible and the dual unbounded.
- 3. The dual is infeasible and the primal unbounded.
- 4. Both primal and dual have feasible solutions and their values are equal.
- **Proof:** We will show on a problem set that (1) is possible. So let's assume that (1) is not true. There are three remaining cases:
- Case 1 Let \bar{y} be a feasible solution for the dual and assume the primal is infeasible. Using Farkas' Lemma', (1') does not hold, so that (2') must hold. Then there exists \hat{y} such that $A^T \hat{y} = 0$, $\hat{y}^T b < 0$, and $\hat{y} \ge 0$. Consider the ray defined by $\bar{y} + \lambda \hat{y}$, $\lambda \ge 0$. Then

$$(\bar{y} + \lambda \hat{y})A = c + \lambda \cdot 0 = c,$$

so that $\bar{y} + \lambda \hat{y}$ is dual feasible. Also,

$$(\bar{y} + \lambda \hat{y})^T b = \bar{y}^T b + \lambda \hat{y}^T b.$$

Since $\hat{y}^T b < 0$, as $\lambda \to \infty$, the value of $\bar{y} + \lambda \hat{y} \to -\infty$. Thus the dual is unbounded.

Case 2 Let \bar{x} be a feasible solution for the primal and assume the dual is infeasible, so that there does not exist y such that $A^T y = c$, $y \ge 0$. Using the original Farkas' Lemma, (1) does not hold (rewriting things a bit), so (2) must hold, which implies there exists an \hat{x} such that $A\hat{x} \ge 0$, $c\hat{x} < 0$. Consider $\bar{x} - \lambda \hat{x}$ for $\lambda \ge 0$. Then

$$4(\bar{x} - \lambda \hat{x}) \le b - \lambda A \hat{x} \le b,$$

so $\bar{x} - \lambda \hat{x}$ is primal feasible for $\lambda \ge 0$. Also

$$c^T(\bar{x} - \lambda \hat{x}) = c^T \bar{x} - \lambda c^T \hat{x}.$$

Since $c^T \hat{x} < 0$, as $\lambda \to \infty$, the value of $\bar{x} - \lambda \hat{x}$ goes off to ∞ . Thus the primal LP is unbounded.

Case 3 Let \bar{x} and \bar{y} be feasible solutions to the primal and dual, respectively. By weak duality, $c^T \bar{x} \leq \bar{y}^T b$, so the dual is bounded. Let γ be the optimal value of the dual. Suppose that the optimal value of the primal were less than γ :

$$\Rightarrow \exists x \text{ s.t. } Ax \leq b, \quad cx \geq \gamma$$
$$\Leftrightarrow \exists x \text{ s.t.} \begin{bmatrix} A \\ -c^T \end{bmatrix} [x] \leq \begin{bmatrix} b \\ \gamma \end{bmatrix}$$

Then using Farkas' Lemma', (1') does not hold, so that (2') must hold. Thus there exists a row vector $y \ge 0$ and a scalar $\lambda \ge 0$ such that:

$$\begin{bmatrix} A \\ -c \end{bmatrix}^T \begin{bmatrix} y \\ \lambda \end{bmatrix} = 0, \quad \begin{bmatrix} b \\ \gamma \end{bmatrix}^T \begin{bmatrix} y \\ \lambda \end{bmatrix} < 0$$

Suppose $\lambda = 0$. Then yA = 0, yb < 0, and $y \ge 0$. Use $(2') \Rightarrow \neg(1')$ on the vector y, which implies that there does not exist x such that $Ax \le b$. The primal is feasible, so this is a contradiction and in fact $\lambda > 0$. Expanding out the above matrix equation:

$$yA - \lambda c = 0 \quad \Rightarrow \quad \left(\frac{y}{\lambda}\right)A = c$$

Also $\frac{y}{\lambda} \geq 0$, so $\frac{y}{\lambda}$ is a feasible solution. However, $yb - \lambda\gamma < 0$, so $\left(\frac{y}{\lambda}\right)b < \gamma$, which contradicts the optimality of γ .

. 6			
		_	