ORIE 6300 Mathematical Programming I

Lecture 7

Lecturer: David P. Williamson
Scribe: Gabriel Zayas-Caban

We are now finally almost able to prove strong duality. We will first need to show two lemmas before we are able to do this.

Theorem 1 (Farkas' Lemma) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m \times 1}$. Then exactly one of the following two condition holds:
(1) $\exists x \in \mathbb{R}^{n \times 1}$ such that $A x=b, x \geq 0$;
(2) $\exists y \in \mathbb{R}^{1 \times m}$ such that $A^{T} y \geq 0, y^{T} b<0$.

Proof: First we show that we can't have both (1) and (2). Note that $y^{T} A x=y^{T}(A x)=y^{T} b<0$ since by (1), $A x=b$ and by (2) $y^{T} b<0$. But also $y^{T} A x=\left(y^{T} A\right) x=\left(A^{T} y\right)^{T} x \geq 0$ since by (2) $A^{T} y \geq 0$ and by (1) $x \geq 0$.

Now we must show that if (1) doesn't hold, then (2) does. To do this, let $v_{1}, v_{2}, \ldots, v_{n}$ be the columns of A. Define

$$
Q=\operatorname{cone}\left(v_{1}, \ldots, v_{n}\right) \equiv\left\{s \in \Re^{m}: s=\sum_{i=1}^{n} \lambda_{i} v_{i}, \lambda_{i} \geq 0, \forall i\right\}
$$

This is a conic combination of the columns of A, which differs from a convex combination since we don't require that $\sum_{i=1}^{n} \lambda_{i}=1$. Then $A x=\sum_{i=1}^{n} x_{i} v_{i}$, there exists an x such that $A x=b$ and $x \geq 0$ if and only if $b \in Q$.

So if (1) does not hold then $b \notin Q$. We show that condition (2) must hold. We know that Q is nonempty (since $0 \in Q$), closed, and convex, so we can apply the separating hyperplane theorem. The theorem implies that there exists $\alpha \in \Re^{m}, \alpha \neq 0$, and β such that $\alpha^{T} b>\beta$ and $\alpha^{T} s<\beta$ for all $s \in Q$. Since $0 \in Q$, we know that $\beta>0$. Note also that $\lambda v_{i} \in Q$ for all $\lambda>0$. Then since $\alpha^{T} s<\beta$ for all $s \in Q$, we have $\alpha^{T}\left(\lambda v_{i}\right) \in Q$ for all $\lambda>0$, so that $\alpha^{T} v_{i}<\beta / \lambda$ for all $\lambda>0$. Since $\beta>0$, as $\lambda \rightarrow \infty$, we have that $\alpha^{T} v_{i} \leq 0$. Thus by setting $y=-\alpha$, we obtain $y^{T} b<0$ and $y^{T} v_{i} \geq 0$ for all i. Since the v_{i} are the columns of A, we get that $A^{T} y \geq 0$. Thus condition (2) holds.

We will also need a similar result, which follows from Farkas' Lemma.
Theorem 2 (Farkas' Lemma') Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m \times 1}$. Then exactly one of the following two condition holds:
(1') $\exists x \in \mathbb{R}^{n \times 1} \quad$ such that $A x \leq b$;
(2') $\exists y \in \mathbb{R}^{1 \times m} \quad$ such that $A^{T} y=0, y^{T} b<0, y \geq 0$.
The following condition is equivalent to $\left(2^{\prime}\right)$:
$\left(2^{\prime \prime}\right) \exists y \in \mathbb{R}^{1 \times m} \quad$ such that $y A=0, y^{T} b=-1, y \geq 0$.

Proof: First we prove that $\left(2^{\prime}\right)$ if and only if $\left(2^{\prime \prime}\right)$. Clearly if $\left(2^{\prime \prime}\right)$ is true, then $\left(2^{\prime}\right)$ is true. If $\left(2^{\prime}\right)$ is true, let $\hat{y}=-\frac{1}{y^{T} b} y$. Then $\hat{y} \geq 0$ since $y \geq 0$ and $y^{T} b<0$. Also

$$
\hat{y}^{T} b=-\frac{y^{T} b}{y^{T} b}=-1,
$$

and

$$
A^{T} \hat{y}=\frac{-1}{y^{T} b}\left(A^{T} y\right)=0
$$

As before, we cannot have both $\left(1^{\prime}\right)$ and $\left(2^{\prime}\right)$. Suppose otherwise. Then

$$
y^{T} A x=y^{T}(A x) \leq y^{T} b<0,
$$

since $A x=b$ and $y^{T} b<0$, and also

$$
y^{T} A x=\left(y^{T} A\right) x=\left(A^{T} y\right)^{T} x=0,
$$

since $A^{T} y=0$.
Now suppose (2^{\prime}) does not hold, so ($2^{\prime \prime}$) does not hold either. Define Rewrite the system $A^{T} y=0, y^{T} b=-1$ as:

$$
\bar{A}=\left[\begin{array}{c}
A^{T} \\
b^{T}
\end{array}\right] \quad \bar{b}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
-1
\end{array}\right] .
$$

Then since $\left(2^{\prime \prime}\right)$ holds, there does not exist $z \in \Re^{m}$ such that $z \geq 0$ and $\bar{A} z=\bar{b}$. This is just a rewriting of condition (1) of the original Farkas' Lemma such that (1) does not hold. Therefore condition (2) must hold, which implies that there exists s such that $\bar{A}^{T} s \geq 0$ and $\bar{b}^{T} s<0$. Set

$$
s=\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]
$$

for $x \in \Re^{n}$ and $\lambda \in \Re$. Then $\bar{b}^{T} s<0$ implies that

$$
\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
-1
\end{array}\right]^{T}\left[\begin{array}{c}
x \\
\lambda
\end{array}\right]<0
$$

which implies that $\lambda>0$. Also, $\bar{A}^{T} s \geq 0$ implies that

$$
\left[\begin{array}{l}
A^{T} \\
b^{T}
\end{array}\right]^{T}\left[\begin{array}{l}
x \\
\lambda
\end{array}\right] \geq 0
$$

which implies that

$$
\left[\begin{array}{ll}
A & b
\end{array}\right]\left[\begin{array}{l}
x \\
\lambda
\end{array}\right] \geq 0,
$$

or that $A x+\lambda b \geq 0$, or that $A x \geq-\lambda b$, or that $A\left(\frac{-x}{\lambda}\right) \leq b$. Therefore $-x / \lambda$ satisfies (1^{\prime}), so that (1^{\prime}) holds.

We are finally, finally ready to prove strong duality. Consider these LPs:

Primal		Dual	
\max	$c^{T} x$	min	$y^{T} b$
s.t.	$A x \leq b$	s.t.	$A^{T} y=c$
			$y \geq 0$

Theorem 3 (Strong Duality) There are four possibilities:

1. Both primal and dual have no feasible solutions (are infeasible).
2. The primal is infeasible and the dual unbounded.
3. The dual is infeasible and the primal unbounded.
4. Both primal and dual have feasible solutions and their values are equal.

Proof: We will show on a problem set that (1) is possible. So let's assume that (1) is not true. There are three remaining cases:

Case 1 Let \bar{y} be a feasible solution for the dual and assume the primal is infeasible. Using Farkas' Lemma', (1^{\prime}) does not hold, so that (2^{\prime}) must hold. Then there exists \hat{y} such that $A^{T} \hat{y}=0$, $\hat{y}^{T} b<0$, and $\hat{y} \geq 0$. Consider the ray defined by $\bar{y}+\lambda \hat{y}, \lambda \geq 0$. Then

$$
(\bar{y}+\lambda \hat{y}) A=c+\lambda \cdot 0=c
$$

so that $\bar{y}+\lambda \hat{y}$ is dual feasible. Also,

$$
(\bar{y}+\lambda \hat{y})^{T} b=\bar{y}^{T} b+\lambda \hat{y}^{T} b
$$

Since $\hat{y}^{T} b<0$, as $\lambda \rightarrow \infty$, the value of $\bar{y}+\lambda \hat{y} \rightarrow-\infty$. Thus the dual is unbounded.
Case 2 Let \bar{x} be a feasible solution for the primal and assume the dual is infeasible, so that there does not exist y such that $A^{T} y=c, y \geq 0$. Using the original Farkas' Lemma, (1) does not hold (rewriting things a bit), so (2) must hold, which implies there exists an \hat{x} such that $A \hat{x} \geq 0$, $c \hat{x}<0$. Consider $\bar{x}-\lambda \hat{x}$ for $\lambda \geq 0$. Then

$$
A(\bar{x}-\lambda \hat{x}) \leq b-\lambda A \hat{x} \leq b
$$

so $\bar{x}-\lambda \hat{x}$ is primal feasible for $\lambda \geq 0$. Also

$$
c^{T}(\bar{x}-\lambda \hat{x})=c^{T} \bar{x}-\lambda c^{T} \hat{x}
$$

Since $c^{T} \hat{x}<0$, as $\lambda \rightarrow \infty$, the value of $\bar{x}-\lambda \hat{x}$ goes off to ∞. Thus the primal LP is unbounded.
Case 3 Let \bar{x} and \bar{y} be feasible solutions to the primal and dual, respectively. By weak duality, $c^{T} \bar{x} \leq \bar{y}^{T} b$, so the dual is bounded. Let γ be the optimal value of the dual. Suppose that the optimal value of the primal were less than γ :

$$
\begin{aligned}
& \Rightarrow \nexists x \text { s.t. } A x \leq b, \quad c x \geq \gamma \\
& \Leftrightarrow \nexists x \text { s.t. }\left[\begin{array}{c}
A \\
-c^{T}
\end{array}\right][x] \leq\left[\begin{array}{l}
b \\
\gamma
\end{array}\right]
\end{aligned}
$$

Then using Farkas' Lemma', (1^{\prime}) does not hold, so that (2^{\prime}) must hold. Thus there exists a row vector $y \geq 0$ and a scalar $\lambda \geq 0$ such that:

$$
\left[\begin{array}{c}
A \\
-c
\end{array}\right]^{T}\left[\begin{array}{c}
y \\
\lambda
\end{array}\right]=0, \quad\left[\begin{array}{l}
b \\
\gamma
\end{array}\right]^{T}\left[\begin{array}{c}
y \\
\lambda
\end{array}\right]<0
$$

Suppose $\lambda=0$. Then $y A=0, y b<0$, and $y \geq 0$. Use $\left(2^{\prime}\right) \Rightarrow \neg\left(1^{\prime}\right)$ on the vector y, which implies that there does not exist x such that $A x \leq b$. The primal is feasible, so this is a contradiction and in fact $\lambda>0$. Expanding out the above matrix equation:

$$
y A-\lambda c=0 \quad \Rightarrow \quad\left(\frac{y}{\lambda}\right) A=c
$$

Also $\frac{y}{\lambda} \geq 0$, so $\frac{y}{\lambda}$ is a feasible solution. However, $y b-\lambda \gamma<0$, so $\left(\frac{y}{\lambda}\right) b<\gamma$, which contradicts the optimality of γ.

