ORIE 6300 Mathematical Programming I September 16, 2008

Lecture 6
Lecturer: David P. Williamson Scribe: Zach Rayfield

1 Separating Hyperplane Theorem

Recall the statements of Weierstrass’s Theorem (without proof) and the Separating Hyperplane
Theorem from the previous lecture.

Theorem 1 (Weierstrass) Let C C R™ be be a closed, nonempty and bounded set, and let f : C —
R be continuous on C. Then [ attains a minimum on C.

Theorem 2 (Separating Hyperplane) Let C C R™ be a closed, nonempty and convex set. Let
y € R" y ¢ C. Then there exists 0 # a € R",b € R such that a’y > b and a’z < b for all x € C.

Proof: Define .
f(2) = 5k = y?

C={zeC:l|lg—yll>lq—z|}

Last time we showed that C is a closed, bounded, and non-empty set, so that we can apply
Weierstrass’ Theorem. Let z be the minimizer of f in C. Note that for any z € C' — C, f(z) <
f(q¢) < f(z), and therefore z minimizes f over all of C, since any « ¢ C must have been further
away from y than q.

Let a :==y — z. Then a # 0, since z € C,y ¢ C. Let b := %(aTy +a’z). Then,

T

T(y—2)=aTy—a’z

0<ala=a

so then .
aly>ad'z = 2d7y>dy+dz = dy> i(aTy +alz) =0

It remains to show that a’z < b for all # € C. Let x) := (1 —Nz+ Xz € C for 0 < A < 1.
Since z minimizes f over C, f(z) < f(z)), i.e.

(=N 420 =) (1= Nz 4 Xz —y) = (- y+ Az —2) (e =y + Az - )
> -y -y)

Rewriting, we obtain
1
5[2(2 — TNz —2)+ Nz —2)T(z—2)]>0

(z — y)T(x —2)+ %/\(13 — z)T(a; —2)>0

al(z—z) + %)\(1‘ — )Tz —-2)>0
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or .
al(z —x) > —5)\(3: —2)T(x - 2).

But we can take A — 0 arbitrarily small, so a’ (z —x) > 0 which implies a” 2 > a”z. Using the fact

that o’z < a’'y,
1
b= §(aTy +alz) >

(2aT2) =a’2 > aTx.

DN |

2 The polar of a set

To get to the proof that polytopes are bounded polyhedra, we need to introduce one more concept.
Definition 1 If S C R", then its polar is S° = {z € R" : 272 < 1, Va € S}.
Theorem 3 If C is a closed convex subset of R with 0 € C, then C°° := (C°)° = C.

Proof:

e (D) If x € C, we want to show that z € C°°, i.e., that zTz < 1 for all z € C°. But z € C°
implies 272 < 1, so this holds.

e (C) We will show that if z ¢ C, then x ¢ C*°. If x ¢ C, then by the Separating Hyperplane
Theorem, there exists 0 # a € R” and b € R with a”z > b > a”z for all z € C. Since 0 € C,
then b > 0. Let @ = a/b # 0. Therefore @’z > 1 > a2, for all z € C. This implies @ € C°.
But alz > 1, so x ¢ C°°.

Therefore C°° = C. O

Now we can prove our result, at least sort of. We’ll assume that O is in the interior of the
polytope. We claim that this can be done without loss of generality (and we’ll leave it to the class
to show on a problem set); this is because we can translate the polytope so that this is true if
needed.

Theorem 4 If ) CR" is a polytope with 0 in the interior of Q, then Q is a (bounded) polyhedron.

Proof: Let P = @°. Then we know that P° = @Q°° = Q. Since @ is a polytope, @ =
conv{vi,...,v;} for some k finite vectors vy,..., v, € R". Now P=Q° = {z e R" : 272 < 1,Vz €
Q}, sovlz=z2lv; <1fori=1,2,...,k Foranyz € Q,x = Zle Aiv; where A\; > 0,> 7.\ = 1.
Therefore .

k k
2Ty = zT(Z Aiv;) = Z)‘i(ZTUi) < Z A= 1.
=1

i=1 i=1
Therefore
P={zeR":vl2<1,i=1,... k},

so P is a polyhedron. @ has 0 in its interior, so for some € > 0, all x € R" with ||z|| < € lie in Q.
If z€ P, z # 0, then
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since ||z|| = €. Then since P = Q°,

:UTz§1 =

1
CE1 = <=
€

Hence P is a bounded polyhedron. By our previous result, P = Q° is a polytope. And from what

we just proved, this implies that P° is a bounded polyhedron, which means that (Q°)° = @ is a
bounded polyhedron. O
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