1 Separating Hyperplane Theorem

Recall the statements of Weierstrass’s Theorem (without proof) and the Separating Hyperplane Theorem from the previous lecture.

Theorem 1 (Weierstrass) Let \(C \subseteq \mathbb{R}^n \) be a closed, nonempty and bounded set, and let \(f : C \to \mathbb{R} \) be continuous on \(C \). Then \(f \) attains a minimum on \(C \).

\[\text{Theorem 2 (Separating Hyperplane)} \quad \text{Let } C \subseteq \mathbb{R}^n \text{ be a closed, nonempty and convex set. Let } y \in \mathbb{R}^n, y \notin C. \text{ Then there exists } 0 \neq a \in \mathbb{R}^n, b \in \mathbb{R} \text{ such that } a^T y > b \text{ and } a^T x < b \text{ for all } x \in C. \]

Proof: Define

\[f(x) = \frac{1}{2}||x - y||^2 \]

\[\hat{C} = \{ x \in C : ||q - y|| \geq ||q - x|| \}. \]

Last time we showed that \(\hat{C} \) is a closed, bounded, and non-empty set, so that we can apply Weierstrass’ Theorem. Let \(z \) be the minimizer of \(f \) in \(\hat{C} \). Note that for any \(x \in C - \hat{C} \), \(f(z) \leq f(x) \), and therefore \(z \) minimizes \(f \) over all of \(C \), since any \(x \notin \hat{C} \) must have been further away from \(y \) than \(q \).

Let \(a := y - z \). Then \(a \neq 0 \), since \(z \in C, y \notin C \). Let \(b := \frac{1}{2}(a^T y + a^T z) \). Then,

\[0 < a^T a = (y - z)^T (y - z) = a^T y - a^T z \]

so then

\[a^T y > a^T z \Rightarrow 2a^T y > a^T y + a^T z \Rightarrow a^T y > \frac{1}{2}(a^T y + a^T z) = b. \]

It remains to show that \(a^T x < b \) for all \(x \in C \). Let \(x_\lambda := (1 - \lambda)z + \lambda x \in C \) for \(0 < \lambda \leq 1 \). Since \(z \) minimizes \(f \) over \(C \), \(f(z) \leq f(x_\lambda) \), i.e.

\[\frac{1}{2}((1 - \lambda)z + \lambda(x - y))^T((1 - \lambda)z + \lambda(x - y)) = \frac{1}{2}((z - y + \lambda(x - z))^T(z - y + \lambda(x - z)) \geq \frac{1}{2}(z - y)^T(z - y). \]

Rewriting, we obtain

\[\frac{1}{2}[2(z - y)^T\lambda(x - z) + \lambda^2(x - z)^T(x - z)] \geq 0 \]

or

\[(z - y)^T(x - z) + \frac{1}{2}\lambda(x - z)^T(x - z) \geq 0 \]

or

\[a^T(z - x) + \frac{1}{2}\lambda(x - z)^T(x - z) \geq 0 \]
or
\[a^T(z - x) \geq -\frac{1}{2}\lambda(x - z)^T(x - z). \]

But we can take \(\lambda \to 0 \) arbitrarily small, so \(a^T(z - x) \geq 0 \) which implies \(a^Tz \geq a^Tx \). Using the fact that \(a^Tz < a^Ty \),
\[b = \frac{1}{2}(a^Ty + a^Tz) \geq \frac{1}{2}(2a^Tz) = a^Tz > a^Tx. \]

\[\square \]

2 The polar of a set

To get to the proof that polytopes are bounded polyhedra, we need to introduce one more concept.

Definition 1 If \(S \subseteq \mathbb{R}^n \), then its polar is \(S^o = \{ z \in \mathbb{R}^n : z^Tx \leq 1, \forall x \in S \} \).

Theorem 3 If \(C \) is a closed convex subset of \(\mathbb{R}^n \) with \(0 \in C \), then \(C^{o0} := (C^0)^0 = C \).

Proof:

- (\(\supseteq \)) If \(x \in C \), we want to show that \(x \in C^{o0} \), i.e., that \(z^Tx \leq 1 \) for all \(z \in C^o \). But \(z \in C^o \) implies \(z^Tx \leq 1 \), so this holds.

- (\(\subseteq \)) We will show that if \(x \notin C \), then \(x \notin C^{o0} \). If \(x \notin C \), then by the Separating Hyperplane Theorem, there exists \(0 \neq a \in \mathbb{R}^n \) and \(b \in \mathbb{R} \) with \(a^Tx > b > a^Tz \) for all \(z \in C \). Since \(0 \in C \), then \(b > 0 \). Let \(\tilde{a} = a/b \neq 0 \). Therefore \(\tilde{a}^Tx > 1 > \tilde{a}^Tz \), for all \(z \in C \). This implies \(\tilde{a} \in C^o \). But \(\tilde{a}^Tx > 1 \), so \(x \notin C^{o0} \).

Therefore \(C^{o0} = C. \)

Now we can prove our result, at least sort of. We’ll assume that \(0 \) is in the interior of the polytope. We claim that this can be done without loss of generality (and we’ll leave it to the class to show on a problem set); this is because we can translate the polytope so that this is true if needed.

Theorem 4 If \(Q \subseteq \mathbb{R}^n \) is a polytope with \(0 \) in the interior of \(Q \), then \(Q \) is a (bounded) polyhedron.

Proof: Let \(P = Q^o \). Then we know that \(P^o = Q^{o0} = Q \). Since \(Q \) is a polytope, \(Q = \text{conv}\{v_1, \ldots, v_k\} \) for some \(k \) finite vectors \(v_1, \ldots, v_k \in \mathbb{R}^n \). Now \(P = Q^o = \{ z \in \mathbb{R}^n : z^Tv \leq 1, \forall v \in Q \} \), so \(v_i^Tz = z^Tv_i \leq 1 \) for \(i = 1, 2, \ldots, k \). For any \(x \in Q \), \(x = \sum_{i=1}^k \lambda_i v_i \) where \(\lambda_i \geq 0, \sum \lambda_i = 1 \). Therefore
\[z^Tz = z^T(\sum_{i=1}^k \lambda_i v_i) = \sum_{i=1}^k \lambda_i(z^Tv_i) \leq \sum_{i=1}^k \lambda_i = 1. \]

Therefore
\[P = \{ z \in \mathbb{R}^n : v_i^Tz \leq 1, i = 1, \ldots, k \}, \]
so \(P \) is a polyhedron. \(Q \) has 0 in its interior, so for some \(\epsilon > 0 \), all \(x \in \mathbb{R}^n \) with \(||x|| \leq \epsilon \) lie in \(Q \). If \(z \in P \), \(z \neq 0 \), then
\[x = \epsilon \frac{z}{||z||} \in Q. \]
since \(\|x\| = \epsilon \). Then since \(P = Q^o \),

\[
x^T z \leq 1 \quad \Rightarrow \quad \frac{\epsilon z^T z}{\|z\|} \leq 1 \quad \Rightarrow \quad \|z\| \leq \frac{1}{\epsilon}.
\]

Hence \(P \) is a bounded polyhedron. By our previous result, \(P = Q^o \) is a polytope. And from what we just proved, this implies that \(P^o \) is a bounded polyhedron, which means that \((Q^o)^o = Q \) is a bounded polyhedron. \(\square \)