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1 Separating Hyperplane Theorem

Recall the statements of Weierstrass’s Theorem (without proof) and the Separating Hyperplane
Theorem from the previous lecture.

Theorem 1 (Weierstrass) Let C ⊆ <n be be a closed, nonempty and bounded set, and let f : C →
< be continuous on C. Then f attains a minimum on C.

Theorem 2 (Separating Hyperplane) Let C ⊆ <n be a closed, nonempty and convex set. Let
y ∈ <n, y /∈ C. Then there exists 0 6= a ∈ <n, b ∈ < such that aT y > b and aT x < b for all x ∈ C.

Proof: Define
f(x) =

1
2
||x− y||2

Ĉ = {x ∈ C : ||q − y|| ≥ ||q − x||}.
Last time we showed that Ĉ is a closed, bounded, and non-empty set, so that we can apply
Weierstrass’ Theorem. Let z be the minimizer of f in Ĉ. Note that for any x ∈ C − Ĉ, f(z) ≤
f(q) < f(x), and therefore z minimizes f over all of C, since any x /∈ Ĉ must have been further
away from y than q.

Let a := y − z. Then a 6= 0, since z ∈ C, y /∈ C. Let b := 1
2(aT y + aT z). Then,

0 < aT a = aT (y − z) = aT y − aT z

so then
aT y > aT z ⇒ 2aT y > aT y + aT z ⇒ aT y >

1
2
(aT y + aT z) = b.

It remains to show that aT x < b for all x ∈ C. Let xλ := (1 − λ)z + λx ∈ C for 0 < λ ≤ 1.
Since z minimizes f over C, f(z) ≤ f(xλ), i.e.

1
2
((1− λ)z + λx− y)T ((1− λ)z + λx− y) =

1
2
(z − y + λ(x− z))T (z − y + λ(x− z))

≥ 1
2
(z − y)T (z − y).

Rewriting, we obtain
1
2
[2(z − y)T λ(x− z) + λ2(x− z)T (x− z)] ≥ 0

or
(z − y)T (x− z) +

1
2
λ(x− z)T (x− z) ≥ 0

or
aT (z − x) +

1
2
λ(x− z)T (x− z) ≥ 0
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or
aT (z − x) ≥ −1

2
λ(x− z)T (x− z).

But we can take λ → 0 arbitrarily small, so aT (z−x) ≥ 0 which implies aT z ≥ aT x. Using the fact
that aT z < aT y,

b =
1
2
(aT y + aT z) ≥ 1

2
(2aT z) = aT z > aT x.

2

2 The polar of a set

To get to the proof that polytopes are bounded polyhedra, we need to introduce one more concept.

Definition 1 If S ⊆ <n, then its polar is S◦ = {z ∈ <n : zT x ≤ 1, ∀x ∈ S}.

Theorem 3 If C is a closed convex subset of <n with 0 ∈ C, then C◦◦ := (C◦)◦ = C.

Proof:

• (⊇) If x ∈ C, we want to show that x ∈ C◦◦, i.e., that zT x ≤ 1 for all z ∈ C◦. But z ∈ C◦

implies zT x ≤ 1, so this holds.

• (⊆) We will show that if x /∈ C, then x /∈ C◦◦. If x /∈ C, then by the Separating Hyperplane
Theorem, there exists 0 6= a ∈ <n and b ∈ < with aT x > b > aT z for all z ∈ C. Since 0 ∈ C,
then b > 0. Let ã = a/b 6= 0. Therefore ãT x > 1 > ãT z, for all z ∈ C. This implies ã ∈ C◦.
But ãT x > 1, so x /∈ C◦◦.

Therefore C◦◦ = C. 2

Now we can prove our result, at least sort of. We’ll assume that 0 is in the interior of the
polytope. We claim that this can be done without loss of generality (and we’ll leave it to the class
to show on a problem set); this is because we can translate the polytope so that this is true if
needed.

Theorem 4 If Q ⊆ <n is a polytope with 0 in the interior of Q, then Q is a (bounded) polyhedron.

Proof: Let P = Q◦. Then we know that P ◦ = Q◦◦ = Q. Since Q is a polytope, Q =
conv{v1, . . . , vk} for some k finite vectors v1, . . . , vk ∈ <n. Now P = Q◦ = {z ∈ <n : xT z ≤ 1, ∀x ∈
Q}, so vT

i z = zT vi ≤ 1 for i = 1, 2, . . . , k. For any x ∈ Q, x =
∑k

i=1 λivi where λi ≥ 0,
∑

i λi = 1.
Therefore

zT x = zT (
k∑

i=1

λivi) =
k∑

i=1

λi(zT vi) ≤
k∑

i=1

λi = 1.

Therefore
P = {z ∈ <n : vT

i z ≤ 1, i = 1, . . . , k},
so P is a polyhedron. Q has 0 in its interior, so for some ε > 0, all x ∈ <n with ||x|| ≤ ε lie in Q.
If z ∈ P , z 6= 0, then

x = ε
z

||z|| ∈ Q.
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since ||x|| = ε. Then since P = Q◦,

xT z ≤ 1 ⇒ εzT z

||z|| ≤ 1 ⇒ ||z|| ≤ 1
ε
.

Hence P is a bounded polyhedron. By our previous result, P = Q◦ is a polytope. And from what
we just proved, this implies that P ◦ is a bounded polyhedron, which means that (Q◦)◦ = Q is a
bounded polyhedron. 2
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