
ORIE 6300 Mathematical Programming I September 11, 2008

Lecture 5

Lecturer: David P. Williamson Scribe: Emma Qiu Wang

Last time we talked about polyhedra and their characteristics. This time we will define polytopes
and discuss about their relationship with polyhedra.

First we need some definitions.

Definition 1 A set S ⊆ <n is convex if ∀x, y ∈ S, λx + (1− λ)y ∈ S, ∀λ ∈ [0, 1].

Figure 1: Examples of convex sets

Definition 2 Given v1, v2, . . . , vk ∈ <n, a convex combination of v1, v2, . . . , vk is v =
∑k

i=1 λivi

for some λi such that λi ≥ 0 and
∑k

i=1 λi = 1.

Given v1, v2, . . . , vk ∈ <n, let’s set

Q = {v ∈ <n : v is a convex combination of v1, v2, . . . , vk}.

Lemma 1 Q is convex.

Proof: Pick any x, y ∈ Q. This implies that

x =
∑k

i=1 αivi αi ≥ 0
∑k

i=1 αi = 1,

y =
∑k

i=1 βivi βi ≥ 0
∑k

i=1 βi = 1.

For λ ∈ [0, 1], then

λx + (1− λ)y = λ
k∑

i=1

αivi + (1− λ)
k∑

i=1

βivi

=
k∑

i=1

[λαi + (1− λ)βi]vi.

5-1



Then we know that λαi + (1− λ)βi ≥ 0 for all i, and that

k∑

i=1

(λαi + (1− λ)βi) = λ
k∑

i=1

αi + (1− λ)
k∑

i=1

βi = 1.

Thus

λx + (1− λ)y =
k∑

i=1

δivi,

where δi = λαi + (1− λ)βi, so that δi ≥ 0 for all i, and
∑k

i=1 δi = 1. Thus λx + (1− λ)y ∈ Q. ¤
For Q = {v ∈ <n : v is a convex combination of v1, v2, . . . , vk}, we say that Q is a convex hull

of v1, v2, . . . , vk, and we write Q = conv(v1, v2, . . . , vk).

Definition 3 For Q the convex hull of a finite number of vectors v1, v2, . . . , vk, Q is a polytope.

Observation 1 Any extreme point of a polytope Q = conv(v1, v2, . . . , vk) is vj for some j =
1, 2, . . . , k.

Proof: Suppose we have an arbitrary point v in the polytope, and v 6= v1, v2, . . . , vk. Then by
definition, we know that

v =
k∑

i=1

λivi

= λ1v1 +
k∑

i=2

λivi

= λ1v1 + (1− λ1)
k∑

i=2

λi

1− λ1
vi

Let w =
∑k

i=2
λi

1−λ1
vi. It is easy to check that w is a convex combination of v2, . . . , vk. Thus we

can express v = λ1v1 + (1− λ1)w, for v1, w ∈ Q, and thus v is is not an extreme point. ¤
Now we are interested in the following two questions:

• Q1: When is a polytope a polyhedron?

• A1: A polytope is always a polyhedron (We will prove this in later lectures).

• Q2: When is a polyhedron a polytope?

• A2: A polyhedron is almost always a polytope.

We can give a counterexample to show why a polyhedron is not always but almost always a
polytope: an unbounded polyhedra is not a polytope.

Definition 4 A polyhedron P is bounded if ∃M > 0, such that ‖ x ‖≤ M for all x ∈ P .

What we can show is this: Every bounded polyhedron is a polytope, and vice versa. In this
lecture, we will show one of the proof in one direction, and we’ll show the other direction in the
next lecture. To start with, we need the following lemma.
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Figure 2: Examples of unbounded polyhedra

Lemma 2 Any polyhedron P = {x ∈ <n : Ax ≤ b} is convex.

Proof: If x, y ∈ P , then Ax ≤ b and Ay ≤ b. Therefore,

A(λx + (1− λ)y) = λAx + (1− λ)Ay ≤ λb + (1− λ)b = b.

Thus x + (1− λ)y ∈ P. ¤
We can now show the following theorem.

Theorem 3 (Representation of Bounded Polyhedra) A bounded polyhedron P is the set of
all convex combinations of its vertices, and is therefore a polytope.

Proof: Let v1, v2, . . . , vk be the vertices of P . (Question for the reader: Why do we have
a finite number of vertices?). Since vi ∈ P and P is convex (by previous Lemma), then any
convex combination

∑k
i=1 λivi ∈ P . So it only remains to show that any x ∈ P can be written as

x =
∑k

i=1 λivi, with λi ≥ 0 and
∑k

i=1 λi = 1.
Let A= be all the constraints that x meets with equality (all rows aj s.t. ajx = bj). Let ra(x)

be the rank of the corresponding A=. Recall from last time that ra(x) = n if and only if x is a
vertex of P . Now we prove the theorem through induction on n− ra(x).

Base case: Let n− ra(x) = 0. Then ra(x) = n and since x ∈ P , x is a basic feasible solution, and
therefore a vertex of P .

Inductive Step: Suppose we have shown that for any y ∈ P such that n− ra(y) < ` for some ` > 0,
y can be written as a convex combination of v1, v2, . . . , vk. Consider x ∈ P with ra(x) = n− ` < n.
Then the rank of A= < n, and thus there exists z such that A=z = 0. Since P is bounded, there
exist constants α > 0 and α < 0 such that x + αz ∈ P if and only if α ≤ α ≤ α. Geometrically,
this is equivalent to moving from x in the direction αz until we run into a constraint.

Then we can express x as

x =
α

α− α
(x + αz) +

−α

α− α
(x + αz).
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Figure 3: Separating hyperplane

Therefore, x is a convex combinations of two points in P . Now all we need to show is that x+αz and
x+αz are convex combinations of vertices. Since x+αz ∈ P , but x+αz /∈ P for α > α, there exists
some constraint aj such that ajx < bj , but aj(x + αz) = bj . This implies that ra(x + αz) > ra(x),
so then n−ra(x+αz) < n−ra(x) = `. Therefore, x+αz can be expressed as a convex combination
of vertices v1, v2, . . . , vk by induction. The same thing applies to x + αz. Therefore x must be a
convex combination of v1, v2, . . . , vk. ¤

To begin showing the proof in the opposite direction (that is, showing that every polytope is a
bounded polyhedron), we will need a theorem called the separating hyperplane theorem. To prove
the theorem, we will use the following theorem from analysis, which we give without proof.

Theorem 4 Weierstrass Let C ⊆ <n be a closed, non-empty and bounded set. Let f : C → < be
continuous on C. Then f attains a maximum (and a minimum) on some point of C.

Theorem 5 Separating Hyperplane Let C ⊆ <n be closed, non-empty and convex set. Let
y /∈ C, then there exists a hyperplane a 6= 0, a ∈ <n, b ∈ <, such that aT y > b and aT x < b, for all
x ∈ C.

We first discuss the brief idea of the proof and leave the actual proof for next lecture.
Let f(x) = 1

2 ‖ x − y ‖, for all x ∈ C. We’d like to apply the Weierstrass theorem to find the
minimizer of f in C, but C may not be bounded. To get around this, we pick some q ∈ C, which
we can do since C is non-empty. Consider Ĉ = {x ∈ C :‖ q − y ‖≥‖ x − y}. Then Ĉ is closed,
non-empty and bounded; we see that Ĉ is bounded since for x ∈ Ĉ, we have ‖ x ‖≤‖ y ‖ + ‖ y−x ‖
by triangle inequality and ‖ y ‖ + ‖ y − x ‖≤‖ y ‖ + ‖ q − y ‖ by the definition of Ĉ. Then we can
apply Weierstrass theorem on Ĉ to find a point z that minimizes f . We’ll define the hyperplane as
a = y− z, b = (aT y + aT z)/2. The proof that this hyperplane has the properties that we want will
wait for next time.
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