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Lecture 4

Lecturer: David P. Williamson Scribe: Anjie Guo

Recall the maximum flow problem from last lecture. The maximum flow problem is defined by
a directed graph G = (V, A), and two distinguished nodes, s (the source) and t (the sink). The goal
of the problem is to send as much flow as possible from the source to the sink such that each arc
carries at most one unit of flow, and for every node of the graph other that the source and sink,
the total amount of flow entering the node is equal to the amount leaving the node.

Last time we formulated the maximum flow problem as a linear program where the variables
correspond to paths from s to t. For each such path, P , we will have a variable xP . Let P denote
the set of all paths from s to t. The variable xP states how much flow is sent from the source to
the sink on path P . The constraints express that for each arc (u, v) ∈ A, at most one unit of flow
can be sent through arc (u, v):

max
∑

P∈P
xP

xP ≥ 0 for each path P ∈ P∑

P :(u,v)∈P

xP ≤ 1 for each arc (u, v) ∈ A

The dual is as follows:

min
∑

(u,v)∈E

zuv

zuv ≥ 0 for each arc (u, v) ∈ A∑

(u,v)∈P

zuv ≥ 1 for each path P ∈ P

For the maximum flow problem defined above, we define an s-t cut as a set S of nodes that
contains s and does not contain t. An arc (u, v) is in the cut if it leaves S, i.e., u is in S and v
is not. For a cut S, let n(S) denote the number of edges leaving the cut. Note that every s-t cut
gives an integer solution to the dual of the maximum flow problem by setting zuv = 1 if e leaves set
S, and 0 otherwise. All paths from s to t must leave set S at some point, hence they must contain
at least one arc (u, v) with zuv = 1. (Note that a path can leave S more than once, assuming it
entered S again in between the two). Hence, this dual variable assignment is dual-feasible and has
value n(S).

Let z∗ be an optimal dual solution. Recall that we defined cost(s, w) for a node v mean the
minimum, over all s to w paths P , of the sum of the optimal dual variable values for the edges on
that path:

cost(s, w) = mins→w path P

∑

(u,v)∈P

z∗uv.

We defined sets Sρ = {v : cost(s, v) ≤ ρ}, and showed that Sρ defines an s-t cut for each 0 ≤ ρ < 1.
We also proved the following inequality.
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Lemma 1 For each arc (u, v) ∈ A, we have that cost(s, v) ≤ cost(s, u) + z∗uv,

We want to show that there exists a ρ∗ such that n(Sρ∗) ≤
∑

(u,v)∈A z∗uv. By strong duality, the
dual objective function is equal to the maximum flow value, and by weak duality, the maximum
flow value is at most n(S) for any S ⊆ V as argued above. Thus n(Sρ∗) equals the maximum flow
value.

To find such a ρ∗, we pick one of the cuts Sρ at random, by selecting ρ uniformly at random from
the interval [0, 1). The value of this cut is a random variable, and we will show that its expected
value is at most

∑
(u,v)∈A z∗uv, and hence there must exist at least one such cut that achieves this

bound.

Lemma 2
Eρ[n(Sρ)] ≤

∑

(u,v)∈A

z∗uv.

Proof: We want to compute the expected number of edges leaving the cut Sρ. To compute
this expectation, first consider the probability that a given directed edge (u, v) leaves the randomly
selected cut Sρ. Edge (u, v) leaves Sρ if and only if u is in Sρ and v is not in Sρ. This happens
if and only if cost(s, u) ≤ ρ < cost(s, v). If cost(s, u) < cost(s, v), then the probability that edge
(u, v) leaves the randomly selected Sρ is exactly cost(s, v) − cost(s, u). Note that, by the lemma
above, we get that cost(s, v) − cost(s, u) ≤ z∗uv; hence the probability that edge (u, v) leaves the
selected set is at most z∗uv.

Now, we compute the expected number of edges leaving the set. We can do this by introducing
an indicator variable I(u, v, ρ), which is equal to 1 if (u, v) leaves Sρ, and is 0 otherwise. Then, we
have that

n(Sρ) =
∑

(u,v)∈A

I(u, v, ρ).

By the linearity of expectation (that is, the expectation of a sum is the sum of the expectations),
the expected value of n(Sρ) is equal to the sum, over all edges (u, v) ∈ A, of the expectation of
I(u, v, ρ). Since I(u, v, ρ) is a 0-1 random variable, its expectation is equal to the probability that
this variables is equal to 1; that is, the probability that edge (u, v) leaves the cut Sρ, which is
exactly what we bounded above. More precisely,

Eρ[n(Sρ)] = Eρ[
∑

(u,v)∈A

I(u, v, ρ)]

=
∑

(u,v)∈A

Eρ[I(u, v, ρ)]

=
∑

(u,v)∈A

Pr[(u, v) in the cut Sρ]

≤
∑

(u,v)∈A

z∗uv,

as desired. 2

Since we know that the expected value of the cuts given our choice of ρ is at most the dual
objective value, there must exist some ρ∗ such that n(Sρ∗) is at most the dual objective value and
we are done.

From this point, we will take several lectures to build up to a proof of strong duality. We are
going to start by building up some geometric and algebraic understanding of the feasible region.
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We will consider the feasible region of a set of inequalities. Given a set of inequalities we define
the feasible region as P = {x ∈ <n : Ax ≤ b}. We say that P is a polyhedron.

Our intuition from last time is that optimal solutions to linear programming problems occur at
“corners” of the feasible region. What we’d like to do now is to consider formal definitions of the
“corners” of the feasible region.

One idea is that a point in the polyhedron is a corner if there is some objective function that
is minimized there and at no other point of P .

Definition 1 x ∈ P is a vertex of P if ∃c ∈ <n with cT x < cT y,∀y 6= x, y ∈ P .

Another idea is that a point x ∈ P is a corner if there are no small perturbations of x that are
in P .

Definition 2 Let P be a convex set in <n. Then x ∈ P is an extreme point of P if x cannot be
written as λy + (1− λ)z for y, z ∈ P , y, z 6= x, 0 ≤ λ ≤ 1.

It is interesting to note that because these definitions are generalized for all convex sets - not
just polyhedra - a point could possibly be extreme but not be a vertex. One set of examples are
the points on an oval where the line segments of the sides meet the curves of the ends.

Figure 1: Four extreme points in a two-dimensional convex set that are not vertices.

A final possible definition is an algebraic one. We note that a corner of a polyhedron is char-
acterized by a point at which several constraints are simultaneously satisfied. For any given x, let
A= be the constraints satisfied with equality by x; (that is, aj such that ajx = bj). Let A< be the
constraints aj such that ajx < bj .

Definition 3 Call x ∈ <n a basic solution of P if A= has rank n. x is a basic feasible solution of
P if it also lies inside P (so each constraint is either in A= or A<).

Since there are only a finite number of constraints defining P , there are only a finite number
of ways to choose A=, and if rank(A=) = n then x is uniquely determined by A=. So there are at
most

(
m
n

)
basic solutions.

Theorem 3 (Characterization of Vertices). Let P be defined as above. The following are
equivalent:

(1) x is a vertex of P .

(2) x is an extreme point of P .

(3) x is a basic feasible solution of P .
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Figure 2: A geometric representation of the nine basic solutions (green or red) and six basic feasible
solutions (green) of an LP problem with six inequality constraints on two variables.

Proof: We first prove that (1)⇒ (2). Let x be a vertex of P and suppose by way of contradiction
that x is not an extreme point of P . Since x is a vertex, ∃c ∈ <m such that cT x < cT y for all
y ∈ P, y 6= x. Because x is not an extreme point, there exist y, z ∈ P , y, z 6= x, 0 ≤ λ ≤ 1 such that
x = λy + (1− λ)z. Therefore cT x < cT y and cT x < cT z. Thus

cT x < λcT y + (1− λ)cT z = cT (λy + (1− λ)z) = cT x.

This gives us a contradiction, so x must be an extreme point.
We now prove (2) ⇒ (3), by proving the contrapositive, that ¬(3) ⇒ ¬(2). If x is not a basic

feasible solution and x ∈ P , then the column rank of A= is less than n. Hence there is a direction
vector 0 6= y ∈ <n such that A=y = 0 (i.e. the columns of A= are linearly dependent). We want to
show that for some ε > 0, x+εy ∈ P and x−εy ∈ P . Then we will have shown that x can be written
as a convex combination of two other points of P , since then x = 1

2(x + εy) + 1
2(x − εy) , which

contradicts x being an extreme point. To show we can find the appropriate ε > 0, we first note
that since A<x < b<, b< − A<x > 0, so we can choose a small ε > 0 such that εA<y ≤ b< − A<x
and −εA<y ≤ b< −A<x. Now to show that x + εy ∈ P , we must show that A=(x + εy) ≤ b= and
A<(x + εy) ≤ b<. For the first inequality we have that

A=(x + εy) = A=x + εA=y = A=x = b=

since A=y = 0. For the second inequality we have that

A<(x + εy) = A<x + εA<y ≤ A<x + (b< −A<x) = b<

by our choice of ε. Showing that x− εy ∈ P is similar.
Finally, we prove (3) ⇒ (1). Let J = {j : aT

j x = bj} . Set c = −∑
j∈J aT

j . Then

cT x =
∑

j∈J

ajx = −
∑

j∈J

bj ,

and for any y ∈ P ,
cT y = −

∑

j∈J

ajy ≥ −
∑

j∈J

bj = cT x

by the feasibility of y. Then it must be the case that cT y = cT x only if ajy = bj for all j ∈ J .
Thus A=y = b=. However, since x is a basic feasible solution, A= has rank n, so that A=x = b=

has a unique solution x. Then if cT x = cT y, it must be the case that x = y. Hence we have that
cT x = cT y implies that x = y and cT x ≤ cT y for all y ∈ P , and thus x is a vertex. 2
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