
ORIE 6300 Mathematical Programming I August 28, 2008

Lecture 1

Lecturer: David P. Williamson Scribe: Ebad Ahmed

Much of the course will be devoted to linear programming (LP), the study of the optimization
of a linear function of several variables subject to linear equality and inequality constraints. Here
“programming” should be understood in the sense of planning — more like TV programming than
computer programming — and linear refers to the types of functions involved.

There are many forms such a problem can take. We start with a (column) vector x ∈ IRn of
decision variables. We want to maximize a linear objective function cT x for c ∈ IRn subject to linear
inequalities Ax ≤ b for A ∈ IRm×n, b ∈ IRm. The inequality is componentwise; if aj is the jth row of
A, and bj is the jth component of b, then we want to have ajx ≤ bj for j = 1, . . . , m. Any decision
vector x for which Ax ≤ b is called feasible (or a feasible solution). We call the set

Q := {x ∈ IRn : Ax ≤ b}
of points satisfying all the constraints the feasible region or feasible set. For any feasible solution
x, cT x is the value of x. A feasible solution x∗ is optimal if it has the maximum value (if it exists)
among all feasible solutions, and cT x∗, for x∗ optimal, is the value of the linear program. Note that
all our vectors are columns, and that a subscripted letter could be a component of a vector (like
bj) or itself a vector (like aj). We write:

max cT x

Ax ≤ b,

or sometimes just max(cT x : Ax ≤ b).
We will study the following things:

• What is the geometry of the feasible region?

• What form do optimal solutions take? How can we know if a solution is optimal?

• How can we efficiently find an optimal solution?

Let’s consider a concrete example.

Example 1 (Product Mix): The Marie-Antoinette bakery makes high-end bread and cakes. Each
loaf requires 3 pounds of flour and 2 hours of oven time, while each cake requires just 1 pound of
flour but 4 hours of oven time. There are 7 pounds of flour and 8 hours of oven time available, and
all other ingredients are in ample supply. (Note that this is a very small operation, and the oven
can handle only one bakery product at a time!) Each loaf and each cake makes a $5 profit. How
many loaves and how many cakes should be made to maximize profit?

If we let x1 and x2 denote the numbers of loaves and cakes made (our decision variables), then
the objective function is 5x1 + 5x2, to be maximized. The flour constraint is 3x1 + 1x2 ≤ 7, while
the oven constraint is 2x1 + 4x2 ≤ 8. Are these all the constraints? No: the numbers of loaves and
cakes cannot be negative, so we get

maxx 5x1 + 5x2

3x1 + 1x2 ≤ 7,
2x1 + 4x2 ≤ 8,
x1 ≥ 0, x2 ≥ 0.

1-1

We might argue that x1 and x2 should be integers, but this makes our problem an integer linear
programming problem, which is potentially much harder to solve. So for now we allow x1 and x2

to take on any real values. This might be a reasonable approximation for a problem instance of
more realistic size: perhaps xj is the number of batches (say of 100 loaves or 100 cakes) made, so
fractions are possible.

Our problem above is of the form max{cT x : Ax ≤ b}, where A =
[

3 2 −1 0
1 4 0 −1

]T

(note

that the rows of A give the coefficients of the constraints), c =
(

5
5

)
= (5, 5)T = (5; 5) and

b = (7, 8, 0, 0)T = (7; 8; 0; 0).
We can solve such a small problem graphically, by drawing the feasible region in IR2:

Figure 1: The feasible region and an isoprofit line for Example 1.

We can also draw the line 5x1 + 5x2 = 10; parallel lines show points of equal profit. There are
clearly an infinite number of feasible points (by contrast, there are only finitely many integer feasible
points: so why is integer linear programming harder than LP??). But moving the “isoprofit” line
up as much as possible, we see that (2; 1) looks like a good point; it gives a profit of $15.

This is pretty convincing: but can we get an algebraic proof that this is optimal, which might

1-2

work even if we can’t draw a picture? Yes! Any feasible point must satisfy the two constraints

3x1 + 1x2 ≤ 7,
2x1 + 4x2 ≤ 8,

so satisfies their sum: 5x1 + 5x2 ≤ 15. But we also have a feasible point, x = (2; 1), which gives
objective function value 15: so it must be optimal!

Let us modify our example a bit. What if the profit per loaf becomes $7 and per cake $4? The
objective function is now 7x1 + 4x2. Adding the constraints no longer works, but we could take
positive multiples of them first:

2 × 3x1 + 1x2 ≤ 7,
+ 1/2 × 2x1 + 4x2 ≤ 8,

−− − −− −− −−
7x1 + 4x2 ≤ 18,

and the feasible point (2; 1) gives exactly $18 revenue, so is still optimal.
What if the objective function becomes 1x1 + 4x2? Simple algebra suggests

−2/5 × 3x1 + 1x2 ≤ 7,
+ 11/10 × 2x1 + 4x2 ≤ 8,

−− − −− −− −−
1x1 + 4x2 ≤ 6??

Is this valid? No!! Multiplying an inequality by a negative number changes its sense, and we can’t
then add the resulting inequalities.

Instead, we can proceed as follows:

1 × 2x1 + 4x2 ≤ 8,
+ 1 × −1x1 ≤ 0,

−− − −− −− −−
1x1 + 4x2 ≤ 8,

and x = (0; 2) is feasible and gives objective function value $8.
Let’s generalize this discussion. For each constraint ajx ≤ bj , we want to multiply it by yj ≥ 0,

so that we have
y1 × (a1x ≤ b1)
y2 × (a2x ≤ b2)

...
+ ym × (amx ≤ bm)

−− − −−
cT x ≤ yT b

So we generate an upperbound of
∑

j yjbj = yT b. Also, for each xi, we want to have exactly ci

copies of xi. Thus we want

y1a11 + y2a21 + · · ·+ ymam1 = c1

y1a12 + y2a22 + · · ·+ ymam2 = c2

...
y1a1n + y2a2n + · · ·+ ymamn = cn,

or AT y = c. Then by the same arguments as above we have that for any feasible x, cT x ≤ yT b. We
summarize this argument in the following lemma.

1-3

Lemma 1 Let y be a column vector that satisfies y ≥ 0 and AT y = c, then for all x that satisfy
Ax ≤ b we have that cT x ≤ yT b.

Proof: We know that bj ≥ ajx for all j. Multiplying this inequality by the non-negative yj , we
get that yjbj ≥ yj(ajx). Adding these constraints up for all j, we get

m∑

j=1

yjbj ≥
m∑

j=1

yj(ajx)

=
m∑

j=1

yj

n∑

i=1

ajixi

=
n∑

i=1




m∑

j=1

yjaji


xi

=
n∑

i=1

cixi.

More compactly,
yT b ≥ yT (Ax) = (yT A)x = (AT y)T x = cT x.

2

Our goal is to derive the best upper bound for the linear program that can be derived this way,
i.e., the upper bound α = yT b that has the smallest value of the problem. We can write this as
another linear program: min(yT b : AT y = c, y ≥ 0). This is the dual linear program. The original
linear program is called the primal. The lemma above then implies what is known as the weak
duality theorem:

Theorem 2 (Weak Duality) The maximum in the primal LP has value less than or equal to the
minimum in the dual LP.

Note that it is convenient to denote that if a maximization problem has no feasible solution
then its value is −∞, and if a minimization problem has no feasible solution that its value is +∞.
The main theorem of linear programming (known as the strong duality theorem) states that the
max is equal to the min, with one possible exception: it is possible that the max is −∞ and the
min is +∞, i.e., that neither the primal nor the dual has any solution at all.

In the examples we worked above, it was always the case that the value of the primal was equal
to the value of the dual. Were we just lucky? No, whenever the primal or the dual have a feasible
solutions, this is always the case. This is called strong duality and is the fundamental theorem in
linear programming. It is possible that neither the primal nor the dual have feasible solutions.

Theorem 3 (Strong Duality) If either the primal or dual has a feasible solution, then the value of
the primal LP equals the value of the dual LP.

The proof of the strong duality theorem is nowhere as simple as that of the weak duality theorem,
and one of the things we will study in this course is how to go about proving strong duality.

1-4

