1 Semidefinite programming

Today we will discuss semidefinite programming (SDP) in particular; it is a special case of conic programming. The standard form of the primal is.

\[
\begin{align*}
\text{Min } & \quad C \cdot X \\
\text{s.t. } & \quad A_k \cdot X = b_k, \quad k = 1, \ldots, m \\
& \quad X \succeq 0 \quad (\equiv X \text{ positive semi-definite: } V^T X V \geq 0 \ \forall V)
\end{align*}
\]

We are here assuming that \(X\) is symmetric. The following fact is well-known from Linear Algebra:

Fact 1 For symmetric \(X \in \mathbb{R}^{n \times n}\), the following statements are equivalent:

1. \(X \succeq 0\);
2. \(X\) has non-negative eigenvalues ;
3. \(X = V^T V\) for some \(V \in \mathbb{R}^{m \times n}, \ m \leq n\).

The dual of (1) is given by:

\[
\begin{align*}
\text{Max } & \quad b^T y \\
& \quad \sum_{k=1}^{m} y_k A_k + S = C, \\
& \quad S \succeq 0.
\end{align*}
\]

2 SDP and the central path

We now show how some of the interior-point methods for LP can be used for SDP as well. We need the following definitions:

Definition 1

\[
\begin{align*}
\mathcal{F}^0(P) & = \{X \in \mathbb{R}^{n \times n} : A_k \cdot X = b_k, \ k = 1, \ldots, m, \ X \succ 0\} \\
\mathcal{F}^0(D) & = \{(y, S) : \sum_{k=1}^{m} y_k A_k + S = C, \ S \succ 0\}
\end{align*}
\]

where \(X \succ 0 \equiv X \text{ positive definite, } v^T X v > 0, \ \forall v \in \mathbb{R}^n\).
Recall the barrier function for LP:

\[B_\mu(X) = c^T x - \mu \sum_i \ln(x_i) = c^T x - \mu \ln \left(\prod_i x_i \right). \]

Recall that minimizing the function trades off minimizing the objective function versus staying in the interior of the feasible region (in particular, staying away from the constraints \(x_i = 0 \)).

We would like to have the same sort of function for SDP. The corresponding barrier function is

\[B_\mu(X) = C \cdot X - \mu \ln(\det X). \]

Once again, minimizing the barrier function trades off minimizing the objective function versus staying in the interior of the feasible region: since \(\det X \) is the product of the eigenvalues, it stays away from zero precisely when the eigenvalues of \(X \) stay away from zero.

We can prove a theorem analogous to the one we proved for linear programming about how to find the minimizer of the barrier function. We will skip the proof.

Theorem 1 If \(\mathcal{F}^0(P) \) and \(\mathcal{F}^0(D) \) are non-empty, a necessary and sufficient condition for \(X \in \mathcal{F}^0(P) \) to be the unique minimizer of \(B_\mu \) is that \(\exists (y, S) \in \mathcal{F}^0(D) \) such that:

1. \(\sum_{k=1}^m y_k A_k + S = C \)
2. \(A_k \cdot X = b_k, \quad k = 1, ..., m \)
3. \(XS = \mu I \)

Again, as in the case of linear programming, we will apply Newton’s method to find the minimizer of the barrier function \(B_\mu \). In particular, we want to find a zero of the function

\[F(X, y, S) = \begin{pmatrix} \sum_{k=1}^m y_k A_k + S - C \\ A_1 \cdot X - b_1 \\ \vdots \\ A_k \cdot X - b_k \\ XS - \mu I \end{pmatrix}. \]

We apply Newton’s method by finding the Jacobian \(J(X, y, S) \) and repeatedly solving the following system for \((\Delta X, \Delta y, \Delta S) \):

\[J(X, y, S) \begin{pmatrix} \Delta X \\ \Delta y \\ \Delta S \end{pmatrix} + F(X, y, S) = 0. \]

Finding the Jacobian yields the following system:

\[\sum_{k=1}^m (\Delta y_k) A_k + \Delta S = 0 \]
\[A_k \cdot (\Delta X) = 0 \]
\[S(\Delta X) + (\Delta S)X = -SX + \mu I \]
Thus we get the following algorithm exactly analogous to that for linear programming:

Primal-Dual Interior-Point for SDP

\[
(X^0, y^0, S^0) \leftarrow \text{initial feasible point } (x^0, s^0 > 0) \\
\mu^0 \leftarrow \frac{1}{n} X^0 \cdot S^0 \\
k \leftarrow 0 \\
\text{While } \mu^k > \epsilon \\
\begin{align*}
\sum_{i=1}^{m} (\Delta y^k_i) A_i + \Delta S^k &= 0 \\
S^k (\Delta X^k) + (\Delta S^k) X^k &= -S^k X^k + \sigma^k \mu^k I \\
(X^{k+1}, y^{k+1}, S^{k+1}) &\leftarrow (X^k, y^k, S^k) + \alpha^k (\Delta X^k, \Delta y^k, \Delta S^k) \\
\mu^{k+1} &\leftarrow \frac{1}{n} X^{k+1} \cdot S^{k+1} \\
k &\leftarrow k + 1
\end{align*}
\]

where \(\mu = \frac{1}{n} X \cdot S \) and \(\sigma \in [0, 1] \) is a centering parameter. As before, this algorithm leads to an \(O(\sqrt{n} \ln \frac{C}{\epsilon}) \) iteration algorithm to get from duality gap of \(C \) down to \(\epsilon \). Note that the iteration count depends on \(n \), even though the number of variables in the matrix is \(n^2 \).

3 An application: MAX CUT

We now show how to use semidefinite programming to obtain an approximation algorithm for finding a maximum cut (MAX CUT). Given input \(G = (V, E) \), weights \(w_{ij} \forall (i, j) \in E \), our goal is to find \(S \subseteq V \) that maximizes \(\sum_{(i, j) \in \delta(S)} w_{ij} \). An example of a cut can be seen in Figure 1.

![Figure 1: Example of a cut.](image-url)
We claim that the following is an SDP relaxation of MAX CUT.

\[
\text{Max } \frac{1}{2} \sum_{(i,j) \in E} w_{ij}(1 - x_{ij})
\]

\[
x_{ii} = 1, \quad \forall i = 1, \ldots, n = |v|
\]

\[
X = (x_{ij}) \succeq 0.
\]

For this to be a relaxation, we need to show that an optimal solution is feasible, and has objective function value equal to the weight of the edges in the optimal solution.

Suppose \(S^* \) is an optimal solution to the MAX CUT problem. Set

\[
z_i = \begin{cases}
+1 & \text{if } i \in S^* \\
-1 & \text{otherwise}
\end{cases}
\]

If we let \(X^* = zz^T \) this implies that \(X^* \succeq 0 \). Moreover,

\[
X^*_{ij} = z_iz_j = \begin{cases}
+1 & \text{is } i, j \in S^* \text{ or } i, j \text{ is in } S^* \\
-1 & \text{if exactly one of } i, j \text{ is in } S^*
\end{cases}
\]

Since it holds that \(X^*_{ii} = z_iz_i = 1 \) \(\forall i = 1, \ldots, n \) it follows that \(X^* \) is feasible. The objective function value is

\[
\frac{1}{2} \sum_{(i,j) \in E} w_{ij}(1 - x^*_{ij}) = \sum_{(i,j) \in \delta(S^*)} w_{ij}
\]

since all edges \((i, j)\) that are not in the cut have \(x^*_{ij} = 1 \), while all edges \((i, j)\) in the cut have \(x^*_{ij} = -1 \). So if we solve SDP, get \(X \) of value \(Z^* \), then

\[
Z^* \geq \sum_{(i,j) \in \delta(S^*)} w_{ij} \equiv OPT.
\]

since the optimal solution to MAX CUT is feasible for the SDP.

Now, we want to solve the SDP relaxation and from it obtain a solution to the MAX CUT problem. W solve the SDP in polynomial time and get a solution \(X \) and let \(V \) be such that \(X = V^T V \). Let \(v_i \) be the \(i \)th column of \(V \), then \(X_{ij} = v_i^T v_j \). Note that \(x_{ii} = 1 \Rightarrow v_i^T v_i = \|v_i\|^2 = 1 \) so that \(v_i \) are a set of vectors in the unit ball. This is illustrated for two dimensions in Figure 2. Next pick a random vector \(r = (r_1, \ldots, r_n) \) where \(r_i \sim \mathcal{N}(0, 1) \). We get a solution to MAX CUT by setting \(i \in S \) iff \(r^T v_i \geq 0 \).

Fact 2 \(r \) is spherically symmetric.

Fact 3 Projection of \(r \) onto any 2D plane is still spherically symmetric.

Lemma 2 \(Pr[(i, j) \in \delta(S)] = \frac{1}{\pi} \arccos(x_{ij}) \).
Figure 2: Example of some vectors V_i in the 2D unit circle.

Figure 3: Example of a plane that cuts the sphere.

Proof: Consider the 2D plane containing v_i and v_j. Let $r = r' + r''$ where r' is the projection of r onto plane and $r'' \perp$ to the plane. Then

$$
\Pr[\langle i, j \rangle \in \delta(S)] = \Pr[i \in S, j \notin S \text{ or } i \notin S, j \in S] \\
= \Pr[r^Tv_i \geq 0, r^Tv_j < 0 \text{ or } r^T < 0, r'^Tv_j \geq 0] \\
= \Pr[(r')^Tv_i \geq 0, (r')^Tv_j < 0 \text{ or } (r')^Tv_i < 0, (r')^Tv_j \geq 0] \\
= \frac{2\theta}{2\pi} = \frac{\theta}{\pi}
$$

This follows because r' is spherically symmetric in the unit circle in the plane, and of the 2π possible orientations, 2θ of them correspond to the event we are interested in; for this, the shaded region in Figure 5 is when exactly one of i, j is in S.

We know that $v_i^Tv_j = \|v_i\|\|v_j\|\cos \theta = \cos \theta$ so that $\theta = \arccos(v_i^Tv_j) = \arccos(x_{ij})$. □

Lemma 3 $\frac{1}{2} \arccos(x) \geq 0.87856 \cdot \frac{1}{2}(1 - x)$ for $-1 \leq x \leq 1$

Theorem 4 In expectation, this algorithm returns a cut of weight $\geq 0.87856 \cdot \text{OPT}$. 28-5
Figure 4: Illustration of the decomposition of r into r' and r''.

Figure 5: Illustration of the regions where exactly one of i and j are in S.

Proof:

$$E \left[\sum_{(i,j) \in \delta(S)} w_{ij} \right] = \sum_{(i,j) \in E} w_{ij} \Pr[(i,j) \in \delta(S)]$$

$$= \sum_{(i,j) \in E} w_{ij} \frac{1}{\pi} \arccos(x_{ij})$$

$$\geq 0.87856 \cdot \frac{1}{2} \sum_{(i,j) \in E} w_{ij} (1 - x_{ij})$$

$$= 0.87856 \cdot Z^* \geq 0.87856 \cdot \text{OPT}.$$

It appears that SDP is strictly needed in order to obtain an approximation algorithm with a factor this close to 1. Using linear programming, it does not appear possible to get an approximation algorithm with an approximation factor better than $1/2$.

\square