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Abstract

We compute the finite sample probability that the maximum likelihood or residual maximum
likelihood estimate of the variance component is zero in a linear mixed model with one variance
component. The calculations are expedited by simple matrix diagonalization techniques. Ap-
plication of these calculations to likelihood ratio tests (LRT) and residual likelihood ratio tests
(RLRT) for a zero variance of the random effects yields the finite sample probability that the log
of the likelihood ratio, or residual likelihood ratio, is zero. The asymptotic behavior of the prob-
ability mass at zero of log of the likelihood ratio (log-LR) and the log of the residual likelihood
ratio (log-RLR) statistics is derived for two models, one-way ANOVA and penalized splines. The
large sample chi-square mixture approximation to the distribution of the log-likelihood ratio,
using the usual asymptotic theory for when a parameter is on the boundary, has been shown to
be poor in simulations studies. Our calculations explain these empirical results.
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1 INTRODUCTION

Linear mixed models (LMMSs) are now widely used for, inter alia, modeling longitudinal data, and
MLE and REML estimation of variance components is becoming commonplace. It is, therefore,
natural to consider likelihood ratio tests (LRTS) to test the null hypothesis that a variance compo-
nent is zero. In this paper we show that asymptotic theory developed for independent data cannot
be applied blindly to tests in LMMs. For example, we show that applying asymptotics to even
the simple case of balanced one-way ANOVA is subtle. If the number of observations per level
is fixed and the number of levels tends to infinity, then i.i.d. theory applies. But, if the number
of levels is fixed and the number of observations per level tends to infinity, then we get different
asymptotic behavior of the LRT. The disagreement between i.i.d. theory and the actual asymptotic
distribution is even worse for spline models.

This work was motivated by our research in testing parametric regression models versus non-
parametric alternatives. It is becoming more widely appreciated that penalized splines and other
penalized likelihood models can be viewed as LMMs and the fitted curves as a BLUPs (e.g., Brum-
back, Ruppert, and Wand, 1999). In this framework the smoothing parameter is a ratio of variance
components. The latter can be estimated by the MLE or REML estimate. REML is often called
generalized maximum likelihood (GML) in the smoothing spline literature. Within the random
effects framework, it is natural to consider likelihood ratio tests and residual likelihood ratio tests
(RLRTS) for testing null hypotheses such as no covariate effect or the regression function being a
polynomial. These null hypotheses are equivalent to the hypothesis of a variance component being
zero. LRTs for null variance components are non-standard for two reasons. First, the null value
of the parameter is on the boundary of the parameter space. Second, the data are dependent, at
least under the alternative hypothesis. These problems led us to investigate further the asymptotic
distribution of LRTs that a variance component is zero.

Our major result is that present asymptotic theory is inadequate because it cannot take into
account dependencies in the data. We conclude that the RLRT is much preferred to the LRT and
that simulation is, at present, the best method for establishing critical values of the RLRT.

Our work is applicable to many LMMs, not to just penalized likelihood models. The major
restriction on our results is that we only consider models with a single variance component, though

we intend to look at a wider class of LMMs in the future.



Consider a LMM with one variance component
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where O is a K dimensional column of zeros, Ix is a K dimensional identity matrix, 3 is a
p + 1 dimensional vector of parameters corresponding to fixed effects, b is a K dimensional vector
of exchangeable random effects, and (b, €) is a normal distributed random vector. Under these

conditions it follows that
E[Y] = XB and Cov(Y) = o2V,

where A = 02 /0? is the ratio between the variance of random effects b and the variance of the error
variables €, Vy = I, + AZZ", and n is the size of the vector Y of the response variable. Note that
o =0 if and only if A = 0 and the parameter space for \ is [0, c0).

The LMM described by equation (1) contains standard regression fixed effects X3 specifying
the conditional response mean and random effects Zb that account for correlation. Testing whether

this extra structure is necessary is equivalent to the hypotheses
Ho: 0 =0(A=0) vs. Hp: of >0(X>0). (2)

If one uses the LRT, then what seems a typical testing problem proves to be non-standard
for several reasons. First, under the null hypothesis, the parameter is on the boundary of the
parameter space. Using non-standard asymptotic theory developed by Self and Liang (1987) for
independent data, one may be tempted to conclude that the finite samples distribution of the log
likelihood ratio (log-LR) and of the residual likelihood ratio (log-RLR) could be approximated by
a 0.5x3 + 0.5x? mixture. Here X% is the chi-square distribution with k degrees of freedom and x3
means point probability mass at 0. However, a second problem is lack of independence, at least
under the alternative. Because the response variable Y in model (1) is not a vector of independent
random variables, the Self and Liang theory does not apply. Stram and Lee (1994) showed that
the Self and Liang result can still be applied to testing for the zero variance of random effects in
Linear Mixed Models in which the response variable Y can be partitioned into independent vectors
and the number of independent subvectors tends to infinity.

We originally conjectured that these results would still hold, that is, that their assumptions

could be weakened to allow dependence. However, in empirical studies this 0.5x3 + 0.5x% mixture



approximation has been shown to be conservative though sometimes it can be rather accurate.
Indeed, in a simulation study for a related model, Pinheiro and Bates (2000) found that a 0.5x2 +
0.5x? mixture distribution approximates well the finite sample distribution of log-RLR. They also
found that a 0.65x2 + 0.35x? mixture approximates better the finite sample distribution of log-LR.
Although the Pinheiro and Bates approximations work well in the situations they simulated, these
approximation do not work in all settings. By computing the finite sample probability at zero of
the log-LR and log-RLR statistics, we show that both these approximations can be very poor, even
for some very simple LMMs.

A case where it has been shown that the asymptotic mixture probabilities differ from 0.5x3 +
0.5x? is regression with a stochastic trend analyzed by Shephard and Harvey (1990) and Shephard
(1993). They consider the particular case of model (1) where the random effects b are modeled as
random walk. They show that the asymptotic mass at zero can be as large as 0.96 for log-LR and
0.65 for log-RLR. This shows that the 0.65 : 0.35 mixture for log-LR and 0.5 : 0.5 mixture for the
log-RLR cannot be generalized to all LMMs.

Because it is not clear when different approximations can be used, we compute the finite samples
probability at zero for the log-LR and log-LRT as a function of A = ag /o2. This probability is equal
to the probability of estimating the random effects variance to be zero (02 = 0). In particular,
the finite samples probability mass at zero of the log-LR and log-RLR under the null hypothesis is
obtained when A = 0. The computation procedure is very fast because it can be reduced to simple
matrix diagonalization techniques. We derive the asymptotic behavior of the null probability at
zero of log-LR and log-RLR for two LMMSs, balanced one-way ANOVA and penalized splines. It is
shown that this asymptotic probabilities are not 1/2.

2 MAXIMUM LIKELIHOOD APPROACH

We consider maximum likelihood estimation (MLE) for model (1). Minus twice the log-likelihood of

Y given the parameters B3, o2, and ) is, up to a constant that does not depend on the parameters,

(Y — Xﬁ)TV2;1(Y — Xp) 3)

€

f(B, 02, %) = nloga? +log [Va| +

g

A local minimum of the function f(3,02,\) can occur on the boundary of the parameter space



where A = 0 if and only if there exists 3 and o2 so that the following system is satisfied at A = 0

.

B,0%N) = 0

\ 5ZB,08N) = 0 @)

8 (B,02,0) > 0

\
where the last derivative is from the right. Solving the first two equations in (4) is standard and

gives immediately
B = (XTV,'x) ' X7V, Y, (5)

and

Y - XBOY' VY - XBO))

(V) (6)

However, the last relationship in (4) is not standard and will be treated separately. In the
right hand side of equation (3) only the second and the third term depend on A. To determine the
derivatives of these terms with respect to A we first denote by d; the i-th eigenvalue of the symmetric
semi-positive definite matrix ZZ”, and let D be the diagonal matrix having d; as the i-th diagonal
entry. Let U be the orthonormal matrix of eigenvectors of ZZ7, so that ZZT = UDU7”. Tt
follows that Vi = U(I, + AD)U”, that |V 5| = [\~ (1 + A\d;), and that

n

0 d;
1 = .
Also, the following equality holds (Harville, 1977)
9 _ _ _
a(Y -XB)'VNY -XB8)=—-(Y -XpB)"V'zZ"V (Y - XB). (8)

The conditions in equation (4) are equivalent to the set of equations (5), (6), and

o | Y = XBOYVIZZTVIHY - XBO}| | 5~ d
[ ¥ XBOWTV.Y —XBoy) | T T ©)

=1

PN =I,-X (XTV/(IX)f1 X7V, then equation (9) can be rewritten as

_JY'"P" v, 'zZz'v, 'PO)Y z": d
YTPT\V'PO))Y 1+Xd; =

=1



To find the probability of estimating O'g to be 0 we compute the probability

YTPT(0)ZZTP(O)Y 1 &
P <=-%"a ), 11

( YTP(O)Y —n ; ' (1)
where we used the idempotency of P(0) and Vy = I,. For a fixed A, the random variable P(0)Y
is normally distributed with mean zero and covariance matrix o?P(0)V,PT(0). Also observe
that Y d; = tr(ZZ") is equal to tr(Z” Z), where “tr” denotes the trace of the matrix. We

use tr(Z1 Z) for computations because the dimension of tr(Z”?'Z) is much smaller than that of

tr(ZZ7T). If we denote by u an N, (0, I,,) random vector, then the probability in (11) equals

T 1/2PT ZZTP 1/2
JEas 1(/2) 1(/3)‘“ “<lu(z7z)) (12)
u"V,"P(0)V,"u n

under the assumption that o} = Ao2. Denoting by A = Vi/QPT(O)ZZTP(O)V/l\ﬂ, by B =

V}\/2P(O)V§\/2, by d = 1tr(Z"Z), and taking into account that B is semi-positive definite, the

probability in (12) can be rewritten as
P (u"(A—dB)u <0) (13)

Denoting by 1); the i-th eigenvalue of the matrix A — dB, the probability in (13) is

P (Z i < o) , (14

where v; are i.i.d. N(0,1) random variables. The last quantity can be calculated using exact algo-
rithms, such as Davies (1980) or Farebrother (1990), or estimated by simulation.

In the important particular case when A\ = 0 we obtain A = PT(0)ZZ7 P(0) and B = P(0),
where P(0) = I, — X(XTX)7'X”. Observe that if we require X7 Z =0 then A = ZZ".

3 RESTRICTED MAXIMUM LIKELIHOOD APPROACH

Residual or restricted maximum likelihood (REML) was introduced by Patterson and Thompson
(1971) to take into account the loss in degrees of freedom due to estimation of 3 parameters and
thereby to obtain unbiased variance components estimators. REML consists of maximizing the
likelihood function associated with n — p — 1 linearly independent error contrasts. It makes no

difference which n —p — 1 contrasts are used because the likelihood function for any such set differs



by no more than an additive constant (Harville, 1977). In particular, if Y = X3 + € is the linear
model, then one is interested in the likelihood of AY", where A is an (n — p — 1) X n matrix whose
rows are any n — p — 1 linearly independent rows of the matrix I,, — X (X'X)~!X'. For a LMM
described in equation (1), minus twice the log-likelihood of AY was derived by Harville (1974) and
is, up to a constant independent of the parameters, the log residual likelihood (log-REL)

9(8,02,7) = £(B,02,2) — (p + 1) log(07) +log(| X V' X]) . (15)

As with the MLE we are interested in the probability that the function ¢ has a local minimum
corresponding to A = 0. This is equivalent to the three conditions in (4) holding for g instead of f.
Under these conditions, B(A) is still given by equation (5) but

_{Y - XBOY' VY - XBO)}

52(N) o

(16)

Note that in the right hand side of the equation (15) only the first and the third term depend
on )\, that the derivative of f with respect to A was already computed in section 2, and that (see

Appendix Al)

9 B, _
—log(|V\]) + =+ log(| X"V ' X)) =tr (Z"P(0)Z) , (17)
O\ o\ o

which depends only on the design matrices X and Z. Using a calculation similar that in Section 2

for maximum likelihood, the probability that A = 0 is a local minimum for log-REL is

P (uTV§/2PT(0)ZZTP(0)V§/2u 1

< tr (ZTP(0)Z2) | , (18)
uTVY2PO) VY u n—p-1 ( )>

where u is N(0, I,). When the true value is A = 0 the probability in equation (18) becomes

T
P (“TPS);IZ%)QIZ(O)“ < - _;_ —tr (ZTP(O)Z)> . (19)
Probabilities described by equations (18) and (19) can be computed as for maximum likelihood.
By directly comparing equations (12) and (18) we observe that the probability of finding a local
minimum at A = 0 is smaller when maximum likelihood is used if and only if
tr(ZTX(XTX)"1X"Z) <Pt

tr(Z1 Z) - n (20




In the particular case when Z7X = 0 equation (20) always holds true because the left hand
side of the equation is zero. Consider another particular case, when X is an n X 1 vector of 1s,
corresponding to having only an intercept in the fixed effects part of model (1). In this case p =0

and if z; is the (i, k)-th entry of matrix Z then the left hand side of equation (20) is equal to

Sy (O zin)?

K b
Ny p Doit 22216

which is greater than 1/n if all entries of matrix Z are positive. The inequality is strict if at least

one column of Z there are two non-zero entries. This shows that, in this case, the probability of

having a local minimum at A = 0 is greater for maximum likelihood than for REML.
4 LIKELTHOOD RATIO TESTING

The probability that the M1 or REML estimator is on the boundary is needed to specify the
distribution of the log-LR or log-RML test statistics.

Note that the probability mass at zero for log-LR and log-RLR equals the probability that the
functions f and g described in equations (3) and (15), respectively, have a global minimum at A = 0.
For a given sample size we compute the exact probability of having a local minimum of the log-LR
(or log-RLR) at A = 0. This probability is an upper bound for the probability of having a global
minimum at zero but, as we will show, it provides an excellent approximation. For two models
we show that the asymptotic probability mass at zero for log-LR and log-RLR is not 0.5. Also,
in finite samples the 0.5 : 0.5 approximation is very poor. We also show that the approximation
proposed by Pinheiro and Bates (2000) cannot be applied to all LMMs.

A different problem is the use of the x? distribution to approximate the non-zero part of the
distribution. There is evidence that even this approximation does not always hold, but we will
discuss this in another paper.

In the following we apply our results to LRTs in two rather different LMMs, balanced one-way
ANOVA and penalized splines.

4.1 One-way ANOVA

Consider the balanced one-way ANOVA model with K levels and n observations per level

Yij=p+b+e;,i=1,...,K and j=1,...,n (21)



where €;; are i.i.d. random variables N(0,0?), b; are i.i.d. random effects distributed N(0,07)
independent of €;;, u is a fixed unknown intercept, and denote by A = 05 /o?. The matrix X for
fixed effects is simply an nK X 1 column of ones and the matrix Z is an nK X K matrix with every
column containing only zeros with the exception of an n-dimensional vector of 1’s corresponding
to the level parameter. It is easy to prove that tr(Z7 Z) = nK and tr(ZT P(0)Z) = nK —n.

If the true X is 0, then the probability that the maximum likelihood criterion in (3) has a
local minimum at A = 0 is given by equation (14) where 1; are the eigenvalues of the matrix
A— (nK)"'r(Z"Z)B=A— B. Here A= P(0)ZZ" P(0) and B = P(0). In Appendix A2 it is
shown that the first K — 1 eigenvalues of this matrix are equal to n — 1, the following nK — K are
equal to —1, and the last eigenvalue is 0. Therefore the probability of having a local minimum at

A = 0 for maximum likelihood is

nK-1
pur(n, K) = ( Zf —— KZ ) (22)

where v; are i.i.d. N(0,1) random variables.

nKn
-1

For residual maximum likelihood ; are the eigenvalues of the matrix A —dB, where d =
The first K — 1 eigenvalues of this matrix are equal to n — d, the following nK — K are equal to
—d, and the last one is equal to 0. Therefore the probability of having a local minimum at A = 0

for residual maximum likelihood is

N nK—-1
Prev(n, K) = <nK KZ“ <nK K Z ) (23)

The probabilities in equations (22) and (23) are easy to compute. For now we only study their
asymptotic behavior when the number of observations per level n tends to co and the number of

levels K is fixed. Using the Law of Large Numbers it follows that for maximum likelihood

pvr(K) = lim pu(n, K) (Z v; < K) ; (24)

which is the c.d.f. of a x%_, distribution evaluated at K. For the residual maximum likelihood we

get

pREML(K) hm pREML n, K (Z v; < K — 1) , (25)



which is the c.d.f. of a X%{—l distribution evaluated at K — 1.

Figure 1 shows the two probabilities (24) and (25) versus K. They represent the asymptotic
probabilities when K fixed and n tends to oo. By the Central Limit Theorem, when K — oo,
both pyr(K) and premi(K) converge to 1/2. However, in many applications, K < 20, and
pML(5) = 0.7127, pyvr(10) = 0.6495, and pyr,(20) = 0.6054. Therefore, the conjectured asymptotic
value of 1/2 is incorrect when the number of levels K is fixed. Similar results can easily be derived
for REML. The finite samples probability mass at zero of the random effects variance estimator
using maximum likelihood was also reported by Yu et al. (1994).

It is interesting that the probability 85 is 0 for the balanced one-way ANOVA model converges
to 0.5 as prescribed by Self and Liang (1987) for independent data. This can easily be explained
because the response variable Y can be partitioned in n-dimensional independent blocks corre-
sponding to each level. However, this is not likely of practical importance since, in general, the
number of levels is fixed and small and then the 0.5 approximation is poor. Moreover, the one-way
ANOVA model is probably the only non-trivial example of a LMM where we can do this partition
into independent blocks!

We now focus on computing exact probabilities of having a local or global minimum at A = 0
for different values A\. We set the number of levels K = 5 and vary the number of observations
at each level. Results are reported in Table 1 for the log-LR and in Table 2 for the log-RLR. To
obtain the probability of having a global minimum at zero we used 10,000 simulations from the
model described in equation (21) for different values of A and calculated the frequency of estimating
zero-variance. These frequencies are reported between brackets in Tables 1 and 2.

As described in section (2) we need to compute probabilities given in equation (14), where
v; are i.i.d. N(0,1). Once the eigenvalues 1); are computed, we can either directly compute these
probabilities, using an algorithm such as Farebrother (1990), or using simulations. We chose to
simulate one million realizations of the the random variable 7 , wivf because it is simple, very
rapid, and accurate.

There is strong agreement between the exact probability of having a local minimum at A = 0
and the estimated probability of having a global minimum at A = 0, both for the log-LR and log-
RLR. The columns corresponding to A = 0 in Tables 1 and 2 show that, in this case, the asymptotic
approximation of these probabilities by 0.5 is poor for both log-LR and log-RLR. The Pinheiro and
Bates 0.65 : 0.35 approximation for log-LR is better but still off. Increasing n with K fixed does



not solve the problem because the probability of having a local minimum at A = 0 converges very

quickly to the asymptotic value, e.g., for K =5, py1.(5) = 0.7127 or prewmw(5) = 0.5940.

Table 1: Probability of having a local (global) minimum at A = 0 for the log-LR. The number of
levels is K = 5.

In [ A=0 [A=001] X=01 | Xx=1

0.6771 0.6548 0.4802 0.0697
5

(0.6732) (0.6512) ( 0.4733) (0.0669)

0.6967 0.6480 0.3525 0.0228
10

(0.6972) (0.6456) (0.3562) (0.0211)
20 0.7048 0.6091 0.2032 0.0066

(0.7008) (0.6004) (0.2027) (0.0066)

0.7086 0.5307 0.0910 0.0019
40

(0.7106) (0.5348) (0.0920) (0.0011)

Table 2: Probability of having a local and global minimum at A = 0 for log-RLR. K = 5.

n || A=0 [ A=001] Xx=01 [ Xx=1

0.5707 0.5447 0.3777 0.0471
5

(0.5727) (0.5440) (0.3780) (0.0467)

0.5822 0.5331 0.2639 0.0153
10

(0.5822) (0.5282) (0.2629) (0.0154)

0.5885 0.4932 0.1452 0.0044
20

(0.5880) (0.4945) (0.1471) (0.0036)

0.5914 0.4167 0.0619 0.0012
40

(0.5920) (0.4198) (0.0621) (0.0012)

Notes: The finite sample probability of having a global maximum (probability mass at zero of log-LR and
log-RLR respectively) is reported within brackets. It represents the frequency of estimating A = 0 for
different true values A in 10,000 simulations from the balanced ANOVA model described in (21) for K =5
levels and different number of observations n per level.

4.2 TESTING POLYNOMIAL REGRESSION VERSUS A NONPARAMETRIC AL-
TERNATIVE

In this section we show that nonparametric regression using P-splines is equivalent to a particular

LMM. We then prove that testing for a polynomial regression versus a general alternative can be

10



viewed as testing for a zero variance component in this LMM. Finally, we compute the finite sample
and asymptotic probability at zero of the log-LR and log-RLR statistics and compare them with

the two approximations discussed in Section 1.

4.2.1 P-SPLINES REGRESSION AND LINEAR MIXED MODELS

Consider the following regression equation
yi =m(zi) + €, (26)

where ¢; are i.i.d. NV (O, ag) and m(-) is the unknown mean function. Suppose that we are interested

in testing if m(-) is a p-th degree polynomial:
Hy: m(z)=Po+ iz + ...+ Bpal .

To define an alternative that is flexible enough to describe a large class of functions, we consider
the class of regression splines

K

Hyp: m(z) =m(z,0) = Bo+ B+ ... + Bz’ + > by (z — rp)f (27)
k=1

where © = (ﬁo,...,ﬁp,bl,...,bK)T is the vector of regression coefficients, 8 = (ﬁo,...,ﬁp)T is the
vector of polynomial parameters, b = (b, ..., bK)T is the vector of spline coefficients, and k1 < ko <
... < kg are fixed knots. Following Gray (1994) and Ruppert (2002), we consider a number of knots
that is large enough (e.g., 20) to ensure the desired flexibility. The knots are taken to be equally
spaced quantiles on the range of the z’s. To avoid overfitting, the criterion to be minimized is a

penalized sum of squares
n
Y {vi—m(z50)} +20"We, (28)
=1

where A > 0 is the smoothing parameter and W is a positive semi-definite matrix.

Denote Y = (y1,¥2,-.-,Yn)’, X the matrix having the i-th row X; = (1,%;,...,2¢) , Z the
matrix having the i-th row Z; = ((z; — x1)% , (zi —K2)% ..., (zs — kK)}) , and X = [X|Z].

For the remainder of this paper W will denote a diagonal matrix with the first p + 1 diagonal

elements 0 and the remaining K diagonal elements 1. This choice of W penalizes the sums of

11



squares of the jumps at the knots of the pth derivative of the fitted curve so that this curve is
shrunk towards a pth degree polynomial fit. If criterion (28) is divided by o2 one obtains

Y — X8 — Zb|> + %bTb. (29)

=
¢ :

Consider the vector 3 as fixed effects and the vector b as a set of random effects with E[b] =0
and Cov(b) = 07Ik. Then (29) is, up to a constant, minus twice the log of the joint density of
(Y, B).

It follows (Brumback et al., 1999) that the regression spline model is also a LMM. Denote by
A= of / 062 and by Vo, = I, + \Z ZT where n is the total number of observations. It is easy to see
that E[Y] = X8 and Cov(Y) = 02V) . Minus twice the log-likelihood and residual log-likelihood

of the model are described by equations (3) and (15) respectively.

4.2.2 TESTS FOR POLYNOMIAL REGRESSION

We have transformed our problem of testing for a polynomial fit against a general alternative

described by a P-spline to the following hypotheses
Hy:A=0 (07 =0) vs. Hy:A>0 (0 >0) .

Because the b; have mean zero, O'g = 0 in Hj is equivalent to the condition that all coefficients b; of
the truncated power functions are identically zero. These coefficients account for departures from
a polynomial.

Denote by ML(p, 0) the minimum of the function f(3, 02, A = 0) in equation (3) and by ML(p, )

the minimum of the same function with respect to all parameters. Then the log likelihood ratio is

~

log LR = ML(p, \) — ML(p, 0) . (30)

Denote by REML(p,0) the minimum of the function g(8,02,\ = 0) described in equation (15)

and by REML(p, \) the minimum of the same function with respect to all parameters. Then the

residual log likelihood ratio for testing Hy against H 4 is

~

log RLR = REML(p, A) — REML(p, 0) . (31)

Note that the probability at zero of the log-LR (or log-RLR) test statistics is equal to the probability
that the function f (or g) has at global minimum for A = 0. The probability of having a local

12



minimum at A = 0 can be calculated using either equation (12) for log-LR or equation (18) for
log-RLR. This probability an upper bound for the probability of having global minima at zero. In
the following we compute exact probabilities of having a local minimum and compare them with

the frequency of having a global minimum at zero in simulations.

4.2.3 PROBABILITY OF ZERO FOR log-LR AND log-RLR

In this section we compute the probability that the log-LR and log-RLR. is 0. We investigate the
case when p = ( corresponding to a constant mean and p = 1 corresponding to a linear polynomial
under the null. When p = 0 the alternative is a piecewise constant spline and when p = 1 the
alternative is a linear spline. We analyze the case when the z’s are equally spaced on [0,1], but the
same procedure can be applied to the more general case.

The probability of having a local minimum at zero for log-LR or log-RLR can be computed as
in Section 4.1 using different design matrices and the results are reported in Tables 3 and 4. We
also report between brackets the estimated probabilities of having a global maximum at zero. As
for one-way ANOVA, we used 10,000 simulations from the model (1) for fixed A. Again there is
close agreement between these probabilities, especially when A is close to 0.

An important observation is that the log-LR has almost all its mass at zero, that is ~ 0.925,
for p = 0, and 0.995, for p = 1. This makes the construction of a LRT very difficult, if not
impossible, especially when we test for the linearity against a general alternative. Also the very
high probability of estimating a zero smoothing parameter A even when the true parameter is
large, e.g. A =1 and p = 1, suggests that the power of this test can be poor. It is clear that the
asymptotic approximation of the finite sample probability mass at zero of the log-LR by 0.5 is very
poor in this case.

The log-RLR has less mass at zero ~ 0.66, for p = 0, and ~ 0.67, for p = 1, thus allowing the
construction of tests. Also, the probability of estimating zero smoothing parameter when the true
parameter A is positive is much smaller (note the different scales in Tables 3 and 4) indicating that
the RLRT is probably more powerful than the LRT. Also, the 0.5 asymptotic approximation found
by Pinheiro and Bates to work well in a different example is very poor in this situation.

When testing for a constant mean versus a general alternative modeled by a piecewise constant
spline, the asymptotic probability of having a local minimum at A = 0 for log-LR and log-RLR

is derived in Appendix A3. Figure 2 shows these probabilities. It is interesting that over a wide
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range of number of knots the probabilities are practically constant, ~ 0.95 for ML and =~ 0.65 for
REML. Approximating the probability of estimating A as 0 by 1/2 is very inaccurate, since 1/2 is
not even correct asymptotically.

When the number of knots of the spline under the alternative is K = 20 and the true A =0
the asymptotic probabilities of having a local minimum at A = 0 are pyp(20) = 0.9545 and
preML(20) = 0.6567. This proves that the asymptotic probability mass at zero for log-LR and
RLRT for a fixed number of knots is not 0.5 and differences are very large. Comparing these results
with results from the first columns of Tables 3 and 4 it follows that the finite samples probability of
having a local minimum at A = 0 is very well approximated by the correct asymptotic probability

(not 1/2) even for a small number of observations.

Table 3: Probability of having a local and global minimum at A = 0 for log-LR

p=0 p=1

n A=0 [ A=01] Xx=1 A=0 | A=1 | x=10

0.9532 | 04298 | 0.1145 | >0.9999 | >0.9999 [ 0.9941
50

(0.9139) (0.3137) (0.0324) (0.9939) (0.8919) (0.4217)

0.9536 | 0.2709 | 0.0365 | >0.9999 | 0.9990 0.7736
100

(0.9233) (0.1599) (0.002) (0.9941) (0.7709) (0.2640)

0.9536 | 0.1455 | 0.0079 | >0.9999 | 0.9721 0.5448
200

(0.9244) (0.0649) 0) (0.9947) (0.6161) (0.1393)
400 || 09543 | 0.0638 | 0.0011 | >0.9999 | 0.8741 0.3805

(0.9250) (0.0155) (0) (0.9950) (0.4516) (0.0647)

5 DISCUSSION

We have found that the probability that the MLE or REML estimate of a variance component is
zero is not well approximated by the theory of Self and Liang because their assumptions do not
apply to most LMMs. They assume independence both under the null and under the alternative.
For LMMs, the data are dependent, at least under the alternative.

There are a number of open problems that we intend to investigate. In particular, these results
should be extended to models with more than one variance component and to null hypotheses

that involve fixed effects as well variance components. For example, to test for no effect for one
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Table 4: Probability of having a local and global minimum at A = 0 for RLRT

p=0 p=1

n A=0 [XA=001] A=01 ] A=0 [A=001] A=0.1

0.6524 | 0.5066 | 0.1868 | 0.6717 | 0.6685 | 0.6358
50

(0.6367) (0.4626) (0.1484) (0.6647) (0.6557) (0.6130)
100 | 06537 | 03755 | 0.0738 | 0.6735 | 0.6633 | 0.5888

(0.6470) (0.3696) (0.0651) (0.6664) (0.6590) (0.5813)

0.6559 | 0.2665 | 0.0285 | 0.6746 | 0.6551 | 0.5276
200

(0.6514) (0.2591) (0.0222) (0.6688) (0.6431) (0.5203)

0.6559 | 0.1652 | 0.0083 | 0.6746 | 0.6373 | 0.4472
400

(0.6522) (0.1593) (0.0046) (0.6722) (0.6316) (0.4343)

Notes: The finite sample probability of having a global maximum (probability mass at zero of log-LR and
RLRT respectively) is reported within brackets. It represents the frequency of estimating A = 0 for different
true values A in 10,000 simulations from the model (26) where the mean regression function is modeled as a
spline function with a fixed number of knots K = 20 as described by equation 27.

covariate in an additive model, we could model each covariate as a linear spline with its own variance
component. The null hypothesis would be that the linear fixed effect and the variance component
for the covariate of interest are both zero.

There are at least two practical implications of our work. First, the RLRT is preferred to
the LRT because log-LR has so much probability mass at zero. Second, the chi-square mixture
approximations that Self and Liang derived under independence should, in general, not be used
for the distribution of log-RLR. At present, we recommend that critical values for RLRTs be
calculated by simulation. Monte Carlo is, of course, somewhat time consuming and we are working

on alternatives to simulation.
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APPENDIX A1l

Taking logarithms in the following identity (Harville, 1977)
VAl IXTVIX| = | XTX| Ik + A\Z"P(0)Z|,

denoting by w; the i-th eigenvalue of the matrix Z7 P(0)Z we get, as in the proof for equation (7),

n

0 0 _
—log V| + = Tog(IXTVEIX ) = Y

w;
14 dw;

oA

=1
When we plug-in A = 0 the right hand side of the equation becomes Y ; w; which is equal to the
trace of matrix Z7 P(0)Z.

APPENDIX A2

If Z is the matrix corresponding to random effects in model described in equation (21) then ZZ7 is
an nK xnK having K n xn dimensional matrices of ones on the first diagonal, all other entries being
zero. For any constant d one needs to compute the eigenvalues of the matrix P(0)Z Z* P(0)—dP(0)
which are identical to the eigenvalues of (ZZT — dI,,x)P(0), because P(0) is idempotent.

It is easy to see that P(0) has nK — 1 eigenvalues equal to one and 1 eigenvalue equal to zero.
Also ZZ" — dI, x has K eigenvalues equal to n —d and nK — K eigenvalues equal to —d. Because
P(0) and ZZ" — dI,x commute they are simultaneously diagonalizable and the eigenvalues of
their product are the product of their eigenvalues (Hoffman and Kunze, 1971). But the null space
of P(0) — 0I,k is one dimensional and an nK x 1 dimensional vector v of ones is a basis in this
space. Moreover, the vector v is an eigenvector of the matrix Z ZT — dIx corresponding to the

eigenvalue n — d. It follows that the the matrix of interest has K — 1 eigenvalues equal to n — d,

one eigenvalue equal to zero, and nK — K eigenvalues equal to —d.
APPENDIX A3

To compute the asymptotic probability of having a local minimum at A = 0 one needs to determine
the asymptotic behavior the eigenvalues of the matrix M = P(0)ZZT P(0) — dP(0). P(0) is the
projection matrix on the space col(X )+ which is the orthogonal space on the space col(X) spanned

by the columns of the matrix X corresponding to fixed effects. Clearly
P(0)u=0 if u€col(X) and P(0)u=u if u € col(X)’.
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Assuming that the columns of matrix X are linearly independent, it follows that 0 is an eigenvalue of
the matrix M of algebraic multiplicity p+1 corresponding to a set of p+1 orthonormal eigenvectors
in the space col(X). Suppose now that u € col(X )+ is an eigenvector corresponding to a eigenvalue

v # 0. It follows that

P(0)ZZ"P(0)u = (v + d)u,

which shows that v is an eigenvector of P(0)ZZ” P(0) corresponding to the eigenvalue v + d. But
the rank of the matrix P(0)ZZ” P(0) is K meaning that exactly K eigenvalues are different from
zero and n — K are zero. Denoting by p1(n),... ,ux(n) the nonzero eigenvalues it follows that u is
the eigenvector corresponding to one of the following eigenvalues u1(n) —d, ... , px(n) —d or —d. If
{1, - , i are distinct it can be proved that the algebraic multiplicity of —d is n —p — K — 1. The
advantage of this decomposition is that pi(n),... ,ux(n) are also the eigenvalues of the K x K
dimensional matrix Z7 P(0)Z. The asymptotic behavior of this matrix determines the asymptotic
behavior of its eigenvalues.

When we test for a constant mean against a general alternative modeled by a piecewise constant
spline with K knots, the matrix M has 0 as eigenvalue with multiplicity 1, —d with multiplicity
n— K —1, and pi(n),... ,px(n) eigenvalues with multiplicity 1 of the matrix Z7 P(0)Z. If we
denote by ng(n) the number of points bigger than the k-th knot and assume that

lim _nk(n) = Pk
n—oQ n
one can show that
ZTP0)Z
lim # = M(0),
n—,oo n

where the (7, j)-th entry of the matrix M (0) is
mi; = Pivj — PiPj -
Denoting by p1(0),... ,ux(0) the eigenvalues of M (0) it follows that
i P = ).

The asymptotic probability of having a local minimum at 0 is given by

X pr(n) —d d <
w(n) —
p(n,K)ZP(E : n IU]%SE E IU]%) ’
k=1

k=K+1
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where vy are i.i.d N(0,1) random variables. Assuming that lim, ,, d/n = 0 we get that

lim p(n, K) = P (Z px(0)0f; < J) :
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Figure 1: one-way ANOVA model: asymptotic probability of having a local minimum at A = 0
when the true value of A is A = 0. The number of levels is constant and the number of observations
per level goes to infinity.
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Figure 2: Non-parametric testing for constant mean vs. a general alternative modeled by a piecewise
constant spline: asymptotic probability of having a local minimum at A = 0 when the true value
of A is A = 0. The number of knots is constant and the number of observations goes to infinity.
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