Recent papers of David Ruppert

1999   2000   2001   2002   2003   2004   2005   2006   2007   2008   2009   2010   2011   2012   2013   2014   2015   2016   2017  


Germain, A., Ruppert, D., Levine, S., and Hanson, M. (2017) Metabolic profiling of a myalgic encephalomyelitis/chronic fatigue syndrome discovery cohort reveals disturbances in fatty acid and lipid metabolism, Molecular BioSystems, 13, 371-379..

Kowal, D., Matteson, D., and Ruppert, D. (2017) A Bayesian Multivariate Functional Dynamic Linear Model, JASA, 112, 733-744. (arXiv) (2016 Student Best Paper Award, Section on Bayesian Statistical Science of the American Statistical Association)

Kim, J., Staicu, A-M., Maity, A., Carroll, R., and Ruppert, D. (2017) Additive function-on-function regression, JCGS, to appear. arXiv

Kowal, D., Matteson, D., and Ruppert, D. (2017) Gaussian Processes for Functional Autoregression, JBES, to appear. (arXiv), (2017 Student Best Paper Award, Section on Nonparametric Statistics of the American Statistical Association)

Tang, Q. Kong, L. Ruppert,D., and Karunamuni, R. (2017) Profile Estimation for Partial Functional Partially Linear Single-Index Model, submitted. arXiv

Kowal, D., Matteson, D., and Ruppert, D. (2017) Dynamic Horseshoe Processes, submitted. arXiv

Back to Top


Xiao, L., Ruppert, D., Zipunnikov, V., and Crainicenau, C. (2016) Fast Covariance Estimation for High-Dimensional Functional Data. Statistics & Computing, 26, 409-421. (pdf)

Steckley, S., Henderson, S., Ruppert, D., Yang, R., Apley, D., and Staum, J. (2016) Estimating the Density of a Conditional Expectation, Electronic Journal of Statistics, 10, 736-760. (pdf)

Zhang, X., Liang, H., Liu, A., Ruppert, D. and Zou, G. (2016) Selection Strategy for Covariance Structure of Random Effects in Linear Mixed-effects Models, Scandinavian Journal of Statistics, 43, 275-291.

Srivastava, R., Li, P., and Ruppert, D. (2016) RAPTT: An Exact Two-Sample Test in High Dimensions Using Random Projections, JCGS, 25, 954-970. arXiv

Shetty, R. et al (2016) Simultaneously modelling far-infrared dust emission and its relation to CO emission in star forming galaxies. Monthly Notices of the Royal Astronomical Society, 460, 67-81. arXiv

Risk, B., Matteson, D., Spreng, R. N., and Ruppert, D. (2016) Spatiotemporal Mixed Modeling of Multi-subject Task fMRI via Method of Moments, NeuroImage, 142, 280-292. (pdf).

Risk, B., Matteson, D., Ruppert, D. (2016) Linear Non-Gaussian Component Analysis via Maximum Likelihood, under revision (arXiv)

Back to Top


McLean, M., Hooker, G., and Ruppert, D. (2015) Restricted likelihood ratio tests for linearity in scalar-on-function regression, Statistics & Computing 25, 997-1008. (pdf)

Wang, Xiao, and Ruppert, D. (2015) Optimal Prediction in an Additive Functional Model Statistica Sinica, 15, 567-589. (pdf)

Lian, H., Liang, H. and Ruppert, D. (2015) Separation of Covariates into Nonparametric and Parametric Parts in High-Dimensional Partially Linear Additive Models. Statistica Sinica, 25, 591-607. (pdf)

Fang, Y., Lian, H., Liang, H., and Ruppert, D , (2015) Variance Function Additive Partial Linear Models, Electronic Journal of Statistics, 9, 2793-2827.

Back to Top


Xiao, L., Thurston, S., Ruppert, D., Love, T., and Davidson, P. (2014) Bayesian Models for Multiple Outcomes in Domains with Application to the Seychelles Child Development Study, JASA, 109, 1-10. (pdf) .

McLean, M., Hooker, G., Staicu, A-M, Scheipl, F., and Ruppert, D. (2014) Functional Generalized Additive Models, JCGS, 23, 249-269. (pdf) .

Risk, B., Matteson, D., Ruppert, D., Eloyan, A., and Caffo, B. (2014) An Evaluation of Independent Component Analyses with an Application to Resting State fMRI, Biometrics , 70, 224-236. (pdf) . (web supplement) .

Staicu, A-M, Li, Y., Ruppert, D., and Crainiceanu, C. M. (2014) Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis, Scandinavian Journal of Statistics, 41, 932-949 (pdf) .

Soiaporn, K, Ruppert, D., and Carroll, R. (2014) Modeling Multiple Correlated Functional Outcomes with Spatially Heterogeneous Shape Characteristics. (pdf) . (web supplement) .

McLean, M, Scheipl, F., Hooker, G., and Greven, S. (2014) Bayesian Functional Generalized Additive Models with Sparsely Observed Covariates, submitted, (pdf) .

Back to Top


Xiao, Luo., Li, Y., and Ruppert, D. (2013) Fast Bivariate P-splines: the Sandwich Smoother, JRSS-B, 75, 577-599. (pdf) .

  • Xiao, Luo, Li, Y., Apanasovich, T., and Ruppert, D. (2012), Local asymptotics of P-splines, (pdf) . (reference paper for Fast Bivariate P-splines: the Sandwich Smoother)

Woodard, D., Love, T., Thurston, S., and Ruppert, D. (2013) Latent Factor Regression Models for Grouped Outcomes, Biometrics, 69, 785-794. (pdf) .

Woodard, D., Crainiceanu, C, and Ruppert, D. (2013) Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors, JCGS , 22, 777-800. (pdf) .

Soiaporn, K., Chernoff, D., Loredo, T., Ruppert, D., and Wasserman, I., (2013) Multilevel Bayesian Framework for Modeling the Production, Propagation and Detection of Ultra-High Energy Cosmic Rays, Annals of Applied Statistics, 7, 1249-1285. (pdf) .

Kauermann, G., Schellhase, C., and Ruppert, D. (2013) Flexible Copula Density Estimation with Penalized Hierarchical B-Splines, Scandinavian Journal of Statistics , 40, 685-705. (pdf) .

Back to Top


Staicu, A.-M., Crainiceanu, C., Reich, D., and Ruppert, D. (2012) Modeling Functional Data With Spatially Heterogeneous Shape Characteristics, Biometrics , 68, 331-343. (pdf) .

Bliznyuk, N., Ruppert, D., and Shoemaker, C. (2012) Local Derivative-Free Approximation of Computationally Expensive Posterior Densities, JCGS, 21, 476-495. (pdf) .

Shaby, B., and Ruppert, D. (2012) Taper covariance: Bayesian estimation, asymptotics, and applications, JCGS, 21, 433-452. (pdf) .

Ruppert, D., Shoemaker, C., Wang, Y., Li, Y., and Bliznyuk, N. (2012) Uncertainty Analysis for Computationally Expensive Models with Multiple Outputs, J. of Agricultural, Biological, and Agricultural Statistics, 17, 623-640. (pdf) .

Back to Top


Wang, Xiao, Shen, Jinglai, and Ruppert, D. (2011) Local Asymptotics of P-Spline Smoothing, EJS, 4, 1-17. (pdf) .

Matteson, D., and Ruppert, D. (2011) GARCH Models of Dynamic Volatility and Correlation, IEEE Signal Processing Magazine, 28, 72--82.

Bliznyuk, N., Ruppert, D., and Shoemaker, C. (2011) Bayesian Inference Using Efficient Interpolation of Computationally Expensive Densities with Variable Parameter Costs, JCGS, 20, 636--655.

Back to Top

Sharef, E., Strawderman, R., and Ruppert, D. (2010), Bayesian Adaptive B-spline Estimation in Proportional Hazards Frailty Models, Electronic Journal of Statistics, 4, 606-642.

Back to Top


Thurston, S., Ruppert, D., and Davidson, P. (2009) Bayesian models for multiple outcomes nested in domains, Biometrics , 65, 1078-1086.

Ruppert, D., Wand, M.P., and Carroll, R.J. (2009) Semiparametric regression during 2003-2007, Electronic Journal of Statistics, 3, 1193-1256.

Liang, H., Qin, Y., Zhang, X., and Ruppert, D. (2009) Empirical-likelihood-based inferences for generalized partially linear models, Scandinavian Journal of Statistics, 36, 433-443.

Back to Top


Apanasovich, T., Ruppert, D., Lupton, J., Popovic, N., Turner, N., Chapkin, R., and Carroll, R. (2008). Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data, Biometrics , 64, 490-500.

Li, Yingxing, and Ruppert, D. (2008). On The Asymptotics Of Penalized Splines, Biometrika , 95, 415-436.

Bliznyuk, N., Ruppert, D., Shoemaker, C., Regis, R., Wild, S., and Mugunthan, P. (2008). Bayesian Calibration of Computationally Expensive Models Using Optimization and Radial Basis Function Approximation. JCGS, 17, 270-294.

Staudenmayer, J., Ruppert, D., and Buonaccorsi, J. (2008). Density estimation in the presence of heteroskedastic measurement error, JASA, 103, 726-736.

Madsen, L., Ruppert, D., and Altman, N.S. (2008). Regression with Spatially Misaligned Data, Environmetrics, 19, 453-467.

Liang, Hua, Thurston, S., Ruppert, D., Apanosovich, T., and Hauser, R. (2008) Additive partial linear models with measurement errors, Biometrika, 95, 667-678.

Back to Top


Ruppert, D., Nettleton, D., and Hwang, J. T. Gene (2007). Exploring the Information in P-values for the Analysis and Planning of Multiple-Test Experiments, Biometrics , 63, 483-495.

Ruppert, D., (2007). Comments on "Model-assisted Estimation of Forest Resources with Generalized Additive Models," by J. D. Opsomer, F. J. Breidt, G. G. Moisen, and G. Kauermann, JASA, 102, 409-411.

Back to Top


Briggs, W. M., and Ruppert, D. (2006) Assessing the skill of yes/no forecasts for Markov observations, Monthly Weather Review, 134, 2601-2611.

Carroll, R., and Ruppert, D. (2006). Comment on "Conditional Growth Charts" by Ying Wei and Xuming He, The Annals of Statistics, 34, 2098-2104.

Back to Top


Crainiceanu, C., Ruppert, D., and Wand, M. (2005). Bayesian Analysis for Penalized Spline Regression Using Win BUGS, Journal of Statistical Software Volume 14, 2005, Issue 14

Ruppert, D., and Carroll, R. (2005). Comments on "Does the Effect of Micronutrient Supplementation on Neonatal Survival Vary with Respect to the Percentiles of the Birth Weight Distribution?'' by Francesca Dominici, Scott L. Zeger, Giovanni Parmigiani, Joanne Katz, and Parul Christian

Ruppert, D., (2005). Discussion of "Maximization by Parts in Likelihood Inference," by Song, Fan, and Kalbfleish, JASA, 100, 1161-1163

Briggs, W., Pocernich, M, and Ruppert, D. (2005), Incorporating misclassification error in skill assessment, Monthly Weather Review , 133 (11): 3382-3392 NOV 2005

Briggs, W., and Ruppert, D. (2005), Assessing the Skill of Yes/No Predictions, Biometrics, 61, 799-807.

Back to Top


Ruppert, D. (2004). Review of "The Elements of Statistical Learning: Data Mining, Inference, and Prediction" by Hastie, Tibshirani, and Friedman, JASA , 99, 567.

Crainiceanu, C. and Ruppert, D. (2004). Likelihood ratio tests in linear mixed models with one variance component, JRSS-B, 66, 165-185.

Staudenmayer, J., and Ruppert, D. (2004). Local Polynomial regression and SIMEX, JRSS-B, 66, 17-30.

Jarrow, R., Ruppert, D., and Yu, Yan. (2004). Estimating the term structure of corporate debt with a semiparametric penalized spline model, JASA, 99, 57-66.

Yu, Y., and Ruppert, D. (2004), Root-n Consistency of Penalized Spline Estimator for Partially Linear Single-Index Models under General Euclidean Space, Statistica Sinica, 14, 449-456.

Carroll, R., Ruppert, D., Crainiceanu, C., Tosteson, T., and Karagas, M. (2004), Nonlinear and Nonparametric Regression and Instrumental Variables, JASA, 99, 736--750.

Crainiceanu, C. and Ruppert, D. (2004). Restricted Likelihood Ratio Tests for Longitudinal Models, Statistica Sinica, 14, 713-729.

Crainiceanu, C. and Ruppert, D. (2004). Likelihood Ratio Tests for Goodness-of-Fit of a Nonlinear Regression Model. (pdf), Journal of Multivariate Analysis , 91(1), 35-42.

Back to Top


Crainiceanu, C., Stedinger, J., Ruppert, D., and Behr, C. (2003). Modeling the U. S. National Distribution of Waterborne Pathogen Concentrations with Application to Cryptosporidium parvum Water Resources Research, 39, no. 9, 1235-1249.

Crainiceanu, C., Ruppert, D., and Vogelsang, T. (2003). Probability that the MLE of a Variance Component is Zero With Applications to Likelihood Ratio Tests, submitted. (pdf)

Thurston, S. W., Spiegelman, D., and Ruppert, D. (2003), Equivalence of regression calibration methods in main study/external validation study designs, J. of Statistical Planning and Inference, 113, 527-539.

Crainiceanu, C., Ruppert, D. Claeskens, G., and Wand, M. (2003) Exact Likelihood ratio tests for penalized splines, Biometrika, to appear (pdf)

Back to Top


Yu, Yan, and Ruppert, D. (2002). Penalized Spline Estimation for Partially Linear Single Index Models, JASA, 97, 1042-1054.

Ruppert, D., (2002). Discussion of "Spline adaptation in extended linear models" by Mark Hansen and Charles Kooperberg," Statistical Science, 17, 37-40.

Ruppert, D. (2002). Selecting the number of knots for penalized splines, JCGS , 11, 735-757.

Crainiceanu, C., Ruppert, D., Stedinger, J. R., and Behr, C. T. (2002). Improving MCMC Mixing for a GLMM Describing Pathogen Concentrations in Water Supplies, In Case Studies in Bayesian Statistics, VI, , Gatsonis, C., et al (editors), Lecture Notes in Statistics 167, Springer, pp. 207-222.

Berry, S., Carroll, R., and Ruppert, D. (2002). Bayesian Smoothing and Regression Splines for Measurement Error Problems, JASA, 97, 160--169.

Ruppert, D. (2002). Discussion of ``Inconsistency of resampling algorithms for high breakdown regression estimatiors and a new algorithm'' by Douglas Hawkins and David Olive, JASA, 97, 148--149.

Back to Top


Ruppert, D. (2001). Review of ``Nonparametric regression and Spline Smoothing'' by Randall Eubank, JASA, 96, 1523--1524.

Parise, H., Ruppert, D., Ryan, L., and Wand, M. (2001). Incorporation of Historical Controls Using Semiparametric Mixed Models, Applied Statistics , 50, 31-42.

Ruppert, D. (2001). Transformations of data. (ps) International Encyclopedia of Social and Behavioral Sciencees .

Ruppert, D. (2001) Multivariate Transformations (pdf) Encyclopedia of Environmetrics

Coull, B., Ruppert, D., and Wand, M. (2001), Simple incorporation of interactions into additive models. Biometrics, 57, 539--545.

Back to Top


Ruppert, D., Schruben, L, and Freimer, M. (2000). Meta-modeling of a cluster tool simulator, MASM2000 Proceedings. (pdf)

Ruppert, D., and Carroll, R.J. (2000). Spatially-adaptive penalties for spline fitting, Australian and New Zealand Journal of Statistics, 42, 205-223. Correction.

Back to Top


Marron, J.S., Ruppert, D., Smith, E.K., and Conley, G. (1999), Motion Picture Analysis of Smoothing.

Opsomer, J., and Ruppert, D. (1999). A root-n consistent backfitting estimator for semiparametric additive modelling. JCGS, 8, 715--732. (Invited paper in the ``Best of JCGS Session'' at Interface '99)

Brumback, B., Ruppert, D., and Wand, M.P. (1999). Comment on "Variable selection and function estimation in additive nonparametric regression using a data-based prior" by Shively, Kohn, and Wood. JASA, 94, 794--797.

Carroll, R.J., Ruppert, D., and Stefanski, L.A. (1999), Comments on ``Regression Depth'' by Rousseeuw and Hulbert, JASA, 94, 410-411.

Carroll, R.J., Maca, J.D., and Ruppert, D. (1999). Nonparametric Estimation in the Presence of Measurement Error. Biometrika, 86, 541-554.

Opsomer, J, Ruppert, D., Wand, M.P., Holst, U., and Hossjer, O., (1999), Kriging with nonparametric variance function estimation, Biometrics, 55, 704-710.

Chen, V. C. P., Ruppert, D., and Shoemaker, C. A., (1999), Applying experimental design and regression splines to high-dimensional continuous-state stochastic dynamic programming, Operations Research, 47, 38-53.

Back to Top

Ruppert's home page at ORIE

Last update: Mar 26, 2013