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Abstract

We derive new results for the performance of a simple greedy algorithm for finding large inde-
pendent sets and matchings in constant degree regular graphs. We show that for r-regular graphs
with n nodes and girth at least g, the algorithm finds an independent set of expected cardinality

f(r)n−O
( (r−1)

g
2

g
2 ! n

)
, where f(r) is a function which we explicitly compute. A similar result is estab-

lished for matchings. Our results imply improved bounds for the size of the largest independent set
in these graphs, and provide the first results of this type for matchings. As an implication we show
that the greedy algorithm returns a nearly perfect matching when both the degree r and girth g are
large. Furthermore, we show that the cardinality of independent sets and matchings produced by
the greedy algorithm in arbitrary bounded degree graphs is concentrated around the mean. Finally,
we analyze the performance of the greedy algorithm for the case of random i.i.d. weighted indepen-
dent sets and matchings, and obtain a remarkably simple expression for the limiting expected values
produced by the algorithm. In fact, all the other results are obtained as straightforward corollaries
from the results for the weighted case.

1 Introduction

1.1 Regular graphs, independent sets, matchings and randomized greedy algo-
rithms

An r-regular graph is a graph in which every node has degree exactly r. The girth g of a graph is the
size of the smallest cycle. Let G(g, r) denote the family of all r-regular graphs with girth at least g.
For a graph G, we denote the set of nodes and edges by V (G) and E(G), respectively. A set of nodes
I is defined to be an independent set if no two nodes of I are adjacent. For a graph G, let I(G) denote
(any) maximum cardinality independent set (MIS) of G, and |I(G)| its cardinality. Throughout the
paper we will drop the explicit reference to the underlying graph G when there is no ambiguity. For
example we use I instead of I(G) or V instead of V (G).

Suppose the nodes of a graph are equipped with some non-negative weights Wi, 1 ≤ i ≤ n , |V |.
The weight W [I] of a given independent set I is the sum of the weights of the nodes in I. When the
nodes of a graph are equipped with weights which are generated i.i.d. using a continuous distribution
function F (t) = P(Wi ≤ t) with non-negative support, we denote by IW the random unique with
probability 1 (w.p.1) maximum weight independent set (MWIS) of G.
∗Operations Research Center and Sloan School of Management, MIT, Cambridge, MA, 02139, e-mail:

gamarnik@mit.edu
†Operations Research Center, MIT, Cambridge, MA, 02139, e-mail: dag3141@mit.edu

1



A (partial) matching is a set of edges M in a graph G such that every node is incident to at most one
edge in M . For a graph G, let M denote (any) maximum cardinality matching (MM) of G. Suppose
the edges of a graph are equipped with some non-negative weights We, e ∈ E. The weight W [M ] of
a given matching M is the sum of the weights of the edges in M . When the edges of a graph G are
equipped with weights generated i.i.d. using a continuous distribution function F with non-negative
support, we denote by MW the random unique (w.p.1) maximum weight matching (MWM) of G.

In this paper we analyze the performance of a simple greedy algorithm, which we call GREEDY ,
for finding large independent sets and matchings. The description of GREEDY is as follows. For
independent sets, GREEDY iteratively selects a node i uniformly at random (u.a.r) from all remaining
nodes of the graph, adds i to the independent set, deletes all remaining nodes adjacent to i and repeats.
Note that while the underlying graph is non-random, the independent set produced by GREEDY is
random as it is based on randomized choices. For MWIS, GREEDY iteratively selects the node i
with the greatest weight from all the remaining nodes, adds i to the independent set, deletes all the
remaining nodes adjacent to i and repeats. Note that when acting on a fixed weighted graph, the action
of GREEDY is non-random. In this setting, the randomness will come from the fact that the weighting
itself is i.i.d. For matchings GREEDY operates similarly, except that it chooses edges instead of nodes,
and deletes edges incident to the chosen edge.

Let IG(MG) denote the random independent set (matching) returned by GREEDY when run on
an unweighted or (randomly) weighted graph G, depending on context. Denote by W [IG](W [MG])
the weight of IG(MG) (for the weighted case), and by |IG|(|MG|) the respective cardinalities (in the
unweighted case). Our goal is obtaining bounds on the expectation and variance of |IG|, |MG|, W [IG],
W [MG], where the latter two will be considered for the case of i.i.d. continuous non-negative weight
distributions. One of the motivations is to derive new lower bounds on largest independent set in
constant degree regular graphs with large girth.

1.2 Summary of our results and prior work

Our main results are Theorems 1,2 which provide remarkably explicit upper and lower bounds on the
expected weight of the independent set and matching produced by GREEDY in a regular graph of
large fixed girth when the weights are generated i.i.d. from a continuous non-negative distribution.
Since the gap between the upper and lower bound is of the order ≈ (r − 1)g/2/(g/2)!, we also obtain
the limiting expression for the weight of the independent set and matching produced by GREEDY in
a regular graph when the girth diverges to infinity. These results are Corollaries 1,2.

As a corollary we obtain upper and lower bounds on E[|IG|] and E[|MG|], by considering a uniform
distribution which is highly concentrated around 1. These results are stated as Theorems 4,5. Again
the gap between the upper and lower bounds is of the order ≈ (r−1)g/2/(g/2)! and we obtain a limiting
expression when the girth diverges to infinity, as stated in Corollaries 3, 5. While Corollary 5 is a new
result, Corollary 3 is not. This result was recently established by Lauer and Wormald [LW07] using a
different approach called the ‘nibble’ method. Thus our Theorem 4 can be viewed as an explicit finite
girth correction to the limiting result (Corollary 3) derived earlier in [LW07] and proved here using
different methods.

Our results on the performance of the GREEDY algorithm, as well as the results of [LW07],
are motivated by the problem of obtaining lower bounds on the size of the largest independent set
in regular graphs, and specifically regular graphs with large girth. The history of this problem is
long [HS82],[She83],[She91],[She95] with [LW07] and [FGS08] being the latest on the subject. In par-
ticular, the lower bounds obtained in [FGS08] are the best known for the case r ≥ 3 and sufficiently
large girth, and in this range they beat previous best bounds obtained by [LW07] (for r ≥ 7) and
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Shearer [She91] (for r < 7). Although these bounds are the best known as the girth diverges to in-
finity (for any fixed r ≥ 3), no bounds are given in [FGS08] for fixed girth. Also, the bounds given
in [LW07] for any fixed girth are very difficult to evaluate, as they are given implicitly as the solution
to a large-scale optimization problem. Our bounds match those of [LW07] for any fixed r as the girth
diverges to infinity , and give simple explicit bounds for any fixed girth as a finite girth correction of the
order ≈ (r−1)g/2/(g/2)!. In addition, our bounds are superior for several instances discussed in [LW07]
where bounds were derived numerically by lower-bounding the aforementioned large-scale optimization
problem. The details of this comparison are presented in Section 6.

Our corresponding results for matchings are new, both the limiting version, Corollary 5, and the finite
girth correction, Theorem 5. Interestingly, by considering the upper and lower bounds in Theorem 5
and taking a double limit r, g → ∞, we find that the GREEDY algorithm produces a nearly perfect
matching in the double limit r, g → ∞. This partially answers an open problem posed by Frieze [Fri]
regarding the construction of a simple, decentralized algorithm for finding a nearly perfect matching in
constant degree regular graphs with large girth.

Our second set of results, Theorems 3 and 6, concerns the variance of the weight (cardinality) of the
independent set and matching produced by GREEDY in arbitrary graphs with bounded degree. That
is no additional assumptions on girth or regularity are adopted. We show that when the weights are i.i.d.
and have finite second moment, and when the graph has bounded degree, the variance, appropriately
normalized, is of the order O(1/n) in both cases. We are also able to give explicit bounds in terms
of the graph degree, the number of nodes, and the second moment of the weighting distribution. We
also give similar results for the unweighted case. Thus the answers produced by GREEDY are highly
concentrated around their means, and in this sense the GREEDY algorithm is very robust. We believe
these are the first results on the variance of the GREEDY algorithm.

We note that since for any fixed r and d, a graph selected uniformly at random from the set of all
r-regular graphs on n nodes with high probability has only a constant (independent of n) number of
cycles of length ≤ d, [LW07], such a graph will have the property that for large n most nodes have large
constant-depth neighborhoods not containing any cycles. Thus our results concerning graphs with girth
diverging to infinity, specifically Corollaries 1,2,3,5 can be extended to the setting of random regular
graphs, since our analysis is both localized and asymptotic, only requiring that most nodes have regular
trees appearing as constant size neighborhoods. However, we do not state and prove formally these
results.

We now review some additional relevant literature. The MIS,MWIS,MM and MWM problems
are obviously well-studied and central to the field of combinatorial optimization. The MIS problem is
known to be NP-Complete, even for the case of cubic planar graphs [GJS76] and graphs of polynomially
large girth [Mur92], and is known to be MAX − SNP complete even when restricted to graphs with
degree at most 3 [BF94]. From both an approximation algorithm and existential standpoint, the MIS
problem has been well-studied for bounded degree graphs [HR94], [HR97], [BF94]; graphs with large
girth [MS85], [Mur92]; triangle-free graphs with a given degree sequence [AKS80], [AEKS81], [Gri83],
[She83], [She91]; and large-girth graphs with a given degree sequence, including regular graphs with
large girth [Bol80], [HS82], [She91], [Den94], [She95], [LW07]. We note that, as already mentioned, our
Corollary 3 was derived earlier in [LW07] using different techniques.

Although the MM problem is solvable in polynomial time, much research has gone into finding
specialized algorithms for restricted families of graphs. The most relevant graph families for which
MM has been studied (often using GREEDY and related algorithms) are bounded-degree graphs,
and bounded-degree graphs of girth at least 5 [DF91],[MP97]. However, there appears to be a gap
in the literature for MM in regular graphs with large girth, barring a recent existential result that
an r-regular graph with large girth g always contains a matching of size n

2 − O((r − 1)−
g
2n) [FH07].
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Namely, an asymptotically perfect matching exists in such graphs as the girth increases. It is of interest,
however, to construct some decentralized and easy to implement algorithm for MM which leads to an
asymptotically perfect matching, and our result Theorem 5 is a step towards this direction.

Our main method of proof uses the correlation decay technique, sometimes also called the local weak
convergence (objective) method [Ald01], [AS03],[GNS08]. We establish that the choices made by the
GREEDY algorithm are asymptotically independent for pairs of nodes (in the case of independent sets)
and edges (in the case of matchings) which are far apart. That is, if two nodes i, j are at a large graph-
theoretic distance, then P(i, j ∈ IG) ≈ P(i ∈ IG)P(j ∈ IG). A similar statement holds for matchings,
and also for the weighted case with i.i.d. weights. This allows the reduction of the problem on a graph
to the far simpler problem formulated on a regular tree, which can be solved in a very explicit way.
Such an asymptotic independence was also observed in [LW07], but here we are able to characterize this
decay in a more explicit manner. A similar phenomenon was also observed in [GNS08], which studied
maximum weight independent sets and matchings for the case of i.i.d weights in r-regular graphs with
girth diverging to infinity. There it was observed that for the case of i.i.d. exponentially distributed
weights, such a decay of correlations occurs when r = 3, 4 and does not occur when r ≥ 5, even as
the girth diverges to infinity. Thus the techniques of [GNS08] were only able to analyze exponentially
weighted independent sets in regular graphs of large girth when the degree was r ≤ 4. In contrast we
show that independent sets produced by the GREEDY always exhibits such a decay of correlations for
any degree. This allows us to extend the analysis of [GNS08] to regular graphs of arbitrary constant
degree. In Section 6 we will see that GREEDY is nearly optimal for the settings considered in [GNS08].

We now give an outline of the rest of the paper. In Section 2 we state our main results formally
and show that our analysis for the case of i.i.d. weights encompasses the analysis for the unweighted
case. In Section 3 we introduce the notion of an influence resistant subgraph, show that under an i.i.d.
weighting most nodes (edges) will belong to such subgraphs, and show that these subgraphs determine
the behavior of GREEDY . This enables us to prove certain locality properties of GREEDY , which
we then apply to the setting of regular graphs of large constant girth. In Section 4 we introduce and
study a bonus recursion that we will use to analyze the performance of GREEDY on infinite r-ary
trees. Section 5 is devoted to proving results on the variance of GREEDY. In Section 6 we numerically
evaluate our bounds and compare to earlier bounds in the literature. Finally, in Section 7 we provide
directions for future work and summary remarks.

1.3 Notations and conventions

We close this section with some additional notations. Throughout the paper we consider simple undi-
rected graphs G = (V,E). Given a simple path P in a graph G, the length of P is the number of
edges in P . Given two nodes i, j ∈ V , the distance D(i, j) is the length of a shortest i to j path in G.
Similarly, the distance D(e1, e2) between two edges e1, e2 ∈ E is the length of the shortest path in G
that contains both e1 and e2, minus one. Given a node i ∈ V , let the depth−d neighborhood Nd(i) be
the subgraph rooted at i induced by the set of nodes i′ with D(i, i′) ≤ d. Givn an edge e, let Nd(e)
denote the subgraph induced by the set of edges e′ with D(e, e′) ≤ d. Specifically, for every node i and
edge e, N0(i) = {i} and N0(e) = {e}. For simplicity we write N(·) for N1(·). |N(i)| is the degree of the
node i, and maxi∈V |N(i)| is defined to be the degree of the graph.

Given a rooted tree T , the depth of T is the maximum distance between the root r and any leaf,
and the depth of a node i in T is D(r, i). Given a node i ∈ T , the set of children of i is denoted by C(i).

Suppose the nodes of an undirected graph G are equipped with weights Wi. We say that a path
i1, i2, · · · , ik is node increasing if Wi1 < · · · < Wik . Similarly, if the edges of G are weighted Wij , we say
that a path i1, i2, · · · , ik is edge increasing if Wi1i2 < · · · < Wik−1ik .
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Denote by T (r, d), d ≥ 1 a depth-d tree where all non-leaf nodes have r children, and all leaves are
distance d from the root. Denote by T (r + 1, r, d), d ≥ 1 the depth-d tree where the root has r + 1
children, all other non-leaf nodes have r children, and all leaves are distance d from the root. Note that
if G ∈ G(g, r) for some g ≥ 4, then for every node i ∈ V (G) and any d ≤ bg−2

2 c, Nd(i) is (isomorphic
to) T (r, r − 1, d). By convention, T (r, 0) and T (r + 1, r, 0) both refer to a single node.

Throughout the paper we will only consider non-negative distribution functions, so the non-negativity
qualification will be implicit. If X is a discrete r.v. taking values in Z+, the corresponding probability
generating function (p.g.f.) is denoted by φX(s) =

∑∞
k=0 s

kP(X = k). If two r.v. X and Y are equal

in distribution, we write X D= Y . When X is distributed according to distribution F , we will also write
(with some abuse of notation) X D= F . The m-fold convolution of a random variable X is denoted by
X(m). Let W be a continuous r.v. and let X be a r.v. taking non-negative integer values. Denote by
W<X> the r.v. max1≤i≤XWi when X > 0 and 0 when X = 0. Here Wi are i.i.d. copies of W . Given
two events A,B, let A∧B and A∨B denote, respectively, the conjunction and disjunction events. Also
Ac denotes the complement of the event A and I(A) denotes the indicator function for the event A.

2 Main results

2.1 Weighted case

The following is our main result for the performance of the GREEDY algorithm for finding largest
weighted independent sets. Both in the context of independent sets and matchings we assume that the
weights (of the nodes and edges) are generated i.i.d. from a non-negative continuous distribution F .

Theorem 1. For every g ≥ 4 and r ≥ 3, and every continuous non-negative r.v. W D= F with density
f and E[W ] <∞,∫ ∞

0
x
(
r − 1− (r − 2)F (x)

)− r
r−2

f(x)dx− E[W ]
r(r − 1)b

g−2
2
c

(bg−2
2 c+ 1)!

≤ inf
G∈G(g,r)

E
[
W [IG]
|V |

]
≤ sup

G∈G(g,r)
E
[
W [IG]
|V |

]

≤
∫ ∞

0
x
(
r − 1− (r − 2)F (x)

)− r
r−2

f(x)dx+ E[W ]
r(r − 1)b

g−2
2
c

(bg−2
2 c+ 1)!

.

As an immediate corollary, we obtain the following result.

Corollary 1. For every r ≥ 3 and every continuous non-negative r.v. W
D= F with density f and

E[W ] <∞,

lim
g→∞

inf
G∈G(g,r)

E
[
W [IG]
|V |

]
= lim

g→∞
sup

G∈G(g,r)
E
[
W [IG]
|V |

]
=

∫ ∞
0

x
(
r − 1− (r − 2)F (x)

)− r
r−2

f(x)dx. (1)

We now present the results for matchings.
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Theorem 2. For every g ≥ 4 and r ≥ 3, and every continuous non-negative r.v. W D= F with density
f and E[W ] <∞,

r

2

∫ ∞
0
x
(
r − 1− (r − 2)F (x)

)− 2(r−1)
r−2

f(x)dx− E[W ]
r(r − 1)b

g−2
2
c

(bg−2
2 c)!

≤ inf
G∈G(g,r)

E
[
W [MG]
|V |

]
≤ sup

G∈G(g,r)
E
[
W [MG]
|V |

]

≤ r

2

∫ ∞
0

x
(
r − 1− (r − 2)F (x)

)− 2(r−1)
r−2

f(x)dx+ E[W ]
r(r − 1)b

g−2
2
c

(bg−2
2 c)!

.

An immediate implication is

Corollary 2. For every r ≥ 3 and every continuous non-negative r.v. W
D= F with density f and

E[W ] <∞,

lim
g→∞

inf
G∈G(g,r)

E
[
W [MG]
|V |

]
= lim

g→∞
sup

G∈G(g,r)
E
[
W [MG]
|V |

]
=

r

2

∫ ∞
0

x
(
r − 1− (r − 2)F (x)

)− 2(r−1)
r−2

f(x)dx. (2)

We now state our main results on bounding the variance of W [IG] and W [MG].

Theorem 3. For every continuous non-negative r.v. W D= F with E[W 2] <∞, and for every graph G
with degree r ≥ 3,

V ar[
W [IG]
|V |

] ≤ 9E[W 2]r2e(r−1)3

|V |
. (3)

and

V ar[
W [MG]
|E|

] ≤ 33E[W 2]r2e(r−1)3

|E|
. (4)

We stress that, unlike previous results, no assumption is made on the structure of the graph other
than a bound on the maximum degree.

2.2 Unweighted case

As we will show in the following subsections, Theorems 1 and 2 lead to the following bounds on the
cardinality of independent sets and matchings produced by GREEDY in regular unweighted graphs.

Theorem 4. For every g ≥ 4 and r ≥ 3,

1− (r − 1)−
2

r−2

2
− r(r − 1)b

g−2
2
c

(bg−2
2 c+ 1)!

≤ inf
G∈G(g,r)

E[
|IG|
|V |

] ≤ sup
G∈G(g,r)

E[
|IG|
|V |

]

≤ 1− (r − 1)−
2

r−2

2
+
r(r − 1)b

g−2
2
c

(bg−2
2 c+ 1)!

. (5)

The following immediate corollary is an analogue of Corollary 1 for the unweighted case.
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Corollary 3. For every r ≥ 3,

lim
g→∞

inf
G∈G(g,r)

E
[
|IG|
|V |

]
= lim

g→∞
sup

G∈G(g,r)
E
[
|IG|
|V |

]

=
1− (r − 1)−

2
r−2

2
.

A second corollary is the following lower bound on the size of a maximum independent set in an
r-regular graph with girth ≥ g.

Corollary 4. For every g ≥ 4 and r ≥ 3,

inf
G∈G(g,r)

|I|
|V |
≥ 1− (r − 1)−

2
r−2

2
− r(r − 1)b

g−2
2
c

(bg−2
2 c+ 1)!

. (6)

Our results for matchings are as follows.

Theorem 5. For every g ≥ 4 and r ≥ 3,

1− (r − 1)−
r

r−2

2
− r(r − 1)b

g−2
2
c

(bg−2
2 c)!

≤ inf
G∈G(g,r)

E[
|MG|
|V |

] ≤ sup
G∈G(g,r)

E[
|MG|
|V |

]

≤ 1− (r − 1)−
r

r−2

2
+
r(r − 1)b

g−2
2
c

(bg−2
2 c)!

. (7)

Corollary 5. For every r ≥ 3,

lim
g→∞

inf
G∈G(g,r)

E
[
|MG|
|V |

]
= lim

g→∞
sup

G∈G(g,r)
E
[
|MG|
|V |

]
=

1− (r − 1)−
r

r−2

2
.

As a result

lim
r→∞

lim
g→∞

inf
G∈G(g,r)

E
[
|MG|
|V |

]
= lim

r→∞
lim
g→∞

sup
G∈G(g,r)

E
[
|MG|
|V |

]
=

1
2
.

Namely, GREEDY finds a nearly perfect matching when both the degree and girth are large. A
second corollary is the following lower bound on the size of a maximum matching in an r-regular graph
with girth ≥ g.

Corollary 6. For every g ≥ 4 and r ≥ 3,

inf
G∈G(g,r)

|M|
|V |
≥ 1− (r − 1)−

r
r−2

2
− r(r − 1)b

g−2
2
c

(bg−2
2 c)!

. (8)

Bounds on the variance of W [IG],W [MG] will result in the following bounds for the variance of
|IG|, |MG|.
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Theorem 6. For every graph G with degree r ≥ 3,

V ar[
|IG|
|V |

] ≤ 9r2e(r−1)3

|V |
. (9)

and

V ar[
|MG|
|E|

] ≤ 33r2e(r−1)3

|E|
. (10)

2.3 Converting the weighted case to the unweighted case

In this section, we prove that all of the results pertaining to GREEDY ’s performance w.r.t. finding
unweighted independent sets and matchings are implied by our analysis for the case of i.i.d. weights.
This will allow us to focus only on the case of i.i.d. weights for the remainder of the paper.

Lemma 1. Theorem 1 implies Theorem 4 and Theorem 2 implies Theorem 5.

Proof. We first prove that Theorem 1 implies Theorem 4. Fix ε > 0. Let F be a uniform distribution
on [1− ε, 1 + ε]. Applying Theorem 1 we have∫ 1+ε

1−ε
x((r − 1)− (r − 2)

x− (1− ε)
2ε

)−
r

r−2
1
2ε
dx− r(r − 1)b

g−2
2
c

(bg−2
2 c+ 1)!

≤ inf
G∈G(g,r)

E
[
W [IG]
|V |

]
≤ sup

G∈G(g,r)
E
[
W [IG]
|V |

]

≤
∫ 1+ε

1−ε
x((r − 1)− (r − 2)

x− (1− ε)
2ε

)−
r

r−2
1
2ε
dx+

r(r − 1)b
g−2
2
c

(bg−2
2 c+ 1)!

.

Note that (1− ε)E[|IG|] ≤ E[W [IG]] ≤ (1 + ε)E[|IG|], and for 1− ε ≤ x ≤ 1 + ε we have ((r − 1)−
(r − 2)x−(1−ε)

2ε )−
r

r−2 1
2ε ≥ 0. Thus

(1− ε)
∫ 1+ε

1−ε
((r − 1)− (r − 2)

x− (1− ε)
2ε

)−
r

r−2
1
2ε
dx− r(r − 1)b

g−2
2
c

(bg−2
2 c+ 1)!

≤ (1 + ε) inf
G∈G(g,r)

E
[
|IG|
|V |

]
≤ (1 + ε) sup

G∈G(g,r)
E
[
|IG|
|V |

]

≤ (1 + ε)2

1− ε

∫ 1+ε

1−ε
((r − 1)− (r − 2)

x− (1− ε)
2ε

)−
r

r−2
1
2ε
dx+

1 + ε

1− ε
r(r − 1)b

g−2
2
c

(bg−2
2 c+ 1)!

.

Letting u = x−(1−ε)
2ε , we can apply integration by substitution to find that:

(1− ε)
∫ 1

0
((r − 1)− (r − 2)u)−

r
r−2du− r(r − 1)b

g−2
2
c

(bg−2
2 c+ 1)!

≤ (1 + ε) inf
G∈G(g,r)

E
[
|IG|
|V |

]
≤ (1 + ε) sup

G∈G(g,r)
E
[
|IG|
|V |

]

≤ (1 + ε)2

1− ε

∫ 1

0
((r − 1)− (r − 2)u)−

r
r−2du+

1 + ε

1− ε
r(r − 1)b

g−2
2
c

(bg−2
2 c+ 1)!

.

Evaluating the integrals and letting ε → 0 then demonstrates the desired result. The proof that
Theorem 2 implies Theorem 4 follows identically, using the bounds for matchings instead of those for
independent sets.
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Lemma 2. Theorem 3 implies Theorem 6.

Proof. We first prove that (3) implies (9). Let again F be a uniform distribution on [1− ε, 1 + ε]. The
following bounds are immediate

(1− ε)2E[(
|IG|
|V |

)2]− (1 + ε)2E2[
|IG|
|V |

]

≤ V ar[W [IG]
|V |

]

≤ (1 + ε)2E[(
|IG|
|V |

)2]− (1− ε)2E2[
|IG|
|V |

],

which implies that

|V ar[ |IG|
|V |

]− V ar[W [IG]
|V |

]| ≤ (2ε+ ε2)(E[(
|IGW |
|V |

)2] + E2[
|IG|
|V |

]).

Thus since the second moment of F is 1 + ε2

3 , by the triangle inequality and Theorem 3 we find that for
any graph G of maximum degree r,

V ar[
|IG|
|V |

] ≤
9(1 + ε2

3 )r2e(r−1)3

|V |
+ (2ε+ ε2)(E[(

|IG|
|V |

)2] + E2[
|IG|
|V |

]).

Observing that | |IG||V | | ≤ 1, we see that (9) follows by letting ε→ 0.
The proof of (10) from (4) is done similarly.

3 Influence resistant subgraphs

In this section we introduce the notion of an influence resistant subgraph, and give a useful characteri-
zation of these subgraphs. We then bound the probability that a node (edge) of a bounded degree graph
G is contained in (an appropriately) small influence resistant subgraph under an i.i.d. weighting from
any continuous distribution function. Throughout this section we consider a graph whose nodes and
edges are equipped with non-negative distinct (non-random unless otherwise stated) weights Wi, i ∈ V
and We, e ∈ E.

Definition 1. A subgraph H of G is called an influence resistant subgraph (i.r.s.) if for every node
(edge) z ∈ H,Wz > maxy∈N(z)\HWy.

Here N(z) \H means the set of nodes or edges (depending on the context) in N(z) which do not
belong to H. We now show that for any set of nodes (edges) Z there exists a unique minimal i.r.s. H
containing Z, and give a simple characterization of this subgraph.

Lemma 3. Given a set of nodes (edges) Z there exists a unique minimal i.r.s. H containing Z. Namely,
for every other i.r.s. H ′ containing Z, H is a subgraph of H ′. Moreover, H is characterized as the set
of nodes (edges) z such that there exists a node (edge) increasing path z1, . . . , zk with z1 ∈ Z and zk = z.

We denote this unique minimal i.r.s. by IRG(Z), or IR(Z) when the underlying graph G is unam-
biguous.

9



Proof. We first show that IRG(Z) is contained in every i.r.s. T containing Z. Suppose, for the purposes
of contradiction, there exists an increasing path z1, z2, . . . , zk such that z1 ∈ Z, zk /∈ T . Let l < k be the
largest index such that zl ∈ T . Then zl+1 ∈ N(zl) \T , but Wzl+1

> Wzl
, which is a contradiction to the

fact that T is an i.r.s.
We now show that IR(Z) is itself an i.r.s. containing Z. By definition Z ⊂ IR(Z). Now let

z ∈ IR(Z) be arbitrary and let z′ ∈ N(z) \ IR(Z) be arbitrary as well. If Wz′ > Wz, then since there
exists an increasing path from Z to z, by appending z′ to this path we obtain an increasing path from
Z to z′ and thus z′ ∈ IR(Z), which is a contradiction. Since the weights are distinct, we conclude
Wz′ < Wz, and the proof is complete.

We now show that the existence of a ‘small’ i.r.s. for N(v)( N(e) ) is independent of Wv(We) under
an i.i.d. weighting.

Lemma 4. Given an arbitrary node (edge) z, IR(N(z)) ⊂ Nd(z) holds iff there does not exist a node
(edge) increasing path between some node (edge) z′ ∈ N(z) and z′′ ∈ Nd+1(z)\Nd(z) which is contained
entirely in G \ z. As a result, if the node (edge) weights of G are generated i.i.d. from a continuous
distribution F , then the event IR(N(z)) ⊂ Nd(z) is (stochastically) independent from Wz.

Proof. If there exists an increasing path z1, . . . , zk between N(z) and Nd+1(z) \ Nd(z), then the last
element zk ∈ Nd+1(z) \Nd(z) must belong to IR(N(z)) and thus IR(N(z)) ⊂ Nd(z) cannot hold. Now
suppose no increasing path exists between N(z) and Nd+1(z) \Nd(z) inside G \ z. Then no increasing
path can exist between N(z) and Nd+1(z) \ Nd(z) inside G either, since in any such path we can find
a subpath which does not use z. This completes the proof of the first part of the lemma. The second
line is an immediate implication since the random weights are distinct with probability one.

The usefulness of the i.r.s. comes from the following lemma, which informally states that the
decisions taken by GREEDY inside an i.r.s. H are not affected by the complement of H in G.

Lemma 5. Suppose H is an i.r.s. of G. Then IG(G) ∩ V (H) = IG(H) (MG(G) ∩E(H) =MG(H)),
where the weights of H are induced from G.

Proof. Let z1, z2, . . . , zm be the nodes (edges) of H ordered in decreasing order by their weight. We
show by induction in k = 1, 2, . . . ,m that zk ∈ IG(G)(zk ∈ MG(G)) iff zk ∈ IG(H)(zk ∈ MG(H)).
For the base case k = 1 observe that z1 is the heaviest element of H. Since H is an i.r.s. then also z1
cannot have a heavier neighbor in G \H. Thus GREEDY will select it both for G and H.

We now prove the induction step and assume the assertion holds for all k′ ≤ k − 1 < m. Suppose
zk was not accepted by GREEDY when it was operating on G. This means that GREEDY accepted
some neighbor of zk which was heavier than zk and, as a result, deleted zk. Since H is an i.r.s. this
neighbor must be in H, namely it is zk′ for some k′ < k. By the inductive assumption GREEDY
selected zk′ when it was operating on H as well. Then all neighbors of z′k in H are deleted including zk,
and thus zk cannot be accepted by GREEDY when operating on H. Similarly, suppose GREEDY did
not select zk when it was operating on H. Namely, GREEDY accepted some neighbor zk′ of zk with
k′ < k. By the inductive assumption the same holds for GREEDY operating on G: zk′ was accepted
and all neighbors, including zk were deleted. This completes the proof of the induction step.

We now bound the probability that IR(N(z)) is contained in Nd(z) when z is a node (edge) in a
bounded degree graph G and the weights are random.

10



Lemma 6. Let G be any graph of maximum degree r ≥ 3, and suppose that the nodes and edges of G
are equipped with i.i.d. weights from a continuous distribution F . Then for any node (edge) i(e) and
any d ≥ 0,

P(IR(N(i)) ⊂ Nd(i)) ≥ 1− r(r − 1)d

(d+ 1)!
,

P(IR(N(e)) ⊂ Nd(e)) ≥ 1− 2(r − 1)d+1

(d+ 1)!
,

where the first (second) inequality is understood in the context of node (edge) weights.

Proof. Any path of (edge) length k equipped with i.i.d. node (edge) weights generated using a continuous
distribution is a node (edge) increasing path with probability equal to 1/(k + 1)! ( 1/k! ). For every
node z ∈ G there exist at most r(r − 1)d distinct length−d paths in G \ z that originate on some
node in N(z) \ z and use exactly one node from N(z). For every edge z ∈ G, there exist at most
2(r − 1)d+1 distinct length−(d + 1) paths in G \ z that originate on some edge in N(z) \ z and use
exactly one edge from N(z). Observe that every node increasing path originating in N(z) \ z and
terminating in Nd+1(z)\Nd(z) must contain a length−d node increasing subpath originating in N(z)\z
which uses exactly one node of N(z). We then obtain the result by applying a simple union bound and
Lemma 4.

We now state and prove the main result of this section.

Theorem 7. Let G ∈ G(g, r) for some g ≥ 4 , and d ≥ bg−2
2 c be arbitrary. Let T = T (r, r − 1, d)

have root 0. Suppose the nodes and edges of G and T are equipped with i.i.d. weights from a continuous
distribution F . Then for every node i ∈ V (G), edge e ∈ E(G), and every child j of 0 in T

∣∣∣E[WiI(i ∈ IG(G))]− E[W0I(0 ∈ IG(T ))]
∣∣∣ ≤ E[W ]

r(r − 1)b
g−2
2
c

(bg−2
2 c+ 1)!

(11)

and ∣∣∣E[WeI(e ∈MG(G))]− E[W0jI((0, j) ∈MG(T ))]
∣∣∣ ≤ E[W ]

2(r − 1)b
g−2
2
c

(bg−2
2 c)!

, (12)

where W d= F . Also the limits

lim
d→∞

P(0 ∈ IG(T )), lim
d→∞

P((0, j) ∈MG(T )) (13)

exist.

Remark : It is important to note that the bounds of this theorem hold for any value of d ≥ bg−2
2 c.

It is this property which will ultimately lead to the existence of limits (13), as we will see shortly in the
proof. Later on the existence of these limits will lead to a simple expression for the limiting value of
E[WiI(i ∈ IG(T ))] and E[WeI(e ∈MG(T ))].

Proof. Denote IR(N(i)) with respect to G by H(i) and IR(N(0)) with respect to T by H(0) for
simplicity. Let d0 , bg−2

2 c ≤ d. Then Nd0(i) is a T (r, r − 1, d0) tree. We can construct a coupling in
which T = T (r, r − 1, d) is the natural extension of this tree with additional node weights generated

11



independently from the node weights of G. In this setting the node i takes the role of the root 0 of T .
We have

WiI(i ∈ IG(G)) = WiI(i ∈ IG(G), H(i) ⊂ Nd0(i)) +WiI(i ∈ IG(G), H(i) 6⊂ Nd0(i))
= W0I(0 ∈ IG(T ), H(0) ⊂ Nd0(0)) +WiI(i ∈ IG(G), H(i) 6⊂ Nd0(i)),

since by Lemma 5, i ∈ IG(G), H(i) ⊂ Nd0(i) implies that

i ∈ IG(H(i)) ⊆ IG(Nd0(i)) = IG(T (r, r − 1, d0)). (14)

This sum is upper bounded by

≤W0I(0 ∈ IG(T )) +WiI(H(i) 6⊂ Nd0(i)).

It follows that

E[WiI(i ∈ IG(G))−W0I(0 ∈ IG(T ))] ≤ E[WiI(H(i) 6⊂ Nd0(i))]
= E[W ]P(H(i) 6⊂ Nd0(i))

≤ E[W ]
r(r − 1)d0

(d0 + 1)!
,

where the equality follows from the second part of Lemma 4 and the last inequality follows from
Lemma 6. We complete the proof of the bound (11) by establishing a similar bound with the roles of
WiI(i ∈ IG(G)) and W0I(0 ∈ IG(T )) reversed.

We now establish the last part of the theorem, namely the existence of limits (13). Consider any
d′ > d. Let T ′ = T (r, r − 1, d′) be a natural extension of the tree T with the same root 0. Namely, the
additional nodes of T ′ are weighted i.i.d. using F , independently from the weights of the nodes already
in T . Let H ′ denote IR(N(0)) with respect to T ′. We have

I(0 ∈ IG(T )) = I(0 ∈ IG(T ), H ′ ⊂ T ) + I(0 ∈ IG(T ), H ′ 6⊂ T )
= I(0 ∈ IG(T ′), H ′ ⊂ T ) + I(0 ∈ IG(T ), H ′ 6⊂ T )
≤ I(0 ∈ IG(T ′)) + I(H ′ 6⊂ T ).

This implies that

P(0 ∈ IG(T ))− P(0 ∈ IG(T ′)) ≤ P(H ′ 6⊂ T )

≤ r(r − 1)d/(d+ 1)!,

where the last inequality follows from Lemma 6. By reversing the roles of T and T ′ we obtain

P(0 ∈ IG(T ′))− P(0 ∈ IG(T )) ≤ r(r − 1)d/(d+ 1)!.

We conclude that the sequence P(0 ∈ IG(T (r, r−1, d))), d ≥ 1 is Cauchy and therefore has a limit. This
concludes the proof for the case of independent sets. The proof for the case of matchings is obtained
similarly and is omitted.
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4 Bonus, bonus recursion and proofs of the main results

4.1 Bonus and bonus recursion

In this subsection, we introduce the notion of a bonus for independent sets and matchings on trees.
Consider a tree T with root 0, whose nodes (edges) are equipped with distinct positive weights Wi, i ∈
T (Wi,j , (i, j) ∈ T ).

Definition 2. For every node i ∈ T let

S(i) =

{
Wi if i is a leaf;
WiI(Wi > maxj∈C(i) S(j)) otherwise;

MS(i) =

{
0 if i is a leaf;
maxj∈C(i)(Wij I(Wij > MS(j))) otherwise;

The quantities S(i),MS(i) are called the bonus of i in the rooted tree T and will be used for the
analysis of independent sets and matchings respectively. Let Ti be the subtree of T rooted at i. Note
that the bonus of i depends only on the subtree Ti. To avoid ambiguity, for a subtree H of T rooted at
i we let MSH(i) denote the bonus of i computed w.r.t. the subtree H. We now prove that S(i)(MS(i))
determines whether the root 0 belongs to IG(T )(MG(T )).

Proposition 1. Given a weighted rooted tree T with distinct positive weights on the nodes and edges,
for every node i and edge (i, j),

1. [Independent sets]. S(i) = WiI(i ∈ IG(Ti)). Specifically, for the root 0 we obtain S(0) = W0I(0 ∈
IG(T )).

2. [Matchings]. MS(i) = maxj∈C(i)WijI((i, j) ∈ MG(Ti)). Specifically, for the root 0 we obtain
MS(0) = maxj∈C(0)W0jI((0, j) ∈MG(T )).

3. [Matchings]. For every j ∈ C(i), (i, j) ∈ MG(Ti) iff Wij > max(MS(j),MSH(i)), where H is
the subgraph of Ti obtained by deleting (i, j) ∪ Tj.

Proof. Let d be the depth of T . We first prove part 1. The proof proceeds by induction on the depth
of a node, starting from nodes at depth d. Thus for the base case, suppose i belongs to level d of T ,
and, as a result, it is a leaf. Then S(i) = Wi. On the other hand, Ti = {i} and I(i ∈ IG(Ti)) = 1, and
the claim follows.

For the induction part assume that the hypothesis is true for all nodes at depth ≥ k+1 for k ≤ d−1.
Let i be some node at depth k. Observe that GREEDY selects node i for inclusion in IG(Ti) iff i
is not adjacent to any nodes in Ti that are selected by GREEDY prior to node i being examined
by GREEDY . The set of nodes in Ti examined by GREEDY before i are those nodes j such that
Wj > Wi. Thus the event i ∈ IG(Ti) occurs iff for all j ∈ C(i) s.t. Wj > Wi, we have j /∈ IG(Ti). We
claim that for each such j, j /∈ IG(Ti) iff j /∈ IG(Tj). Indeed, the event j /∈ IG(Ti) is determined by a
subgraph H of Ti induced by nodes with weights at least Wj . Therefore this subgraph does not include
i if Wj > Wi. It follows that H ∩ Tj is disconnected from the rest of H and then the claim follows.

We conclude that i ∈ IG(Ti) iff for each j ∈ C(i) either Wi > Wj , or j /∈ IG(Tj). Combining, i ∈
IG(Ti) iff Wi > maxj∈C(i)WjI(j ∈ IG(Tj)), but by the inductive hypothesis, WjI(j ∈ IG(Tj)) = S(j).
Therefore, i ∈ IG(Ti) iff Wi > maxj∈C(i) S(j) and the inductive assertion follows.

We now prove part 2. The proof is again by induction on the depth of a node. Base case: i is at lowest
depth d and thus a leaf. In this case, C(i) = ∅, and thus maxj∈C(i)WijI(Wij ∈MG(Tj)) = MS(i) = 0.
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For the induction step assume that the induction hypothesis is true for all nodes at depth ≥ k + 1, k ≤
d − 1. Let i be some node at depth k. If i is a leaf we use the same argument as for the base case.
Thus assume i is not a leaf. Suppose (i, j1) ∈ MG(Ti). We claim that then Wij1 > MS(j1). Indeed,
observe that GREEDY selects (i, j1) for inclusion inMG(Ti) iff (i, j1) is not itself adjacent to any edges
in Ti that are selected by GREEDY prior to (i, j1) being examined by GREEDY . Thus the event
(i, j1) ∈ MG(Ti) implies that for all l ∈ C(j1) s.t. Wj1,l > Wij1 , we have (j1, l) /∈ MG(Ti). Repeating
the argument used for the case of independent sets, we claim that the event (j1, l) /∈MG(Ti) occurs iff
the event (j1, l) /∈MG(Tj1) occurs. Therefore, the event (i, j1) ∈MG(Ti) implies that for each l ∈ C(j1)
either Wij1 > Wj1,l or (j1, l) /∈ MG(Tj1), namely the event Wij1 > maxl∈C(j1)Wj1,lI((j1, l) ∈ MG(Tj1))
occurs, which by induction hypothesis is equivalent to the event Wij1 > MS(j1), as claimed.

We now complete the proof of the induction step. First assume that Wij < MS(j) for all j ∈ C(i).
Then from the preceding claim we obtain that no edge (i, j) belongs to MG(Ti) and the claim is
established. Otherwise, let j1 ∈ C(i) be such that Wij1 is the largest weight among edges Wij , j ∈ C(i)
satisfying Wij > MS(j). By the choice of j1 and the preceding claim it follows that if Wij′ > Wij1 ,
then (i, j′) /∈MG(Ti). Thus it remains to show that (i, j1) ∈MG(Ti). GREEDY examines (i, j1) after
edges (i, j) with Wij > Wij1 , but before edges (i, j) with Wij < Wij1 . Since edges with Wij > Wij1

were rejected, then whether (i, j1) is accepted is determined completely by (i, j1) plus the subtree T (j1).
Repeating the argument above, we see that (i, j1) is accepted iff Wij1 > maxl∈C(j1)Wj1,lI((j1, l) ∈
MG(Tj1)), which, by the inductive hypothesis occurs iff Wij1 > MS(j1), which is satisfied by the choice
of j1.

To prove part 3, we repeat the arguments used to prove parts 1 and 2 to observe that GREEDY
selects (i, j) iff for all neighbors l of j in T (j) with Wj,l > Wij , the edge (j, l) is rejected by GREEDY
in T (j), and for all neighbors l 6= j of i in T (i)\ ((i, j)∪T (j)), with Wil > Wij , the edge (i, l) is rejected
by GREEDY in T (i) \ ((i, j) ∪ T (j)).

4.2 Distributional recursion for bonuses

We now introduce two sequences of recursively defined random variables {Xd,r}, d ≥ 0, and {Yd,r}, d ≥ 0
for any given integer r ≥ 2. These sequences will play a key role in understanding the probability
distribution of the bonuses introduced in the previous subsection.

Given a positive integer k, let B(k) denote a Bernoulli random variable with P(B(k) = 1) = 1/k.
Define

Xd,r
D=

{
1 d = 0;
(X(r)

d−1,r + 1)B(X(r)
d−1,r + 1) d ≥ 1;

(15)

Yd,r
D=

0 d = 0;(
(Yd−1,r + 1)B(Yd−1,r + 1)

)(r)
d ≥ 1;

(16)

For an integer-valued r.v. Z ≥ 1, the joint probability distribution of Z, B(Z) is assumed to be
P(Z = z,B = 1) = (1/z)P(Z = z), i.e. P (B = 1|Z = z) = 1/z. Also, recall that for a r.v. U , U (m) is
the sum of m i.i.d. copies of U .

It is immediate from these recursions that for all d ≥ 1

E[Xd,r] = 1, E[Yd,r] = r. (17)

In the following lemma we show that the distribution of the bonuses S and MS on regular trees
have a very simple representation in terms of the constructed sequences {Xd,r}, {Yd,r}.
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Lemma 7. Suppose the nodes and edges of a tree T (r, d) with root 0 are equipped with i.i.d. weights
generated according to a continuous distribution F . Then S(0) D= W<Xd,r>, and MS(0) D= W<Yd,r>,
where W D= F and W<X> is the maximum of X i.i.d. copies of W .

Proof. We first prove the identity for S(0). The proof proceeds by induction on d. For the base case,
suppose d = 0. Then S(0) D= W and the conclusion trivially holds. For the induction step, assume the
hypothesis is true for all d′ < d. Let Tj denote the depth d−1 subtree of T (r, d) rooted at the j-th child
of 0. By the inductive hypothesis we have that S(j) is distributed as W<Xd−1,r>. This implies that
maxj∈C(i) S(j) is distributed as (W<Xd−1,r>)<r>. Since W0 is drawn independent of maxj∈C(i) S(j), we

have that S(0) D= W0I(W0 > (W<Xd−1,r>)<r>). The event underlying I(·) means that W0 is the largest
among K + 1 random variables distributed according to F , where K D= X

(r)
d−1,r. The required identity

then follows from the definition of Xd,r.
We now establish the identity for MS(0) using induction in d. For the base case d = 0 we have

MS(0) = 0 and the conclusion trivially holds. For the induction case, assume that the hypothesis is
true for all d′ < d. Let again Tj denote the depth d − 1 subtree of T (r, d) rooted at the j-th child
of 0. By the inductive hypothesis MS(j) is distributed as W<Yd−1,r>. Since W0j is drawn i.i.d., we

have MS(0) D= maxj∈C(0)W0jI(W0j > W<Yd−1,r>), where W0jI(W0j > W<Yd−1,r>) is independent for
each j. Note that for each j, W0jI(W0j > W<Yd−1,r>) is by definition distributed as the maximum
of (Yd−1,r + 1)B(Yd−1,r + 1) i.i.d. realizations of W . Thus maxj∈C(0)W0jI(W0j > W<Yd−1,r>) is
distributed as the maximum of r independent samples of the maximum of (Yd−1,r + 1)B(Yd−1,r + 1)
i.i.d. realizations of W , which by the basic properties of maxima is distributed as the maximum of
((Yd−1,r + 1)B(Yd−1,r + 1))(r) i.i.d. realizations of W , from which the lemma follows.

Recall that φX denotes the probability generating function for a discrete r.v. X.

Lemma 8. Suppose the nodes and edges of a tree T = T (r, r− 1, d) with root 0 are equipped with i.i.d.
weights generated from a continuous distribution F . Then

E[W0I(0 ∈ IG(T ))] = E[WφrXd−1,r−1
(F (W ))],

and for every j ∈ N(0)

E[W0jI((0, j) ∈MG(T ))] = E[WφYd−1,r−1+Yd,r−1
(F (W ))],

where W is distributed according to F , and random variables W,Xd−1,r−1, Yd−1,r−1, Yd,r−1 are indepen-
dent.

Proof. We first prove the result for independent sets. By Proposition 1 and the definition of S(0),
E[W0I(0 ∈ IG(T ))] = E[W0I(W0 > maxj∈C(0) S(j))]. By Lemma 7, for each j ∈ C(0),

S(j) D= W<Xd−1,r−1>. It then follows that maxj∈C(0) S(j) D= W<X
(r)
d−1,r−1>, which is independent from

W0. Thus we have

E[W0I(0 ∈ IG(T ))] = E[E[W0I(0 ∈ IG(T ))|W0]]

= E[W0E[I(W<X
(r)
d−1,r−1> ≤W0)|W0]]

= E[W0

∞∑
k=0

(F (W0))kP(X(r)
d−1,r−1 = k)]

= E[W0φX(r)
d−1,r−1

(F (W0))]

= E[W0φ
r
Xd−1,r−1

(F (W0))].
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We now prove the result for matchings. From the third part of Proposition 1 we have

E[W0jI((0, j) ∈ IG(T ))] = E[W0jI(W0j > max(MSH(0),MSTj (j)))],

where H is the subgraph of T obtained by deleting (0, j) and Tj - the subtree of T rooted at j. Observe
that H is an r−1 regular tree with depth d, namely it is T (r−1, d), and Tj is an r−1 regular tree with

depth d− 1. Thus applying Lemma 7, MSH(0) D= W<Yd,r−1> and MSTj (j) D= W<Yd−1,r−1>. Repeating

the line of argument used for independent sets, replacing X
(r)
d−1,r−1 with Yd−1,r−1 + Yd,r−1, we obtain

the result.

4.3 Limiting distribution of Xd,r and Yd,r

In this subsection we show that the sequences {Xd,r}, d ≥ 0, and {Yd,r}, d ≥ 0 converge in distribution to
some limiting random variables, by exploiting their recursive definitions. We then use this convergence
along with Lemma 8 to express the quantities of interest in terms of the p.g.f. of these limiting random
variables.

Lemma 9. There exist r.v. X∞,r, Y∞,r such that for all k ≥ 0, limd→∞ P(Xd,r = k) = P(X∞,r = k)
and limd→∞ P(Yd,r = k) = P(Y∞,r = k).

Proof. We begin by establishing the existence of the limit limd→∞ P(Xd,r = k) for k = 0. The case of
k ≥ 1 will be established by induction. Consider T = T (r, d) with root 0 whose nodes are weighted
i.i.d. with an arbitrary continuous distribution F . From Proposition 1, part 1, we have that S(0) = 0
iff 0 /∈ IG(T ). Therefore by Lemma 7

P(S(0) = 0) = P(0 /∈ IG(T )) = P(Xd,r = 0).

But the last quantity has a limit as d→∞ as asserted by the last part of Theorem 7.
Assume now that the limits exist for all k′ ≤ k − 1. We have

P(Xd,r = k) =
1
k

P(X(r)
d−1,r = k − 1) =

1
k

∑
(k1,k2,...,kr)

∏
1≤i≤r

P(Xd−1,r = ki),

where the sum is over all partitions (k1, k2, ..., kr) with ki ≥ 0,
∑

1≤i≤r ki = k − 1. Since ki ≤ k − 1 for
each i, by the inductive assumption the limits limd→∞ P(Xd−1,r = ki) exist. The same assertion then
follows for P(Xd,r = k) and the proof is complete.

Define X∞,r by P(X∞,r = k) = limd→∞ P(Xd,r = k). We need to show that
∑

k P(X∞,r = k) = 1.
Fix ε > 0 and K > 1/ε. Applying Markov’s inequality to (17) we have 1 ≥

∑
0≤k≤K P(Xd,r = k) ≥

1− 1/K > 1− ε. Then the same applies to the limits as d→∞. The assertion then follows.
The proof for the matching case is similar.

The recursion properties (15) which are used to define {Xd,r}, {Yd,r} carry on to X∞,r, Y∞,r, which,
as a result, satisfy recursive distributional equations.

Lemma 10. The following equality in distribution takes place

X∞,r
D= (X(r)

∞,r + 1)B(X(r)
∞,r + 1),

Y∞,r
D=
(

(Y∞,r + 1)B(Y∞,r + 1)
)(r)

.
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Proof. Applying Lemma 9, for each k > 0,

P(X∞,r = k) = lim
d→∞

P(Xd,r = k)

= lim
d→∞

1
k

∑
(k1,...,kr)

∏
1≤l≤r

P(Xd−1,r = kl)

=
1
k

∑
(k1,...,kr)

∏
1≤l≤r

P(X∞,r = kl),

where the sums are over all partitions (k1, ..., kr), kl ≥ 0,
∑

1≤l≤r kl = k − 1. But the last expression is

exactly the probability that (X(r)
∞,r +1)B(X(r)

∞,r +1) takes value k. The assertion then follows. A similar
argument shows the identity for Y∞,r.

4.4 Solving for the distribution of Xd,r and Yd,r

We now show that φX∞,r(s) and φY∞,r(s) have a very simple explicit form. We first show that they
satisfy simple differential equations.

Lemma 11. For every s ∈ [0, 1)

d

ds
φX∞,r(s) = φrX∞,r

(s),

d

ds
φ

1
r
Y∞,r

(s) = φY∞,r(s).

Proof. We first prove the identity for X∞,r. Applying Lemma 10,

φX∞,r(s) = P(X∞,r = 0) +
∞∑
k=0

1
k + 1

sk+1P(X(r)
∞,r = k).

Thus since the p.g.f. of any non-negative integer-valued r.v. is differentiable on [0,1), and can be
differentiated term-by-term, we obtain

d

ds
φX∞,r(s) =

d

ds

∞∑
k=0

1
k + 1

sk+1P(X(r)
∞,r = k)

=
∞∑
k=0

skP(X(r)
∞,r = k)

= φrX∞,r
(s).

As for for Y∞,r we have from Lemma 10 that φ
1
r
Y∞,r

(s) is equal to the p.g.f. of (Y∞,r + 1)B(Y∞,r + 1).
Therefore

d

ds
φ

1
r
Y∞,r

(s) =
∞∑
k=0

d

ds

1
k + 1

sk+1P(Y∞,r = k)

= φY∞,r(s).
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We now solve for the p.g.f. of X∞,r, Y∞,r.

Proposition 2. For every s ∈ [0, 1],

φX∞,r(s) = (r − (r − 1)s)−
1

r−1

φY∞,r(s) = (r − (r − 1)s)−
r

r−1 .

Proof. Applying the chain rule and Lemma 11

d

ds
φ−(r−1)
∞,r

(s) = −(r − 1)(φX∞,r(s))−r
d

ds
φX∞,r(s)

= −(r − 1)(φX∞,r(s))−rφrX∞,r
(s)

= −(r − 1).

We conclude that φX∞,r(s) = (c−(r−1)s)−
1

r−1 for some constant c for all s ∈ [0, 1). Since lims↑1 φX∞,r(s) =

φX∞,r(1) = 1, we conclude that c = r and therefore φX∞,r(s) = (r − (r − 1)s)−
1

r−1 and the required
identity is established.

Similarly, we find

d

ds
(φY∞,r(s))−

r−1
r =

d

ds

(
φ

1
r
Y∞,r

(s)
)−(r−1)

= −(r − 1)
(
φ

1
r
Y∞,r

(s)
)−r d

ds
φ

1
r
Y∞,r

(s)

= −(r − 1)(φY∞,r(s))−1φY∞,r(s)
= −(r − 1).

Using this and φY∞,r(1) = 1 the required identity is established.

4.5 Proofs of Theorems 1 and 2

We now have all the necessary results to complete the proofs of our main theorems.

Proof of Theorem 1. Applying the last part of Lemma 9 and the Dominated Convergence Theorem (see
[Dur96]) we have that if W D= F , then

lim
d→∞

E[W φrXd−1,r−1
(F (W ))] = E[WφrX∞,r−1

(F (W ))].

Here W serves as a dominating random variable. Applying Proposition 2 the right-hand side of this
expression equals

E[W (r − 1− (r − 2)F (W ))−
r

r−2 ] =
∫ ∞

0
x
(

(r − 1)− (r − 2)F (x)
)− r

r−2
f(x)dx.

Now observe that E[W [IG]] =
∑

i∈V (G) E[WiI(i ∈ IG)]. Applying part (11) of Theorem 7, Lemma 8,
and letting d→∞ we obtain the result.

Proof of Theorem 2. Observe that E[W [MG]] =
∑

e∈E(G) E[WeI(e ∈ MG)]. The rest of the proof is
similar to the case for independent sets.
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5 The variance of GREEDY

In this section we prove our main results on the variance of GREEDY .

Proof of Theorem 3. Since W [IG] =
∑

i∈V WiI(i ∈ IG), we have

V ar(W [IG]) =
∑
i,j∈V

(
E[WiWjI(i, j ∈ IG)]− E[WiI(i ∈ IG)]E[WjI(j ∈ IG)]

)
=
∑
i∈V

(
E[W 2

i I(i ∈ IG)]− (E[WiI(i ∈ IG)])2
)

+
∑
i∈V

∑
d≥0

∑
j∈Nd+1(i)\Nd(i)

(
E[WiWjI(i, j ∈ IG)]− E[WiI(i ∈ IG)]E[WjI(j ∈ IG)]

)
≤ nE[W 2]

+
∑
i∈V

∑
d≥0

∑
j∈Nd+1(i)\Nd(i)

(
E[WiWjI(i, j ∈ IG)]− E[WiI(i ∈ IG)]E[WjI(j ∈ IG)]

)
. (18)

Our proof approach is to show that the terms in parenthesis are sufficiently close to each other, provided
that the distance between nodes i and j is sufficiently large.

Fix an arbitrary i ∈ V and j ∈ Nd+1(i)\Nd(i) for d ≥ 2. Recall the notion of the influence resistant
subgraph from Section 3. Denote IR(N(i)) and IR(N(j)) by Hi and Hj for short. Let l = bd/2c − 1.
Consider the event E ,

(
Hi ⊂ Nl(i) ∧Hj ⊂ Nl(j)

)c.
We have

E[WiWjI(i, j ∈ IG)] = E[WiWjI(i, j ∈ IG, Hi ⊂ Nl(i), Hj ⊂ Nl(j))]
+ E[WiWjI(i, j ∈ IG)I(E)]. (19)

We first analyze the second summand.

E[WiWjI(i, j ∈ IG)I(E)] ≤ E[WiWjI(E)]
≤ E[WiWj(1− I(Hi ⊂ Nl(i)))] + E[WiWj(1− I(Hj ⊂ Nl(j)))]
= E[Wi(1− I(Hi ⊂ Nl(i)))]E[Wj ] + E[Wj(1− I(Hj ⊂ Nl(j)))]E[Wi]

where the equality holds since both Wi and the event Hi ⊂ Nl(i) depend only on the weight configuration
inside Nl+1(i) which does not contain node j and vice verse. Next, applying the second part of Lemma 4
and Lemma 6 we have

E[Wi(1− I(Hi ⊂ Nl(i)))] = E[Wi](1− P(Hi ⊂ Nl(i)))

≤ E[Wi]r(r − 1)l/(l + 1)!. (20)

Thus we obtain

E[WiWjI(i, j ∈ IG)I(E)] ≤ 2E[Wi]E[Wj ]r(r − 1)l/(l + 1)!

= 2E[W ]2r(r − 1)l/(l + 1)! (21)

We now analyze the first summand in (19). Let Ĥi = Hi∩Nl(i), Ĥj = Hj∩Nl(j). Namely, Ĥi and Ĥj are
the subgraphs of Nl(i) and Nl(j) induced by nodes V (Hi)∩V (Nl(i)) and V (Hj)∩V (Nl(j)), respectively.
Observe that the random variables WiI(i ∈ IG(Ĥi), Ĥi = Hi) and WjI(j ∈ IG(Ĥj), Ĥj = Hj) are
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independent. Indeed, since I(Ĥi = Hi) = I(Hi ∈ Nl(i)) and I(Ĥj = Hj) = I(Hj ∈ Nl(j)), they
are completely determined by the weights inside Nl+1(i) and Nl+1(j) (respectively) and those do not
intersect. Therefore

E[WiWjI(i ∈ IG(Ĥi), Ĥi = Hi, j ∈ IG(Ĥj), Ĥj = Hj)]

= E[WiI(i ∈ IG(Ĥi), Ĥi = Hi)]E[WjI(j ∈ IG(Ĥj), Ĥj = Hj)] (22)

On the other hand

I(i ∈ IG(Ĥi), Ĥi = Hi) = I(i ∈ IG(Ĥi), Hi ⊂ Nl(i))
= I(i ∈ IG, Hi ⊂ Nl(i))

where the second equality follow from Lemma 5. Similarly we obtain

I(j ∈ IG(Ĥj), Ĥj = Hj) = I(j ∈ IG, Hj ⊂ Nl(j)).

Thus, we can rewrite (22) as

E[WiWjI(i, j ∈ IG, Hi ⊂ Nl(i), Hj ⊂ Nl(j))]
= E[WiI(i ∈ IG, Hi ⊂ Nl(i))]E[WjI(j ∈ IG, Hj ⊂ Nl(j))].

We recognize the left-hand side of this equation as the first summand in (19). Returning to (19) we
obtain ∣∣∣E[WiWjI(i, j ∈ IG)]− E[WiI(i ∈ IG, Hi ⊂ Nl(i))]E[WjI(j ∈ IG, Hj ⊂ Nl(j))]

∣∣∣
≤2E[W ]2r(r − 1)l/(l + 1)!. (23)

Also we have

E[WiI(i ∈ IG)] = E[WiI(i ∈ IG, Hi ⊂ Nl(i))] + E[WiI(i ∈ IG(Hi))(1− I(Hi ⊂ Nl(i)))],

and

E[WiI(i ∈ IG(Hi))(1− I(Hi ⊂ Nl(i)))] ≤ E[Wi(1− I(Hi ⊂ Nl(i)))] ≤ E[W ]r(r − 1)l/(l + 1)!,

where the second inequality is (20). It follows∣∣∣E[WiI(i ∈ IG)]− E[WiI(i ∈ IG, Hi ⊂ Nl(i))]
∣∣∣ ≤ min(E[W ]r(r − 1)l/(l + 1)!,E[WiI(i ∈ IG)]).

A similar inequality holds for j. Putting these two bounds together we obtain∣∣∣E[WiI(i ∈ IG)]E[WjI(j ∈ IG)]− E[WiI(i ∈ IG, Hi ⊂ Nl(i))]E[WjI(j ∈ IG, Hj ⊂ Nl(j))]
∣∣∣

≤ 2E[W ]2r(r − 1)l/(l + 1)!,

where trivial bounds E[WiI(i ∈ IG)] ≤ E[Wi],E[WjI(j ∈ IG)] ≤ E[Wj ] are used. Combining with
bound (23) we obtain ∣∣∣E[WiWjI(i, j ∈ IG)]− E[WiI(i ∈ IG)]E[WjI(j ∈ IG)]

∣∣∣
≤ 4E[W ]2r(r − 1)l/(l + 1)!

= 4
r

r − 1
E[W 2](r − 1)l+1/(l + 1)!.
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We now use this estimate in (18). Observe that |Nd+1(i) \Nd(i)| ≤ r(r− 1)d. Recall that l+ 1 = bd/2c.
Then for each i, considering the cases of odd and even d separately and observing that the estimate is
also trivially an upper bound for the d = 0, 1 cases, the double sum

∑
d≥0

∑
j∈Nd+1(i)\Nd(i) in (18) is

upper bounded by

4
r

r − 1
E[W 2]

∑
d≥0

r(r − 1)d
(r − 1)b

d
2
c

(bd/2c)!
= 4

r2

r − 1
E[W 2]

∑
k≥0

(r − 1)3k

k!
+ 4

r2

r − 1
E[W 2]

∑
k≥0

(r − 1)3k+1

k!

< 8
r2

r − 1
E[W 2]

∑
k≥0

(r − 1)3k+1

k!

< 8E[W 2]r2 exp((r − 1)3).

Our final upper bound on V ar(W [IG]) becomes

nE[W 2] + 8nE[W 2]r2 exp((r − 1)3) < 9nE[W 2]r2 exp((r − 1)3)

This completes the proof. The proof for matchings follows similarly, and is omitted.

6 Numerical results

In this section we numerically evaluate the performance of GREEDY in several settings, and compare
our results to the prior work. We first compare our bound, marked NEW in the table below, on the
cardinality (normalized by the number of nodes) of a MIS in an r-regular graph of girth at least g
(Corollary 4) to the previous bounds in [She91] and [LW07]. The bounds of [She91] are coming from
their Theorem 3 (when g < 127) and their Theorem 4 (when g ≥ 127), with wi = 1 for all i (their
formulas involve a notion of weighted girth). The bounds of [LW07] are coming from their Table 2.
Omitted values are those for which no corresponding results are given or the given bounds are trivial.
Certain values of the form 2k + 3 are emphasized to be compatible with the Table 2 given in [LW07].
All values are rounded up to the nearest thousandth. As we see our new bounds are the strongest for

Table 1: Comparison of bounds for the cardinality of MIS in r-regular large-girth graphs
g\r 5 7 10

NEW [She91] [LW07] NEW [She91] [LW07] NEW [She91] [LW07]
50 .302 .288 - .256 .239 - .160 .194 -
100 .302 .294 - .256 .243 - .211 .197 -
203 .302 .304 .262 .256 .250 - .211 .201 .169
403 .302 .306 .277 .256 .251 - .211 .202 .184
2003 .302 .308 .294 .256 .252 - .211 .203 .202

many calculated values of g and r ≥ 7. Recall that for r ≥ 7, our bounds are asymptotically (as g →∞)
equivalent to those of [LW07], and superior to those of [She91]. Note that our bounds converge to their
limit much faster than the bounds of [She91] and [LW07].
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We now give our bounds for the cardinality of a MM (also normalized by the number of nodes) in
an r-regular graph of girth at least g (Corollary 6). These are the first results for MM in this setting.

Table 2: Bounds for the cardinality of MM in r-regular large-girth graphs
g\r 3 4 5 6 7 10 13
25 .437 .427 - - - - -
40 .438 .444 .450 .454 .424 - -
50 .438 .444 .450 .455 .459 - -
75 .438 .444 .450 .455 .459 .468 .449
100 .438 .444 .450 .455 .459 .468 .473

Note that as r increases, the asymptotic (in r) size of a MM approaches that of a perfect matching
(n2 ), as expected from Corollary 5.

We now give our results for MWIS and MWM with i.i.d Exp(1) (exponentially distributed with
parameter 1) weights, and compare to the results given in [GNS08]. The GREEDY columns show
the expected asymptotic weight (normalized by the number of nodes) of the weighted independent set
and matching returned by GREEDY as given in Theorems 1 and 2, while the [GNS08] columns reflect
the expected asymptotic weight of a true MWIS and MWM as computed in [GNS08]. We only give
results for r-regular graph with limiting girth, as no results for fixed girth are given in [GNS08].

Table 3: Exact MWIS and MWM vs. GREEDY for r-regular large-girth graphs with i.i.d Exp(1)
weights

MWIS MWM

r [GNS08] GREEDY [GNS08] GREEDY

3 .6077 .5966 .7980 .7841
4 .56311 .5493 .9022 .8826
5 - .5119 .9886 .9643
10 - .3967 1.282 1.242

In all cases, GREEDY is nearly optimal.

7 Conclusion

We have provided new results for the performance of a simple randomized greedy algorithm, GREEDY ,
for finding large independent sets and matchings in regular graphs with large finite girth. This provided
new constructive and existential results in several settings. In addition we established concentration
results for the values produced by GREEDY . One of the interesting insights from this work is that
GREEDY exhibits a correlation decay property, which aids greatly in our analysis.
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