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Problem Setup

Unknown Nonparametric
Reward Function
𝑟𝑡 = 𝑓𝑎𝑡 𝑥𝑡 + 𝜖𝑡

Agent with policy
𝜋𝑡: 0,1 → 𝐴

Stochastic context
𝑥𝑡 ∼ 𝑈 0,1

Reward 𝑟𝑡

Action  
𝑎𝑡 = 𝜋𝑡 𝑥𝑡

•Optimal policy π∗(x) = arg maxa∈A fa(x)
•Want to minimize expected regret over time horizon T

E
[ T∑
t=1

(
fπ∗(xt)(xt)− fat(xt)

)]

Suppose |A| large but finite, with underlying unknown “simple”
structure (e.g. drawn from metric space). Can algorithm exploit
structure and perform better than treating all arms separately?

Algorithm for Known Metric [Slivkins 2014]

Zooming algorithm exploits structure via a known metric:
•Assume reward function is Lipschitz with respect to metric

|fa(x)− fa′(x′)| ≤ LD((x, a), (x′, a′))
•Key pieces: UCB + Adaptive discretization (Zooming)
•Maintain partition and Upper Confidence Bound estimates
•Select arm in region that maximizes UCB
•Subpartition region if confidence radius ≤ bias
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Algorithm for Unknown Metric [this paper]

ApproxZooming algorithm estimates clustering between arms
•Maintain UCB estimates for reward in region B

UCBt(B) = µ̂t(B) + L diam(B) +
√√√√√σ2 ln(T )
nt(B)

•Select “relevant” region that maximizes UCB
→ exception: flagged regions get priority
•Flag to subpartition when confidence radius ≤ bias,

nt(B) ≥
(

σ2 ln(T )
L2 diam(B)

)2

•When flagged region collects sufficient data, subpartition by
clustering arms according to estimated L2 distance

DB(a, b) =
√√√√√ 1
|XB|

∫
x∈XB

(f̂a(x)− f̂b(x))2dx

where f̂a(x) is estimated via k-nearest neighbor

Inutition

Can one learn distances between arms efficiently?

𝑟4 * *
𝑟1 * *

* *
𝑟3 *

* *
𝑟2 * *

* 𝑟𝑡
* * *

Contexts arrive over time
𝑥1 𝑥2 𝑥3 𝑥4 ⋯ 𝑥𝑡

𝑎 Estimate መ𝑓𝑎(𝑥) using data collected from arm 𝑎

Nonparametric minimax rates, assume context space is ⊆ 0,1 𝑑:

inf
መ𝑓𝑎
sup
𝑓𝑎

𝔼 sup
𝑥

መ𝑓𝑎 𝑥 − 𝑓𝑎 𝑥
2

= ෩Ω(𝑁−2/(𝑑+2))

inf
መ𝑓𝑎
sup
𝑓𝑎

𝔼 መ𝑓𝑎 2
− 𝑓𝑎 2

2
= ෩Ω max 𝑁−1/2, 𝑁−4/(𝑑+4)

•Nonparametric minimax rates (for xt ∼ U([0, 1]d))
inf
f̂a

sup
fa

E
[
sup
x
|f̂a(x)− fa(x)|2

]
= Ω̃(N−2/(d+2))

inf
f̂a

sup
fa

E
[
(‖f̂a‖2 − ‖fa‖2)2] = Ω̃(max(N−1/2, N−4/(d+4))

•Maintain partition of [0, 1]×A s.t. for each region B,
∀ (x, a), (x, b) ∈ B, |fa(x)− fb(x)| ≤ L diam(B)
•With high prob, L diam(B) + 2 conf radius ≤ min gap
implies region B is never selected again because
UCBt(B) ≤ UCBt(B∗) for B∗ containing optimal
•A selected region of diameter ε incurs regret at most O(ε),
and it is played at most O(ε−2) times before flagged
•O(|AB|ε−2) samples collected to learn clustering

Upper Bound on Regret

Algorithm achieves regret bounded by

R(T ) ≤ C inf
ε0

(
ε0T +

∑
ε≥ε0

Mε

ε
ln(T |A|)

)

whereMε denotes number of ε-optimal context-arms pairs with con-
text discretization of ε. Final regret depends on appropriate “zoom-
ing dimension” with respect to discrete metric over arms.
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Simulations

• 200 arms, each a ∈ A associated to θa ∈ [0, 1]
•Reward fa(x) = g(x, θa) = 1−

∣∣∣x− 4 minz∈{0,0.5,1} |θa − z|
∣∣∣

𝜃𝑎𝑥

𝑓𝑎(𝑥)

•Oracle Metric 1: d1(a, a′) = |θa − θa′|
•Oracle Metric 2: d2(a, a′) =

( ∫ 1
0 (fa(x)− fa′(x))2dx

)1/2

•Noisy estimated Metric: d̂3(a, a′) =
( ∫ 1

0 (f̂a(x)− f̂a′(x))2dx
)1/2
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Noisy Adaptive Discretization
Learn Actions Separately 
Adaptive Disc. w/Oracle metric 1
Adaptive Disc. w/Oracle metric 2

Our method eventually performs better than naïve oracle metric!
Given covariates, could we learn the optimal metric from data?


