PSEUDOSPECTRA AND OPTIMIZATION

Adrian Lewis

Cornell University

April 6, 2005

orie.cornell.edu/~aslewis

Technion: Lecture 2 Joint work with J. Burke and M. Overton
1. OUTLINE

• Dynamics and the spectral radius
1. OUTLINE

- Dynamics and the spectral radius
- Transient peaks and pseudospectra:
1. OUTLINE

- Dynamics and the spectral radius
- Transient peaks and pseudospectra: the Kreiss Matrix Theorem
1. OUTLINE

• Dynamics and the spectral radius
• Transient peaks and pseudospectra: the Kreiss Matrix Theorem
• Visualizing, computing, and optimizing pseudospectra
1. OUTLINE

• Dynamics and the spectral radius
• Transient peaks and pseudospectra: the Kreiss Matrix Theorem
• Visualizing, computing, and optimizing pseudospectra
• Lipschitz properties
1. OUTLINE

• Dynamics and the spectral radius
• Transient peaks and pseudospectra: the Kreiss Matrix Theorem
• Visualizing, computing, and optimizing pseudospectra
• Lipschitz properties
• Distance to uncontrollability:
1. **OUTLINE**

- Dynamics and the spectral radius
- Transient peaks and pseudospectra: the Kreiss Matrix Theorem
- Visualizing, computing, and optimizing pseudospectra
- Lipschitz properties
- Distance to uncontrollability: Milnor and von-Neumann-Wigner
2. THE SPECTRAL RADIUS

Question Given a family of square matrices $A \in \Omega$, how should we choose A to force $A^n \to 0$ quickly as $n \to \infty$?
2. THE SPECTRAL RADIUS

Question Given a family of square matrices $A \in \Omega$, how should we choose A to force $A^n \to 0$ quickly as $n \to \infty$?

Theorem The rate of decay

\[
\inf\{\mu : A^n = O(\mu^n) \text{ as } n \to \infty\}
\]
2. **THE SPECTRAL RADIUS**

Question Given a family of square matrices $A \in \Omega$, how should we choose A to force $A^n \to 0$ quickly as $n \to \infty$?

Theorem The rate of decay

$$\inf\{\mu : A^n = O(\mu^n) \text{ as } n \to \infty\}$$

equals the **spectral radius**
2. THE SPECTRAL RADIUS

Question Given a family of square matrices $A \in \Omega$, how should we choose A to force $A^n \to 0$ quickly as $n \to \infty$?

Theorem The rate of decay

$$\inf\{\mu : A^n = O(\mu^n) \text{ as } n \to \infty\}$$

equals the **spectral radius**

$$\rho(A) = \max\{|\lambda| : \lambda \in \Lambda(A)\},$$
2. THE SPECTRAL RADIUS

Question Given a family of square matrices $A \in \Omega$, how should we choose A to force $A^n \to 0$ quickly as $n \to \infty$?

Theorem The rate of decay

$$\inf\{\mu : A^n = O(\mu^n) \text{ as } n \to \infty\}$$

equals the spectral radius

$$\rho(A) = \max\{|\lambda| : \lambda \in \Lambda(A)\},$$

where $\Lambda(A) = \{\text{eigenvalues of } A\}$ is the spectrum.
2. THE SPECTRAL RADIUS

Question Given a family of square matrices $A \in \Omega$, how should we choose A to force $A^n \to 0$ quickly as $n \to \infty$?

Theorem The rate of decay

$$\inf\{\mu : A^n = O(\mu^n) \text{ as } n \to \infty\}$$

equals the **spectral radius**

$$\rho(A) = \max\{|\lambda| : \lambda \in \Lambda(A)\},$$

where $\Lambda(A) = \{\text{eigenvalues of } A\}$ is the **spectrum**.

Example

The spectral radius of

$$A(t) = \begin{bmatrix} k & 1 \\ t & k - t \end{bmatrix}$$

(with k slightly less than 1)
2. THE SPECTRAL RADIUS

Question Given a family of square matrices $A \in \Omega$, how should we choose A to force $A^n \to 0$ quickly as $n \to \infty$?

Theorem The rate of decay

$$\inf \{ \mu : A^n = O(\mu^n) \text{ as } n \to \infty \}$$

equals the spectral radius

$$\rho(A) = \max \{|\lambda| : \lambda \in \Lambda(A)\},$$

where $\Lambda(A) = \{\text{eigenvalues of } A\}$ is the spectrum.

Example

The spectral radius of

$$A(t) = \begin{bmatrix} k & 1 \\ t & k - t \end{bmatrix}$$

(with k slightly less than 1) is minimized at $t = 0$.
3. ROBUSTNESS AND TRANSIENT PEAKS

But

$$A(0) = \begin{bmatrix} k & 1 \\ 0 & k \end{bmatrix}$$

may be unsatisfactory.
3. ROBUSTNESS AND TRANSIENT PEAKS

But

\[A(0) = \begin{bmatrix} k & 1 \\ 0 & k \end{bmatrix} \]

may be unsatisfactory.

Difficulty I: \(\rho(A(t)) \) is highly sensitive to perturbation at \(t = 0 \) (nonlipschitz).
3. ROBUSTNESS AND TRANSIENT PEAKS

But

$$A(0) = \begin{bmatrix} k & 1 \\ 0 & k \end{bmatrix}$$

may be unsatisfactory.

Difficulty I: $\rho(A(t))$ is highly sensitive to perturbation at $t = 0$ (nonlipschitz).
3. ROBUSTNESS AND TRANSIENT PEAKS

But

\[A(0) = \begin{bmatrix} k & 1 \\ 0 & k \end{bmatrix} \]

may be unsatisfactory.

Difficulty I: \(\rho(A(t)) \) is highly sensitive to perturbation at \(t = 0 \) (nonlipschitz).

Difficulty II: The trajectory \(\{A(0)^n\} \) has a big transient peak:
3. ROBUSTNESS AND TRANSIENT PEAKS

But

\[A(0) = \begin{bmatrix} k & 1 \\ 0 & k \end{bmatrix} \]

may be unsatisfactory.

Difficulty I: \(\rho(A(t)) \) is highly sensitive to perturbation at \(t = 0 \) (nonlipschitz).

Difficulty II: The trajectory \(\{A(0)^n\} \) has a big transient peak:

\[
\begin{bmatrix}
\frac{n}{n+1} & 1 \\
0 & \frac{n}{n+1}
\end{bmatrix}^n \sim e^{-1} \begin{bmatrix} 1 & n + 1 \\ 0 & 1 \end{bmatrix}
\text{ for large } n.
\]
3. ROBUSTNESS AND TRANSIENT PEAKS

But

\[A(0) = \begin{bmatrix} k & 1 \\ 0 & k \end{bmatrix} \]

may be unsatisfactory.

Difficulty I: \(\rho(A(t)) \) is highly sensitive to perturbation at \(t = 0 \) (nonlipschitz).

Difficulty II: The trajectory \(\{A(0)^n\} \) has a big transient peak:

\[
\begin{pmatrix}
\frac{n}{n+1} & 1 \\
0 & \frac{n}{n+1}
\end{pmatrix}^n \sim e^{-1} \begin{pmatrix} 1 & n + 1 \\ 0 & 1 \end{pmatrix}
\]

for large \(n \).

One difficulty is the **multiple eigenvalue**.
3. ROBUSTNESS AND TRANSIENT PEAKS

But

$$A(0) = \begin{bmatrix} k & 1 \\ 0 & k \end{bmatrix}$$

may be unsatisfactory.

Difficulty I: $\rho(A(t))$ is highly sensitive to perturbation at $t = 0$ (nonlipschitz).

Difficulty II: The trajectory $\{A(0)^n\}$ has a big transient peak:

$$\begin{bmatrix} \frac{n}{n+1} & 1 \\ 0 & \frac{n}{n+1} \end{bmatrix}^n \sim e^{-1} \begin{bmatrix} 1 & n + 1 \\ 0 & 1 \end{bmatrix}$$

for large n.

One difficulty is the **multiple eigenvalue**. But this is **typical** at optimal solutions of spectral radius minimization problems.
4. PSEUDOSPECTRA

A powerful tool to visualize robust properties of eigenvalues:
4. PSEUDOSPECTRA

A powerful tool to visualize robust properties of eigenvalues:

\[\Lambda_\varepsilon(A) = \bigcup \Lambda(X) \quad \text{subject to} \quad \|X - A\| \leq \varepsilon \]
4. PSEUDOSPECTRA

A powerful tool to visualize robust properties of eigenvalues:

\[\Lambda_\epsilon(A) = \bigcup_{\|X-A\| \leq \epsilon} \Lambda(X) = \{ z \in \mathbb{C} : \sigma_{\min}(A - zI) \leq \epsilon \} , \]
4. PSEUDOSPECTRA

A powerful tool to visualize robust properties of eigenvalues:

\[\Lambda_\epsilon(A) = \bigcup \{ \Lambda(X) \mid \|X - A\| \leq \epsilon \} = \{ z \in \mathbb{C} : \sigma_{\text{min}}(A - zI) \leq \epsilon \}, \]

where the smallest singular value

\[\sigma_{\text{min}}(X) = \min\{ \|Xu\| : \|u\| = 1 \}. \]
4. **PSEUDOSPECTRA**

A powerful tool to visualize robust properties of eigenvalues:

\[\Lambda_\epsilon(A) = \bigcup \Lambda(X) = \{ z \in \mathbb{C} : \sigma_{\text{min}}(A - zI) \leq \epsilon \}, \]

where the **smallest singular value**

\[\sigma_{\text{min}}(X) = \min\{\|Xu\| : \|u\| = 1\}. \]

Pseudospectra resolve Difficulty II (transient peaks)…
4. PSEUDOSPECTRA

A powerful tool to visualize robust properties of eigenvalues:

\[\Lambda_{\epsilon}(A) = \bigcup_{\|X - A\| \leq \epsilon} \Lambda(X) = \{ z \in \mathbb{C} : \sigma_{\text{min}}(A - zI) \leq \epsilon \}, \]

where the smallest singular value

\[\sigma_{\text{min}}(X) = \min \{ \|Xu\| : \|u\| = 1 \}. \]

Pseudospectra resolve Difficulty II (transient peaks)...

Kreiss Matrix Theorem (1962)

\[A^n < K \rho^n \] for all \(n \), with \(K \) not too large
4. **PSEUDOSPECTRA**

A powerful tool to visualize robust properties of eigenvalues:

\[\Lambda_\epsilon(A) = \bigcup_{\|X - A\| \leq \epsilon} \Lambda(X) = \{z \in \mathbb{C} : \sigma_{\text{min}}(A - zI) \leq \epsilon\}, \]

where the *smallest singular value*

\[\sigma_{\text{min}}(X) = \min\{\|Xu\| : \|u\| = 1\}. \]

Pseudospectra resolve Difficulty II (transient peaks)...

Kreiss Matrix Theorem (1962)

\[A^n < K \rho^n \text{ for all } n, \text{ with } K \text{ not too large } \iff \max\{|\lambda| : \lambda \in \Lambda_\epsilon(A)\} < \rho, \text{ with } \epsilon \text{ not too small.} \]
4. **PSEUDOSPECTRA**

A powerful tool to visualize robust properties of eigenvalues:

\[\Lambda_\epsilon(A) = \bigcup_{\|X-A\|\leq\epsilon} \Lambda(X) = \{z \in \mathbb{C} : \sigma_{\min}(A - zI) \leq \epsilon\}, \]

where the **smallest singular value**

\[\sigma_{\min}(X) = \min\{\|Xu\| : \|u\| = 1\}. \]

Pseudospectra resolve Difficulty II (transient peaks)...

Kreiss Matrix Theorem (1962)

\[A^n < K \rho^n \text{ for all } n, \text{ with } K \text{ not too large} \iff \max\{|\lambda| : \lambda \in \Lambda_\epsilon(A)\} < \rho, \text{ with } \epsilon \text{ not too small}. \]

Analogously, in **continuous time**, \(e^{At} \to 0 \) with peaks not too large when \(\Lambda_\epsilon(A) \) lies in the left halfplane for \(\epsilon \) not too small.
5. **EXAMPLES**

Pseudospectra for a random 5×5 triangular complex matrix, plotted by [T. Wright’s EigTool](#):
5. **EXAMPLES**

Pseudospectra for a random 5×5 triangular complex matrix, plotted by **T. Wright’s EigTool**:

![Pseudospectra plot](image)
5. **EXAMPLES**

Pseudospectra for a random 5×5 triangular complex matrix, plotted by T. Wright’s EigTool:
5. **EXAMPLES**

Pseudospectra for a random 5×5 triangular complex matrix, plotted by T. Wright’s EigTool:

Demmel’s example: $A = \begin{bmatrix} 1 & 5 & 5^2 & 5^3 & 5^4 \\ 0 & 1 & 5 & 5^2 & 5^3 \\ 0 & 0 & 1 & 5 & 5^2 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
6. A NEARLY UNSTABLE MATRIX
6. A NEARLY UNSTABLE MATRIX

dim = 6
Notice $\Lambda_{.01}(A)$ extends outside the left halfplane: some “unstable” X satisfies $\|X - A\| \leq .01$.
6. **A NEARLY UNSTABLE MATRIX**

Notice $\Lambda_{.01}(A)$ extends outside the left halfplane: some “unstable” X satisfies $\|X - A\| \leq .01$.

![Graph showing transient behavior of $\|e^{At}\|$](image)
7. COMPUTING WITH PSEUDOSPECTRA

Suppose, rather than just visualizing, we want to compute pseudospectral quantities
7. COMPUTING WITH PSEUDOSPECTRA

Suppose, rather than just visualizing, we want to compute pseudospectral quantities like

$$\alpha_\epsilon(A) = \max\{\Re \lambda : \lambda \in \Lambda_\epsilon(A)\}?$$
Suppose, rather than just visualizing, we want to **compute** pseudospectral quantities like

$$\alpha_\epsilon(A) = \max \{ \text{Re } \lambda : \lambda \in \Lambda_\epsilon(A) \}.$$

Key properties of pseudopectra:
Suppose, rather than just visualizing, we want to compute pseudospectral quantities like

$$\alpha_\epsilon(A) = \max\{\Re \lambda : \lambda \in \Lambda_\epsilon(A)\}$$

Key properties of pseudopectra:

- Each component contains an eigenvalue
7. **COMPUTING WITH PSEUDOSPECTRA**

Suppose, rather than just visualizing, we want to **compute** pseudospectral quantities like

\[\alpha_\epsilon(A) = \max \{ \text{Re} \lambda : \lambda \in \Lambda_\epsilon(A) \} \]

Key properties of pseudopectra:

- Each component contains an eigenvalue (by the maximum modulus principle)
Suppose, rather than just visualizing, we want to compute pseudospectral quantities like

\[\alpha_\epsilon(A) = \max \{ \text{Re} \lambda : \lambda \in \Lambda_\epsilon(A) \} \]

Key properties of pseudopectra:

- Each component contains an eigenvalue (by the maximum modulus principle)
- Intersections with lines (or circles) are easily computable.
7. COMPUTING WITH PSEUDOSPECTRA

Suppose, rather than just visualizing, we want to compute pseudospectral quantities like

$$\alpha_\epsilon(A) = \max \{ \text{Re} \lambda : \lambda \in \Lambda_\epsilon(A) \}?$$

Key properties of pseudopectra:

- Each component contains an eigenvalue (by the maximum modulus principle)
- Intersections with lines (or circles) are easily computable.
Suppose, rather than just visualizing, we want to compute pseudospectral quantities like

$$\alpha_\epsilon(A) = \max\{\Re \lambda : \lambda \in \Lambda_\epsilon(A)\}?$$

Key properties of pseudopectra:

- Each component contains an eigenvalue (by the maximum modulus principle)
- Intersections with lines (or circles) are easily computable.

Hence a globally and quadratically convergent criss-cross algorithm for α_ϵ.
Example Where does $\Lambda_\epsilon(A)$ intersects the imaginary axis?
8. PSEUDOSPECTRA AND LINES

Example Where does \(\Lambda_\epsilon(A) \) intersects the imaginary axis?

\(iy \) (with \(y \in \mathbb{R} \)) lies on the boundary of \(\Lambda_\epsilon(A) \)
Example Where does $\Lambda_\epsilon(A)$ intersects the imaginary axis?

$i y$ (with $y \in \mathbb{R}$) lies on the boundary of $\Lambda_\epsilon(A)$

$$\Rightarrow \quad \sigma_{\min}(A - iyI) = \epsilon \quad (\ast)$$
8. PSEUDOSPECTRA AND LINES

Example Where does $\Lambda_\epsilon(A)$ intersects the imaginary axis?

$i y$ (with $y \in \mathbb{R}$) lies on the boundary of $\Lambda_\epsilon(A)$

$$\Rightarrow \sigma_{\min}(A - iyI) = \epsilon \quad (\ast)$$

$$\Rightarrow \begin{bmatrix} -\epsilon I & A - iyI \\ A^* + iyI & -\epsilon I \end{bmatrix} \text{ singular}$$
Example Where does $\Lambda_\epsilon(A)$ intersects the imaginary axis?

$i y$ (with $y \in \mathbb{R}$) lies on the boundary of $\Lambda_\epsilon(A)$

\[\Rightarrow \quad \sigma_{\min}(A - iyI) = \epsilon \quad (\ast) \]

\[\Rightarrow \begin{bmatrix} -\epsilon I & A - iyI \\ A^* + iyI & -\epsilon I \end{bmatrix} \text{ singular} \]

\[\Leftrightarrow \begin{bmatrix} -A^* - iyI & \epsilon I \\ -\epsilon I & A - iyI \end{bmatrix} \text{ singular} \]
8. PSEUDOSPECTRA AND LINES

Example Where does $\Lambda_\epsilon(A)$ intersects the imaginary axis?

$i y$ (with $y \in \mathbb{R}$) lies on the boundary of $\Lambda_\epsilon(A)$

$$\Rightarrow \sigma_{\min}(A - iyI) = \epsilon \quad (*)$$

$$\Rightarrow \begin{bmatrix} -\epsilon I & A - iyI \\ A^* + iyI & -\epsilon I \end{bmatrix} \text{ singular}$$

$$\Leftrightarrow \begin{bmatrix} -A^* - iyI & \epsilon I \\ -\epsilon I & A - iyI \end{bmatrix} \text{ singular}$$

$$\Leftrightarrow iy \text{ an eigenvalue of } \begin{bmatrix} -A^* & \epsilon I \\ -\epsilon I & A \end{bmatrix}.$$
Example Where does $\Lambda_\epsilon(A)$ intersects the imaginary axis?

$i y$ (with $y \in \mathbb{R}$) lies on the boundary of $\Lambda_\epsilon(A)$

$$\Rightarrow \sigma_{\min}(A - iyI) = \epsilon \quad (*)$$

$$\Rightarrow \begin{bmatrix} -\epsilon I & A - iyI \\ A^* + iyI & -\epsilon I \end{bmatrix} \text{ singular}$$

$$\Leftrightarrow \begin{bmatrix} -A^* - iyI & \epsilon I \\ -\epsilon I & A - iyI \end{bmatrix} \text{ singular}$$

$$\Leftrightarrow iy \text{ an eigenvalue of } \begin{bmatrix} -A^* & \epsilon I \\ -\epsilon I & A \end{bmatrix}.$$
8. PSEUDOSPECTRA AND LINES

Example Where does $\Lambda_\epsilon(A)$ intersects the imaginary axis?

$i y$ (with $y \in \mathbb{R}$) lies on the boundary of $\Lambda_\epsilon(A)$

\[\Rightarrow \quad \sigma_{\min}(A - i y I) = \epsilon \quad (\ast) \]

\[\Rightarrow \quad \begin{bmatrix} -\epsilon I & A - i y I \\ A^* + i y I & -\epsilon I \end{bmatrix} \quad \text{singular} \]

\[\Leftrightarrow \quad \begin{bmatrix} -A^* - i y I & \epsilon I \\ -\epsilon I & A - i y I \end{bmatrix} \quad \text{singular} \]

\[\Leftrightarrow \quad iy \text{ an eigenvalue of } \begin{bmatrix} -A^* & \epsilon I \\ -\epsilon I & A \end{bmatrix} . \]

So, we just need to check (\ast) for each imaginary eigenvalue of a Hamiltonian matrix.

The criss-cross algorithm for α_ϵ (available in eigtool) is fast, accurate and robust,
Example Where does $\Lambda_\epsilon(A)$ intersects the imaginary axis?

$i y$ (with $y \in \mathbb{R}$) lies on the boundary of $\Lambda_\epsilon(A)$

$$\Rightarrow \quad \sigma_{\min}(A - i y I) = \epsilon \quad (\ast)$$

$$\Rightarrow \quad \begin{bmatrix} -\epsilon I & A - i y I \\ A^* + i y I & -\epsilon I \end{bmatrix} \text{ singular}$$

$$\Leftrightarrow \quad \begin{bmatrix} -A^* - i y I & \epsilon I \\ -\epsilon I & A - i y I \end{bmatrix} \text{ singular}$$

$$\Leftrightarrow \quad iy \text{ an eigenvalue of } \begin{bmatrix} -A^* & \epsilon I \\ -\epsilon I & A \end{bmatrix}.$$

So, we just need to check (\ast) for each imaginary eigenvalue of a Hamiltonian matrix.

The criss-cross algorithm for α_ϵ (available in eigtool) is fast, accurate and robust, and also returns $\nabla \alpha_\epsilon$ (when it exists).
Example Where does $\Lambda_\epsilon(A)$ intersects the imaginary axis?

$i y$ (with $y \in \mathbb{R}$) lies on the boundary of $\Lambda_\epsilon(A)$

\[\Rightarrow \quad \sigma_{\min}(A - iyI) = \epsilon \quad (\ast) \]

\[\Rightarrow \begin{bmatrix} -\epsilon I & A - iyI \\ A^* + iyI & -\epsilon I \end{bmatrix} \text{ singular} \]

\[\Leftrightarrow \begin{bmatrix} -A^* - iyI & \epsilon I \\ -\epsilon I & A - iyI \end{bmatrix} \text{ singular} \]

\[\Leftrightarrow \quad iy \text{ an eigenvalue of } \begin{bmatrix} -A^* & \epsilon I \\ -\epsilon I & A \end{bmatrix}. \]

So, we just need to check (\ast) for each imaginary eigenvalue of a Hamiltonian matrix.

The criss-cross algorithm for α_ϵ (available in eigtool) is fast, accurate and robust, and also returns $\nabla \alpha_\epsilon$ (when it exists).

Hence nonsmooth gradient sampling for optimizing α_ϵ.
Pseudospectra resolve **Difficulty II**: the Kreiss Theorem shows

- avoiding transient peaks in \(\{ A^n \} \)
- ensuring \(\Lambda_\epsilon(A) \) lies in the unit disk (for reasonable \(\epsilon \))

are equivalent.
9. LIPSCHITZ BEHAVIOR

Pseudospectra resolve **Difficulty II**: the Kreiss Theorem shows

- avoiding transient peaks in \(\{A^n\} \)

- ensuring \(\Lambda_\epsilon(A) \) lies in the unit disk (for reasonable \(\epsilon \))

are equivalent.

Difficulty I?
9. **LIPSCHITZ BEHAVIOR**

Pseudospectra resolve **Difficulty II**: the Kreiss Theorem shows

- avoiding transient peaks in \(\{A^n\} \)
- ensuring \(\Lambda_\epsilon(A) \) lies in the unit disk (for reasonable \(\epsilon \))

are equivalent.

Difficulty I? \(A \mapsto \Lambda(A) \) isn’t locally **Lipschitz**:
9. **LIPSCHITZ BEHAVIOR**

Pseudospectra resolve **Difficulty II**: the Kreiss Theorem shows

- avoiding transient peaks in \(\{ A^n \} \)
- ensuring \(\Lambda_\epsilon(A) \) lies in the unit disk (for reasonable \(\epsilon \))

are equivalent.

Difficulty I? \(A \mapsto \Lambda(A) \) isn’t locally **Lipschitz**: no \(k \) satisfies

\[
d(\Lambda(X), \Lambda(Y)) \leq k\|X - Y\| \quad \text{for all } X, Y \text{ near } A,
\]
9. **LIPSCHITZ BEHAVIOR**

Pseudospectra resolve **Difficulty II**: the Kreiss Theorem shows

- avoiding transient peaks in \(\{A^n\} \)
- ensuring \(\Lambda_\epsilon(A) \) lies in the unit disk (for reasonable \(\epsilon \))

are equivalent.

Difficulty I? \(A \mapsto \Lambda(A) \) isn’t locally **Lipschitz**: no \(k \) satisfies

\[
d(\Lambda(X), \Lambda(Y)) \leq k\|X - Y\| \quad \text{for all } X, Y \text{ near } A,
\]

where the Hausdorff distance between \(U, V \subset \mathbb{C} \) is

\[
d(U, V) = \max \left\{ \sup_{u \in U} \inf_{v \in V} |u - v|, \sup_{v \in V} \inf_{u \in U} |v - u| \right\}.
\]
9. **LIPSCHITZ BEHAVIOR**

Pseudospectra resolve **Difficulty II**: the Kreiss Theorem shows

- avoiding transient peaks in \(\{A^n\} \)
- ensuring \(\Lambda_\epsilon(A) \) lies in the unit disk (for reasonable \(\epsilon \))

are equivalent.

Difficulty I? \(A \mapsto \Lambda(A) \) isn’t locally **Lipschitz**: no \(k \) satisfies

\[
d(\Lambda(X), \Lambda(Y)) \leq k\|X - Y\| \quad \text{for all } X, Y \text{ near } A,
\]

where the Hausdorff distance between \(U, V \subset \mathbb{C} \) is

\[
d(U, V) = \max \left\{ \sup_{u \in U} \inf_{v \in V} |u - v|, \sup_{v \in V} \inf_{u \in U} |v - u| \right\}.
\]

What about the pseudospectral map \(A \mapsto \Lambda_\epsilon(A) \)?
10. NONLIPSCHITZ EXAMPLE

\[A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \]
10. NONLIPSCHITZ EXAMPLE

\[A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \]

\[r = \frac{\sqrt{5} - 1}{2}. \]
10. NONLIPSCHITZ EXAMPLE

\[A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \]

\[r = \frac{\sqrt{5} - 1}{2}. \]

For small \(s \geq 0 \),
10. **NONLIPSCHITZ EXAMPLE**

\[A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \]

\[r = \frac{\sqrt{5} - 1}{2}. \]

For small \(s \geq 0 \),

\[i\Omega(\sqrt{s}) \in \Lambda_{r+s}(A) \]
10. NONLIPSCHITZ EXAMPLE

\[
A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}
\]

\[
r = \frac{\sqrt{5} - 1}{2}.
\]

For small \(s \geq 0 \),

\[
i\Omega(\sqrt{s}) \in \Lambda_{r+s}(A) = \bigcup_{\|X-A\| \leq s} \Lambda_r(X)
\]
10. **NONLIPSCHITZ EXAMPLE**

\[A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \]

\[r = \frac{\sqrt{5} - 1}{2}. \]

For small \(s \geq 0 \),

\[i\Omega(\sqrt{s}) \in \Lambda_{r+s}(A) = \bigcup_{\|X-A\| \leq s} \Lambda_r(X) \]

so \(\exists A_s \) with \(\|A_s - A\| \leq s \) and \(i\Omega(\sqrt{s}) \in \Lambda_r(A_s) \).
10. NONLIPSCHITZ EXAMPLE

\[A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \]

\[r = \frac{\sqrt{5} - 1}{2}. \]

For small \(s \geq 0 \),

\[i\Omega(\sqrt{s}) \in \Lambda_{r+s}(A) = \bigcup_{\|X-A\| \leq s} \Lambda_r(X) \]

so \(\exists A_s \text{ with } \|A_s - A\| \leq s \text{ and } i\Omega(\sqrt{s}) \in \Lambda_r(A_s) \). Hence

\[d(\Lambda_r(A_s), \Lambda_r(A)) \geq d(i\Omega(\sqrt{s}), \Lambda_r(A)) \]
A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}
\quad r = \frac{\sqrt{5} - 1}{2}.

For small \(s \geq 0 \),

\[i\Omega(\sqrt{s}) \in \Lambda_{r+s}(A) = \bigcup \{ \Lambda_r(X) : \|X - A\| \leq s \} \]

so \(\exists A_s \) with \(\|A_s - A\| \leq s \) and \(i\Omega(\sqrt{s}) \in \Lambda_r(A_s) \). Hence

\[d(\Lambda_r(A_s), \Lambda_r(A)) \geq d(i\Omega(\sqrt{s}), \Lambda_r(A)) = \Omega(\sqrt{s}). \]
10. NONLIPSCHITZ EXAMPLE

\[A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \]

\[r = \frac{\sqrt{5} - 1}{2} \cdot \]

For small \(s \geq 0 \),

\[i \Omega(\sqrt{s}) \in \Lambda_{r+s}(A) = \bigcup_{\|X-A\| \leq s} \Lambda_r(X) \]

so \(\exists A_s \) with \(\|A_s - A\| \leq s \) and \(i \Omega(\sqrt{s}) \in \Lambda_r(A_s) \). Hence

\[d(\Lambda_r(A_s), \Lambda_r(A)) \geq d(i \Omega(\sqrt{s}), \Lambda_r(A)) = \Omega(\sqrt{s}) \]

Theorem Typically (Arnold), all eigenspaces of \(A \) are one-dimensional.
10. **NONLIPSCHITZ EXAMPLE**

\[A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \]

\[r = \frac{\sqrt{5} - 1}{2}. \]

For small \(s \geq 0 \),

\[i \Omega(\sqrt{s}) \in \Lambda_{r+s}(A) = \bigcup_{\|X-A\| \leq s} \Lambda_r(X) \]

so \(\exists A_s \) with \(\|A_s - A\| \leq s \) and \(i \Omega(\sqrt{s}) \in \Lambda_r(A_s) \). Hence

\[d(\Lambda_r(A_s), \Lambda_r(A)) \geq d(i \Omega(\sqrt{s}), \Lambda_r(A)) = \Omega(\sqrt{s}). \]

Theorem Typically (Arnold), all eigenspaces of \(A \) are one-dimensional. Then, \(\Lambda_\epsilon \) is Lipschitz around \(A \) for all small \(\epsilon > 0 \).
11. CONTROLLABILITY

A control system with state \(x \in \mathbb{C}^m \) and control \(u \),

\[
\frac{dx}{dt} = Ax + Bu,
\]
A control system with state \(x \in \mathbb{C}^m \) and control \(u \),

\[
\frac{dx}{dt} = Ax + Bu,
\]

is controllable if, for all endpoints \(x_0 \) and \(x_T \), there is a control \(u(\cdot) \) such that \(x(0) = x_0 \) and \(x(T) = x_T \).
11. CONTROLLABILITY

A control system with state \(x \in \mathbb{C}^m \) and control \(u \),

\[
\frac{dx}{dt} = Ax + Bu,
\]

is controllable if, for all endpoints \(x_0 \) and \(x_T \), there is a control \(u(\cdot) \) such that \(x(0) = x_0 \) and \(x(T) = x_T \).

Lemma (Hautus 1969) The following are equivalent:

- The complex matrix-pair \((A, B)\) is controllable;
- \([A - zI, B]\) has linearly independent rows for all \(z \in \mathbb{C} \);
11. CONTROLLABILITY

A control system with state \(x \in \mathbb{C}^m \) and control \(u \),

\[
\frac{dx}{dt} = Ax + Bu,
\]

is **controllable** if, for all endpoints \(x_0 \) and \(x_T \), there is a control \(u(\cdot) \) such that \(x(0) = x_0 \) and \(x(T) = x_T \).

Lemma (Hautus 1969) The following are equivalent:

- The complex matrix-pair \((A, B)\) is controllable;
- \([A - zI, B]\) has linearly independent rows for all \(z \in \mathbb{C} \);
- \(\delta = \min\{\sigma_{\text{min}}[A - zI, B] : z \in \mathbb{C}\} > 0 \).
11. CONTROLLABILITY

A control system with state \(x \in \mathbb{C}^m \) and control \(u \),

\[
\frac{dx}{dt} = Ax + Bu,
\]

is controllable if, for all endpoints \(x_0 \) and \(x_T \), there is a control \(u(\cdot) \) such that \(x(0) = x_0 \) and \(x(T) = x_T \).

Lemma (Hautus 1969) The following are equivalent:

- The complex matrix-pair \((A, B) \) is controllable;
- \([A - zI, B] \) has linearly independent rows for all \(z \in \mathbb{C} \);
- \(\delta = \min \{ \sigma_{\min}[A - zI, B] : z \in \mathbb{C} \} > 0 \).

Eising (1984) showed \(\delta \) is the distance to uncontrollability:
A control system with state $x \in \mathbb{C}^m$ and control u,

$$\frac{dx}{dt} = Ax + Bu,$$

is controllable if, for all endpoints x_0 and x_T, there is a control $u(\cdot)$ such that $x(0) = x_0$ and $x(T) = x_T$.

Lemma (Hautus 1969) The following are equivalent:

- The complex matrix-pair (A, B) is controllable;
- $[A - zI, B]$ has linearly independent rows for all $z \in \mathbb{C}$;
- $\delta = \min\{\sigma_{\min}[A - zI, B] : z \in \mathbb{C}\} > 0$.

Eising (1984) showed δ is the distance to uncontrollability:

$$\delta = \min\{\|(X, Y)\| : (A + X, B + Y) \text{ is uncontrollable}\}$$
11. CONTROLLABILITY

A control system with state \(x \in \mathbb{C}^m \) and control \(u \),

\[
\frac{dx}{dt} = Ax + Bu,
\]

is controllable if, for all endpoints \(x_0 \) and \(x_T \), there is a control \(u(\cdot) \) such that \(x(0) = x_0 \) and \(x(T) = x_T \).

Lemma (Hautus 1969) The following are equivalent:

- The complex matrix-pair \((A, B)\) is controllable;
- \([A - zI, B]\) has linearly independent rows for all \(z \in \mathbb{C} \);
- \(\delta = \min\{\sigma_{\min}[A - zI, B] : z \in \mathbb{C}\} > 0 \).

Eising (1984) showed \(\delta \) is the distance to uncontrollability:

\[
\delta = \min\{\| (X, Y) \| : (A + X, B + Y) \text{ is uncontrollable} \}
\]

Computing \(\delta \) is tractable but impractical: \(O(m^6) \) (Gu 2000).
12. CONNECTED COMPONENTS

Question (Trefethen) How many components can the rectangular pseudospectrum

\[\{z \in \mathbb{C} : \sigma_{\min}[A - zI, B] \leq \epsilon \} \]

have?
Question (Trefethen) How many components can the rectangular pseudospectrum

\[\{ z \in \mathbb{C} : \sigma_{\min}[A - zI, B] \leq \epsilon \} \]

have? More generally, let

\[\#(S) = \text{number of components of } S \subset \mathbb{C}. \]
12. CONNECTED COMPONENTS

Question (Trefethen) How many components can the rectangular pseudospectrum

\[\{ z \in \mathbb{C} : \sigma_{\text{min}}[A - zI, B] \leq \epsilon \} \]

have? More generally, let

\[\#(S) = \text{number of components of } S \subset \mathbb{C}. \]

Consider \(m \)-by-\(n \) matrices \(P, Q \) (where \(m \leq n \)).
12. CONNECTED COMPONENTS

Question (Trefethen) How many components can the rectangular pseudospectrum

\[\{ z \in \mathbb{C} : \sigma_{\min}[A - zI, B] \leq \epsilon \} \]

have? More generally, let

\[\#(S) = \text{number of components of } S \subset \mathbb{C}. \]

Consider \(m \)-by-\(n \) matrices \(P, Q \) (where \(m \leq n \)).

Problem: Bound \(\#(\Lambda) \), where

\[\Lambda = \{ z : \sigma_{\min}(P + zQ) \leq \epsilon \}. \]
12. CONNECTED COMPONENTS

Question (Trefethen) How many components can the rectangular pseudospectrum

$$\{ z \in \mathbb{C} : \sigma_{\text{min}}[A - zI, B] \leq \epsilon \}$$

have? More generally, let

$$\#(S) = \text{number of components of } S \subset \mathbb{C}.$$

Consider m-by-n matrices P, Q (where $m \leq n$).

Problem: Bound $\#(\Lambda)$, where

$$\Lambda = \{ z : \sigma_{\text{min}}(P + zQ) \leq \epsilon \}.$$

Conjecture: $\#(\Lambda) \leq m.$
12. CONNECTED COMPONENTS

Question (Trefethen) How many components can the rectangular pseudospectrum

\[\{ z \in \mathbb{C} : \sigma_{\min}(A - zI, B) \leq \epsilon \} \]

have? More generally, let

\[\#(S) = \text{number of components of } S \subset \mathbb{C}. \]

Consider \(m \)-by-\(n \) matrices \(P, Q \) (where \(m \leq n \)).

Problem: Bound \(\#(\Lambda) \), where

\[\Lambda = \{ z : \sigma_{\min}(P + zQ) \leq \epsilon \}. \]

Conjecture: \(\#(\Lambda) \leq m. \)

(Easy if \(m = 1; \))
Question (Trefethen) How many components can the rectangular pseudospectrum

\[\{ z \in \mathbb{C} : \sigma_{\min}[A - zI, B] \leq \epsilon \} \]

have? More generally, let

\[\#(S) = \text{number of components of } S \subset \mathbb{C}. \]

Consider \(m \)-by-\(n \) matrices \(P, Q \) (where \(m \leq n \)).

Problem: Bound \(\#(\Lambda) \), where

\[\Lambda = \{ z : \sigma_{\min}(P + zQ) \leq \epsilon \}. \]

Conjecture: \(\#(\Lambda) \leq m. \)
(Easy if \(m = 1 \); true by maximum modulus principle if \(m = n \).)
12. CONNECTED COMPONENTS

Question (Trefethen) How many components can the rectangular pseudospectrum

\[\{ z \in \mathbb{C} : \sigma_{\text{min}}[A - zI, B] \leq \epsilon \} \]

have? More generally, let

\[\#(S) = \text{number of components of } S \subset \mathbb{C}. \]

Consider \(m \)-by-\(n \) matrices \(P, Q \) (where \(m \leq n \)).

Problem: Bound \(\#(\Lambda) \), where

\[\Lambda = \{ z : \sigma_{\text{min}}(P + zQ) \leq \epsilon \}. \]

Conjecture: \(\#(\Lambda) \leq m. \)

(Easy if \(m = 1 \); true by maximum modulus principle if \(m = n \).)

Theorem \(\#(\Lambda) \leq 2m^2 - m + 1. \)
12. CONNECTED COMPONENTS

Question (Trefethen) How many components can the rectangular pseudospectrum

\[\{ z \in \mathbb{C} : \sigma_{\min}[A - zI, B] \leq \epsilon \} \]

have? More generally, let

\[#(S) = \text{number of components of } S \subset \mathbb{C}. \]

Consider \(m \)-by-\(n \) matrices \(P, Q \) (where \(m \leq n \)).

Problem: Bound \(#(\Lambda) \), where

\[\Lambda = \{ z : \sigma_{\min}(P + zQ) \leq \epsilon \}. \]

Conjecture: \(#(\Lambda) \leq m. \)

(Easy if \(m = 1 \); true by maximum modulus principle if \(m = n \).)

Theorem \(#(\Lambda) \leq 2m^2 - m + 1. \)

(We’ll prove a slightly weaker version...)
13. **THE TYPICAL CASE**

Theorem (Milnor 1964)

If \(p : \mathbb{R}^2 \to \mathbb{R} \) is a polynomial of degree \(d \), then

\[
\# \{(x, y) : p(x, y) = 0\} \leq d(2d - 1).
\]
13. THE TYPICAL CASE

Theorem (Milnor 1964)
If $p : \mathbb{R}^2 \rightarrow \mathbb{R}$ is a polynomial of degree d, then
\[
\# \{ (x, y) : p(x, y) = 0 \} \leq d(2d - 1).
\]

Proposition For continuous $f : \mathbb{C} \rightarrow \mathbb{R}$ with zeroes,
\[
\# \{ z : f(z) = 0 \} \leq \# \{ z : f(z) = 0 \}.
\]
13. THE TYPICAL CASE

Theorem (Milnor 1964)
If $p : \mathbb{R}^2 \rightarrow \mathbb{R}$ is a polynomial of degree d, then

$$\#\{(x, y) : p(x, y) = 0\} \leq d(2d - 1).$$

Proposition For continuous $f : \mathbb{C} \rightarrow \mathbb{R}$ with zeroes,

$$\#\{z : f(z) = 0\} \leq \#\{z : f(z) = 0\}.$$

Hence

$$\#\{z : \sigma_{\text{min}}(P + zQ) \leq \epsilon\} \leq \#\{z : \sigma_{\text{min}}(P + zQ) = \epsilon\}$$
13. **THE TYPICAL CASE**

Theorem (Milnor 1964)
If \(p : \mathbb{R}^2 \to \mathbb{R} \) is a polynomial of degree \(d \), then
\[
\#\{(x, y) : p(x, y) = 0\} \leq d(2d - 1).
\]

Proposition For continuous \(f : \mathbb{C} \to \mathbb{R} \) with zeroes,
\[
\#\{z : f(z) = 0\} \leq \#\{z : f(z) = 0\}.
\]

Hence
\[
\#\{z : \sigma_{\min}(P + zQ) \leq \epsilon\} \leq \#\{z : \sigma_{\min}(P + zQ) = \epsilon\} = \#\{z : \lambda_{\min}((P + zQ)(P + zQ)^*) = \epsilon^2\}
\]
13. THE TYPICAL CASE

Theorem (Milnor 1964)
If $p : \mathbb{R}^2 \rightarrow \mathbb{R}$ is a polynomial of degree d, then

$$\#\{(x, y) : p(x, y) = 0\} \leq d(2d - 1).$$

Proposition
For continuous $f : \mathbb{C} \rightarrow \mathbb{R}$ with zeroes,

$$\#\{z : f(z) = 0\} \leq \#\{z : f(z) = 0\}.$$

Hence

$$\#\{z : \sigma_{\min}(P + zQ) \leq \epsilon\} \leq \#\{z : \sigma_{\min}(P + zQ) = \epsilon\}$$

$$= \#\{z : \lambda_{\min}((P + zQ)(P + zQ)^*) = \epsilon^2\}$$

$$= \#\{z : p(z) = 0\}$$
13. **THE TYPICAL CASE**

Theorem (Milnor 1964)
If \(p : \mathbb{R}^2 \rightarrow \mathbb{R}\) is a polynomial of degree \(d\), then
\[
\# \{(x, y) : p(x, y) = 0\} \leq d(2d - 1).
\]

Proposition For continuous \(f : \mathbb{C} \rightarrow \mathbb{R}\) with zeroes,
\[
\# \{z : f(z) = 0\} \leq \# \{z : f(z) = 0\}.
\]

Hence
\[
\# \{z : \sigma_{\min}(P + zQ) \leq \epsilon\} \leq \# \{z : \sigma_{\min}(P + zQ) = \epsilon\}
= \# \{z : \lambda_{\min}((P + zQ)(P + zQ)^*) = \epsilon^2\}
= \# \{z : p(z) = 0\}
\]
where \(p : \mathbb{C} \cong \mathbb{R}^2 \rightarrow \mathbb{R}\) is a polynomial of degree \(2d\):
\[
p(z) = \det((P + zQ)(P + zQ)^* - \epsilon^2 I).
\]
13. **THE TYPICAL CASE**

Theorem (Milnor 1964)
If \(p : \mathbb{R}^2 \to \mathbb{R} \) is a polynomial of degree \(d \), then
\[
\# \{(x, y) : p(x, y) = 0\} \leq d(2d - 1).
\]

Proposition For continuous \(f : \mathbb{C} \to \mathbb{R} \) with zeroes,
\[
\# \{z : f(z) = 0\} \leq \# \{z : f(z) = 0\}.
\]

Hence
\[
\# \{z : \sigma_{\min}(P + zQ) \leq \epsilon\} \leq \# \{z : \sigma_{\min}(P + zQ) = \epsilon\}
= \# \{z : \lambda_{\min}((P + zQ)(P + zQ)^*) = \epsilon^2\}
= \# \{z : p(z) = 0\}
\]
where \(p : \mathbb{C} \cong \mathbb{R}^2 \to \mathbb{R} \) is a polynomial of degree \(2d \):
\[
p(z) = \det((P + zQ)(P + zQ)^* - \epsilon^2 I).
\]
This assumes \(\lambda_{\min}((P + zQ)(P + zQ)^*) \) simple \(\forall z \in \mathbb{C} \).
14. **THE GENERAL CASE**

The simple eigenvalue assumption \[\Rightarrow \#(\Lambda) \leq 2m(4m - 1). \]
14. **THE GENERAL CASE**

The simple eigenvalue assumption \(\Rightarrow \#(\Lambda) \leq 2m(4m - 1) \).
We’ll show it holds “typically”.
14. THE GENERAL CASE

The simple eigenvalue assumption $\Rightarrow \#(\Lambda) \leq 2m(4m - 1)$.
We’ll show it holds “typically”.

Theorem (von Neumann-Wigner 1929)

In the space of m-by-m Hermitian matrices,

$$\text{codim}\{\text{matrices with multiple eigenvalues}\} = 3.$$
14. **THE GENERAL CASE**

The simple eigenvalue assumption \(\Rightarrow \#(\Lambda) \leq 2m(4m - 1) \).
We’ll show it holds “typically”.

Theorem (von Neumann-Wigner 1929)
In the space of \(m \)-by-\(m \) Hermitian matrices,

\[
\text{codim}\{\text{matrices with multiple eigenvalues}\} = 3.
\]

Hence the set of atypical \((P, Q)\) has codimension one.
14. THE GENERAL CASE

The simple eigenvalue assumption \(\Rightarrow \#(\Lambda) \leq 2m(4m - 1) \).
We’ll show it holds “typically”.

Theorem (von Neumann-Wigner 1929)

In the space of \(m \)-by-\(m \) Hermitian matrices,

\[
\text{codim}\{\text{matrices with multiple eigenvalues}\} = 3.
\]

Hence the set of atypical \((P, Q)\) has codimension one.

For general \((P, Q)\), **perturb**:
14. THE GENERAL CASE

The simple eigenvalue assumption \(\Rightarrow \#(\Lambda) \leq 2m(4m - 1) \).
We’ll show it holds “typically”.

Theorem (von Neumann-Wigner 1929)
In the space of \(m \)-by-\(m \) Hermitian matrices,

\[
\text{codim}\{\text{matrices with multiple eigenvalues}\} = 3.
\]

Hence the set of atypical \((P, Q)\) has codimension one.

For general \((P, Q)\), perturb:

- Choose typical \((P_r, Q_r) \rightarrow (P, Q)\).
14. THE GENERAL CASE

The simple eigenvalue assumption \(\Rightarrow \#(\Lambda) \leq 2m(4m - 1) \).
We’ll show it holds “typically”.

Theorem (von Neumann-Wigner 1929)
In the space of \(m \)-by-\(m \) Hermitian matrices,

\[
\text{codim}\{\text{matrices with multiple eigenvalues}\} = 3.
\]

Hence the set of atypical \((P, Q)\) has codimension one.

For general \((P, Q)\), **perturb:**

- Choose typical \((P_r, Q_r) \rightarrow (P, Q)\).
- Apply the “typical” result for \((P_r, Q_r)\).
14. **THE GENERAL CASE**

The simple eigenvalue assumption \(\Rightarrow \#(\Lambda) \leq 2m(4m - 1) \). We’ll show it holds “typically”.

Theorem (von Neumann-Wigner 1929)

In the space of \(m \)-by-\(m \) Hermitian matrices,

\[
\text{codim}\{\text{matrices with multiple eigenvalues}\} = 3.
\]

Hence the set of atypical \((P, Q)\) has codimension one.

For general \((P, Q)\), **perturb**:

- Choose typical \((P_r, Q_r) \to (P, Q)\).
- Apply the “typical” result for \((P_r, Q_r)\).
- Use **lower semicontinuity** of \(\#(\cdot)\) on compact sets.
15. SUMMARY

- Spectral radius minimization often results in multiple eigenvalues,
15. SUMMARY

- Spectral radius minimization often results in multiple eigenvalues, nonrobust solutions,
• Spectral radius minimization often results in multiple eigenvalues, nonrobust solutions, and transient peaks.
15. SUMMARY

- Spectral radius minimization often results in multiple eigenvalues, nonrobust solutions, and transient peaks.
- Optimizing pseudospectra is feasible computationally,
15. SUMMARY

- Spectral radius minimization often results in multiple eigenvalues, nonrobust solutions, and transient peaks.
- Optimizing pseudospectra is feasible computationally, and avoids these difficulties, by the Kreiss Matrix Theorem.
15. SUMMARY

- Spectral radius minimization often results in multiple eigenvalues, nonrobust solutions, and transient peaks.
- Optimizing pseudospectra is feasible computationally, and avoids these difficulties, by the Kreiss Matrix Theorem.
- The distance to uncontrollability can be computed polynomially by globally minimizing a bivariate function with simple level sets.