CONVEXITY AND EIGENVALUES OF SYMMETRIC MATRICES

Adrian Lewis
Cornell University
April 6, 2005

orie.cornell.edu/~aslewis

Technion: Lecture 1
1. OUTLINE

- Hyperbolic polynomials and the Lax conjecture
1. OUTLINE

• Hyperbolic polynomials and the Lax conjecture
• Convexity and semidefinite programming
1. OUTLINE

- Hyperbolic polynomials and the Lax conjecture
- Convexity and semidefinite programming
- Spectral functions
1. OUTLINE

- Hyperbolic polynomials and the Lax conjecture
- Convexity and semidefinite programming
- Spectral functions
- Von Neumann and unitarily invariant norms
1. OUTLINE

- Hyperbolic polynomials and the Lax conjecture
- Convexity and semidefinite programming
- Spectral functions
- Von Neumann and unitarily invariant norms
- Duality and subgradients
1. OUTLINE

• Hyperbolic polynomials and the Lax conjecture
• Convexity and semidefinite programming
• Spectral functions
• Von Neumann and unitarily invariant norms
• Duality and subgradients
• Some Lie algebra...
2. HYPERBOLIC POLYNOMIALS

Example: Consider the homogeneous polynomial

\[p(u, v, w) = u^3 - 2uv^2 - uw^2 + 2v^2w. \]
2. HYPERBOLIC POLYNOMIALS

Example: Consider the homogeneous polynomial

\[p(u, v, w) = u^3 - 2uv^2 - uw^2 + 2v^2w. \]

For all real \(v, w \),

\[p(u, v, w) = 0 \quad \Rightarrow \quad u \text{ real}. \]
2. HYPERBOLIC POLYNOMIALS

Example: Consider the homogeneous polynomial

\[p(u, v, w) = u^3 - 2uv^2 - uw^2 + 2v^2w. \]

For all real \(v, w \), \(p(u, v, w) = 0 \) \(\Rightarrow \) \(u \) real.

We say \(p \) is hyperbolic relative to \(d = (1, 0, 0) \): \(t \mapsto p(x - td) \) always has all real roots.
2. HYPERBOLIC POLYNOMIALS

Example: Consider the homogeneous polynomial

\[p(u, v, w) = u^3 - 2uv^2 - uw^2 + 2v^2w. \]

For all real \(v, w \), \(p(u, v, w) = 0 \Rightarrow u \) real.

We say \(p \) is **hyperbolic relative to** \(d = (1, 0, 0) \):
\(t \mapsto p(x - td) \) always has all real roots. Why?
2. HYPERBOLIC POLYNOMIALS

Example: Consider the homogeneous polynomial

\[p(u, v, w) = u^3 - 2uv^2 - uw^2 + 2v^2w. \]

For all real \(v, w \),

\[p(u, v, w) = 0 \Rightarrow u \text{ real}. \]

We say \(p \) is **hyperbolic relative to** \(d = (1, 0, 0) \):

\[t \mapsto p(x - td) \] always has all real roots.

Why?

\[p(u, v, w) = \det \begin{bmatrix} u & v & w \\ v & u & v \\ w & v & u \end{bmatrix}. \]
2. HYPERBOLIC POLYNOMIALS

Example: Consider the homogeneous polynomial

\[p(u, v, w) = u^3 - 2uv^2 - uw^2 + 2v^2w. \]

For all real \(v, w \), \(p(u, v, w) = 0 \) \(\Rightarrow u \) real.

We say \(p \) is hyperbolic relative to \(d = (1, 0, 0) \): \(t \mapsto p(x - td) \) always has all real roots.

Why?

\[p(u, v, w) = \det \begin{bmatrix} u & v & w \\ v & u & v \\ w & v & u \end{bmatrix}. \]

Lax Conjecture (1958) Hyperbolic polynomials on \(\mathbb{R}^3 \) relative to \((1, 0, 0) \) are all of the form
2. HYPERBOLIC POLYNOMIALS

Example: Consider the homogeneous polynomial

\[p(u, v, w) = u^3 - 2uv^2 - uw^2 + 2v^2w. \]

For all real \(v, w \), \(p(u, v, w) = 0 \implies u \text{ real} \).

We say \(p \) is hyperbolic relative to \(d = (1, 0, 0) \): \(t \mapsto p(x - td) \) always has all real roots.

Why?

\[p(u, v, w) = \det \begin{bmatrix} u & v & w \\ v & u & v \\ w & v & u \end{bmatrix}. \]

Lax Conjecture (1958) Hyperbolic polynomials on \(\mathbb{R}^3 \) relative to \((1, 0, 0)\) are all of the form

\[p(u, v, w) = \det(uI + vA + wB) \quad \text{with } A, B \text{ symmetric}. \]
2. HYPERBOLIC POLYNOMIALS

Example: Consider the homogeneous polynomial

\[p(u, v, w) = u^3 - 2uv^2 - uw^2 + 2v^2w. \]

For all real \(v, w \), \(p(u, v, w) = 0 \Rightarrow u \) real.

We say \(p \) is hyperbolic relative to \(d = (1, 0, 0) \):
\(t \mapsto p(x - td) \) always has all real roots.

Why?

\[p(u, v, w) = \det \begin{bmatrix} u & v & w \\ v & u & v \\ w & v & u \end{bmatrix}. \]

Lax Conjecture (1958) Hyperbolic polynomials on \(\mathbb{R}^3 \) relative to \((1, 0, 0)\) are all of the form

\[p(u, v, w) = \det(uI + vA + wB) \quad \text{with } A, B \text{ symmetric}. \]

3. CONVEXITY

Hyperbolic polynomials

- are simply defined;
3. CONVEXITY

Hyperbolic polynomials

- are simply defined;
- are common (there are open sets of such polynomials);
3. **CONVEXITY**

Hyperbolic polynomials

- are simply defined;
- are common (there are open sets of such polynomials);
- have surprising convexity properties.
3. CONVEXITY

Hyperbolic polynomials

- are simply defined;
- are common (there are open sets of such polynomials);
- have surprising convexity properties.

Theorem (Gårding 1951) If p is hyperbolic relative to d, then the component of d in $\{x : p(x) > 0\}$ is **convex**.
3. **CONVEXITY**

Hyperbolic polynomials

- are simply defined;
- are common (there are open sets of such polynomials);
- have surprising convexity properties.

Theorem (Gårding 1951) If p is hyperbolic relative to d, then the component of d in $\{x : p(x) > 0\}$ is convex.

We call this component, H, the **hyperbolicity cone**.
3. CONVEXITY

Hyperbolic polynomials

- are simply defined;
- are common (there are open sets of such polynomials);
- have surprising convexity properties.

Theorem (Gårding 1951) If p is hyperbolic relative to d, then the component of d in $\{x : p(x) > 0\}$ is convex.

We call this component, H, the hyperbolicity cone.

Furthermore (Güler 1997), $-\log p$ is self-concordant on H.
3. CONVEXITY

Hyperbolic polynomials

- are simply defined;
- are common (there are open sets of such polynomials);
- have surprising convexity properties.

Theorem (Gårding 1951) If p is hyperbolic relative to d, then the component of d in $\{x : p(x) > 0\}$ is convex.

We call this component, H, the hyperbolicity cone.

Furthermore (Güler 1997), $-\log p$ is self-concordant on H. Hence (Nesterov/Nemirovski, 1994) theoretically efficient interior point methods for hyperbolic programs

$$\min\{\langle c, x \rangle : Ax = b, x \in H\}.$$
3. CONVEXITY

Hyperbolic polynomials

- are simply defined;
- are common (there are open sets of such polynomials);
- have surprising convexity properties.

Theorem (Gårding 1951) If p is hyperbolic relative to d, then the component of d in $\{x : p(x) > 0\}$ is convex.

We call this component, H, the hyperbolicity cone.

Furthermore (Güler 1997), $-\log p$ is self-concordant on H. Hence (Nesterov/Nemirovski, 1994) theoretically efficient interior point methods for hyperbolic programs

$$\min\{\langle c, x \rangle : Ax = b, \; x \in H\}.$$

(Damped Newton’s method for penalized version

$$\min\{\langle c, x \rangle - \mu \log p(x) : Ax = b\}, \quad \text{as} \; \mu \downarrow 0.$$)
Example: The **determinant** is hyperbolic on

\[S^n = \{ n \times n \text{ real symmetric matrices} \} \]

relative to the identity \(I \),
Example: The determinant is hyperbolic on

$$S^n = \{n \times n \text{ real symmetric matrices}\}$$

relative to the identity I, since each $X \in S^n$ has all real eigenvalues $\lambda_1(X) \geq \cdots \geq \lambda_n(X)$.
4. SEMIDEFINITE PROGRAMMING

Example: The **determinant** is hyperbolic on

\[S^n = \{ n \times n \text{ real symmetric matrices} \} \]

relative to the identity \(I \), since each \(X \in S^n \) has **all real eigenvalues** \(\lambda_1(X) \geq \cdots \geq \lambda_n(X) \).

The hyperbolicity cone is

\[S_{++}^n = \{ \text{positive definites} \} \]
4. SEMIDEFINITE PROGRAMMING

Example: The determinant is hyperbolic on

\[S^n = \{ n \times n \text{ real symmetric matrices} \} \]

relative to the identity \(I \), since each \(X \in S^n \) has all real eigenvalues \(\lambda_1(X) \geq \cdots \geq \lambda_n(X) \).

The hyperbolicity cone is

\[S^n_{++} = \{ \text{positive definites} \} \]

and \(-\log \text{det} \) is self-concordant on \(S^n_{++} \).
4. SEMIDEFINITE PROGRAMMING

Example: The determinant is hyperbolic on

\[S^n = \{ n \times n \text{ real symmetric matrices} \} \]

relative to the identity \(I \), since each \(X \in S^n \) has all real eigenvalues \(\lambda_1(X) \geq \cdots \geq \lambda_n(X) \).

The hyperbolicity cone is

\[S^n_{++} = \{ \text{positive definites} \} \]

and \(-\log \det \) is self-concordant on \(S^n_{++} \).

Hence **semidefinite programming**:

minimize \(\langle C, X \rangle \)

subject to \(\langle A_i, X \rangle = b_i \) \((i = 1, \ldots, m) \)

\[X \in S^n_{++}. \]
4. SEMIDEFINITE PROGRAMMING

Example: The determinant is hyperbolic on
\[S^n = \{ n \times n \text{ real symmetric matrices} \} \]
relative to the identity \(I \), since each \(X \in S^n \) has all real eigenvalues \(\lambda_1(X) \geq \cdots \geq \lambda_n(X) \).

The hyperbolicity cone is
\[S^n_{++} = \{ \text{positive definites} \} \]
and \(-\log \det \) is self-concordant on \(S^n_{++} \).

Hence semidefinite programming:

\[
\begin{align*}
\text{minimize} & \quad \langle C, X \rangle \\
\text{subject to} & \quad \langle A_i, X \rangle = b_i \quad (i = 1, \ldots, m) \\
& \quad X \in S^n_{++}.
\end{align*}
\]

A powerful, tractable generalization of linear programming (eg: Ben-Tal/Nemirovski 2001).
5. HYPERBOLIC PROGRAMMING

Since the Lax conjecture is true, all three-dimensional hyperbolicity cones are semidefinite slices:

\[\left\{ x : \sum_i x_i A_i \in S_+^n \right\} \]

for given \(A_i \in S^n \).
5. HYPERBOLIC PROGRAMMING

Since the Lax conjecture is true, all three-dimensional hyperbolicity cones are *semidefinite slices*:

\[
\left\{ x : \sum_i x_i A_i \in S_{++}^n \right\}
\]

for given \(A_i \in S^n \).

Same is true for all *homogeneous* cones — open convex pointed cones \(K \) such that for every \(x, y \in K \) there is an automorphism \(\Gamma : K \to K \) such that \(\Gamma x = y \) (Chua 2003, Faybusovich 2002).
5. HYPERBOLIC PROGRAMMING

Since the Lax conjecture is true, all three-dimensional hyperbolicity cones are \textit{semidefinite slices}:

\[
\left\{ x : \sum_i x_i A_i \in S^n_{++} \right\}
\]

for given \(A_i \in S^n \).

Same is true for all \textit{homogeneous} cones — open convex pointed cones \(K \) such that for every \(x, y \in K \) there is an automorphism \(\Gamma : K \to K \) such that \(\Gamma x = y \) (Chua 2003, Faybusovich 2002).

So, is hyperbolic programming genuinely more general than semidefinite programming?
5. HYPERBOLIC PROGRAMMING

Since the Lax conjecture is true, all three-dimensional hyperbolicity cones are semidefinite slices:

\[
\left\{ x : \sum_{i} x_{i}A_{i} \in S^{n}_{++} \right\}
\]

for given \(A_{i} \in S^{n} \).

Same is true for all homogeneous cones — open convex pointed cones \(K \) such that for every \(x, y \in K \) there is an automorphism \(\Gamma : K \to K \) such that \(\Gamma x = y \) (Chua 2003, Faybusovich 2002).

So, is hyperbolic programming genuinely more general than semidefinite programming?

Are all hyperbolicity cones projections of semidefinite slices?
The convexity of S_{++}^n and $-\log \det$ are special cases of:
6. CONVEXITY AND SYMMETRY

The convexity of S_{++}^n and $- \log \det$ are special cases of:

Theorem (Davis 1957) If $f : \mathbb{R}^n \rightarrow \overline{\mathbb{R}}$ is convex and permutation-invariant, then the function

$$X \in S^n \mapsto f(\lambda_1(X), \ldots, \lambda_n(X))$$

is convex.
The convexity of S^n_{++} and $-\log\det$ are special cases of:

Theorem (Davis 1957) If $f : \mathbb{R}^n \to \mathbb{R}$ is convex and permutation-invariant, then the function

$$X \in S^n \mapsto f(\lambda_1(X), \ldots, \lambda_n(X))$$

is convex.

Consider $f(x) =$

$$\begin{cases}
0 & (x > 0) \\
+\infty & (x \not> 0)
\end{cases}$$
6. CONVEXITY AND SYMMETRY

The convexity of S_{++}^n and $-\log \det$ are special cases of:

Theorem (Davis 1957) If $f : \mathbb{R}^n \to \mathbb{R}$ is convex and permutation-invariant, then the function

$$X \in S^n \mapsto f(\lambda_1(X), \ldots, \lambda_n(X))$$

is convex.

Consider $f(x) =$

$$
\begin{cases}
0 & (x > 0) \\
+\infty & (x \not> 0)
\end{cases}
\quad \text{or} \quad
\begin{cases}
- \sum \log x_i & (x > 0) \\
+\infty & (x \not> 0)
\end{cases}
$$
6. CONVEXITY AND SYMMETRY

The convexity of S_{++}^n and $-\log \det$ are special cases of:

Theorem (Davis 1957) If $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is convex and *permutation-invariant*, then the function

$$X \in S^n \mapsto f(\lambda_1(X), \ldots, \lambda_n(X))$$

is convex.

Consider $f(x) =$

$$\begin{cases} 0 & (x > 0) \\ +\infty & (x \not> 0) \end{cases} \quad \text{or} \quad \begin{cases} -\sum_i \log x_i & (x > 0) \\ +\infty & (x \not> 0) \end{cases}.$$

This result extends to hyperbolic polynomials p (relative to d), interpreting $\{\lambda_i(x)\}$ as the roots of $t \mapsto p(x - td)$ (Bauschke/Güler/Lewis/Sendov 2001).
7. INVARIANCE

A function \(F : S^n \rightarrow \mathbb{R} \) is spectral if

\[
F(U^T X U) = F(X) \quad \text{whenever} \quad U^T U = I
\]
7. INVARIANCE

A function \(F : S^n \to \overline{\mathbb{R}} \) is spectral if

\[
F(U^T X U) = F(X) \quad \text{whenever} \quad U^T U = I
\]

(because then

\[
F(X) = F(\text{Diag}(\lambda_i(X)))
\]

by the spectral decomposition.)
7. INVARIANCE

A function $F : S^n \rightarrow \mathbb{R}$ is spectral if

$$F(U^T X U) = F(X) \quad \text{whenever} \quad U^T U = I$$

(because then

$$F(X) = F(\text{Diag}(\lambda_i(X))) \quad (\ast)$$

by the spectral decomposition.)

The Davis result characterizes convex spectral functions:
7. **INVARIANCE**

A function $F : S^n \rightarrow \mathbb{R}$ is **spectral** if

$$F(U^TXU) = F(X) \text{ whenever } U^TU = I$$

(because then

$$F(X) = F(\text{Diag}(\lambda_i(X)))$$

by the spectral decomposition.)

The Davis result **characterizes** convex spectral functions:

Theorem A spectral function F is convex $\iff F$ is convex on $D^n = \{n \times n \text{ real diagonals}\}$.
7. INVARIANCE

A function $F : S^n \rightarrow \mathbb{R}$ is spectral if

$$F(U^T X U) = F(X) \text{ whenever } U^T U = I$$

(because then

$$F(X) = F(\text{Diag}(\lambda_i(X))) \quad (\star)$$

by the spectral decomposition.)

The Davis result characterizes convex spectral functions:

Theorem A spectral function F is convex \iff F is convex on $D^n = \{n \times n \text{ real diagonals}\}$.

Proof “\Rightarrow” is immediate.
7. INVARIANCE

A function $F : S^n \rightarrow \mathbb{R}$ is spectral if

$$F(U^T X U) = F(X) \quad \text{whenever} \quad U^T U = I$$

(because then

$$F(X) = F(\text{Diag}(\lambda_i(X))) \quad (\ast)$$

by the spectral decomposition.)

The Davis result characterizes convex spectral functions:

Theorem A spectral function F is convex \iff F is convex on $D^n = \{n \times n$ real diagonals$\}$.

Proof “⇒” is immediate. To see “⇐”, use (\ast) and note $F \circ \text{Diag}$ is permutation-invariant. \qed
7. INVARIANCE

A function \(F : S^n \to \overline{\mathbb{R}} \) is \textbf{spectral} if

\[
F(U^T X U) = F(X) \quad \text{whenever} \quad U^T U = I
\]

(because then

\[
F(X) = F(\text{Diag}(\lambda_i(X))) \quad (\ast)
\]

by the spectral decomposition.)

The Davis result \textbf{characterizes} convex spectral functions:

\textbf{Theorem} \quad A spectral function \(F \) is convex \(\iff \) \(F \) is convex on \(D^n = \{n \times n \text{ real diagonals}\} \).

\textbf{Proof} \quad “\(\Rightarrow \)” is immediate. To see “\(\Leftarrow \)”, use (\ast) and note \(F \circ \text{Diag} \) is permutation-invariant. \(\square \)

Reminiscent of a famous result of von Neumann…
8. UNITARILY INVARIANT NORMS

A function G on

$$\mathbb{M}^n = \{ n \times n \text{ complex matrices} \}$$

is unitarily invariant
A function \(G \) on

\[M^n = \{ n \times n \text{ complex matrices} \} \]

is \textit{unitarily invariant} if

\[G(UXV) = G(X) \quad \text{whenever} \quad U^*U = I = V^*V. \]
8. UNITARILY INVARIANT NORMS

A function G on

$$\mathbb{M}^n = \{ n \times n \text{ complex matrices}\}$$

is unitarily invariant if

$$G(U XV) = G(X) \quad \text{whenever} \quad U^*U = I = V^*V.$$

Theorem (von Neumann 1937) A unitarily invariant function G is a norm \iff the restriction $G|_{\mathbb{D}^n}$ is a norm.
A function G on

$$M^n = \{n \times n \text{ complex matrices}\}$$

is **unitarily invariant** if

$$G(UXV) = G(X) \quad \text{whenever} \quad U^*U = I = V^*V.$$

Theorem (von Neumann 1937) A unitarily invariant function G is a norm \iff the restriction $G|_{D^n}$ is a norm.

Example: **Schatten p-norms** $(1 \leq p \leq \infty)$

$$\left\| X \right\| = \left(\sum_j \sigma_j(X)^p \right)^{1/p}$$
8. UNITARILY INVARIANT NORMS

A function G on

$$M^n = \{n \times n \text{ complex matrices}\}$$

is **unitarily invariant** if

$$G(UXV) = G(X) \quad \text{whenever} \quad U^*U = I = V^*V.$$

Theorem (von Neumann 1937) A unitarily invariant function G is a norm \iff the restriction $G|_{D^n}$ is a norm.

Example: **Schatten p-norms** $(1 \leq p \leq \infty)$

$$\|X\| = \left(\sum_j \sigma_j(X)^p \right)^{1/p}$$

(whose **singular value** $\sigma_j(X) = \sqrt{\lambda_j(X^*X)}$).

8. UNITARILY INVARIANT NORMS

A function G on

$$M^n = \{n \times n \text{ complex matrices}\}$$

is **unitarily invariant** if

$$G(U XV) = G(X) \quad \text{whenever} \quad U^* U = I = V^* V.$$

Theorem (von Neumann 1937) A unitarily invariant function G is a norm \iff the restriction $G|_{D^n}$ is a norm.

Example: **Schatten p-norms** $(1 \leq p \leq \infty)$

$$\|X\| = \left(\sum_j \sigma_j(X)^p\right)^{1/p}$$

(where **singular value** $\sigma_j(X) = \sqrt{\lambda_j(X^* X)}$).

Parallels von Neumann \leftrightarrow Davis run deeper...
9. DUALITY

Von Neumann’s proof was duality-based.
9. **DUALITY**

Von Neumann’s proof was duality-based.

If \(E \) is a Euclidean space and \(G : E \rightarrow \mathbb{R}_+ \) satisfies

\[
G(\alpha X) = |\alpha|G(X) \quad (\alpha \in \mathbb{R}, \; X \in E)
\]

\(\{X : G(X) \leq 1\} \) bounded,
9. **DUALITY**

Von Neumann’s proof was duality-based.

If E is a Euclidean space and $G : E \rightarrow \mathbb{R}_+$ satisfies

$$G(\alpha X) = |\alpha|G(X) \quad (\alpha \in \mathbb{R}, \ X \in E)$$

$$\{X : G(X) \leq 1\} \text{ bounded},$$

then the **dual function**

$$G_*(Y) = \sup\{\langle X, Y \rangle : G(X) \leq 1\}$$

is a norm.
9. **Duality**

Von Neumann’s proof was duality-based.

If \mathbb{E} is a Euclidean space and $G : \mathbb{E} \to \mathbb{R}_+$ satisfies

$$G(\alpha X) = |\alpha|G(X) \quad (\alpha \in \mathbb{R}, \ X \in \mathbb{E})$$

$$\{X : G(X) \leq 1\} \text{ bounded},$$

then the **dual function**

$$G_*(Y) = \sup \{\langle X, Y \rangle : G(X) \leq 1\}$$

is a norm. Furthermore, G is a norm $\iff G = G_{**}$.
9. DUALITY

Von Neumann’s proof was duality-based.

If \(E \) is a Euclidean space and \(G : E \rightarrow \mathbb{R}_+ \) satisfies

\[
G(\alpha X) = |\alpha| G(X) \quad (\alpha \in \mathbb{R}, \ X \in E)
\]

\(\{X : G(X) \leq 1\} \) bounded,

then the **dual function**

\[
G_*(Y) = \sup\{\langle X, Y \rangle : G(X) \leq 1\}
\]

is a norm. Furthermore, \(G \) is a norm \(\iff \ G = G_{**} \).

For invariant \(G \) on \(M^n \) (with \(\langle X, Y \rangle = \text{Re} \text{ trace}(X^*Y) \)),

9. DUALITY

Von Neumann’s proof was duality-based.

If E is a Euclidean space and $G : E \rightarrow \mathbb{R}_+$ satisfies

$$G(\alpha X) = |\alpha| G(X) \quad (\alpha \in \mathbb{R}, \ X \in E)$$

$$\{X : G(X) \leq 1\} \text{ bounded},$$

then the dual function

$$G_*(Y) = \sup \{\langle X, Y \rangle : G(X) \leq 1\}$$

is a norm. Furthermore, G is a norm $\iff G = G^{**}$.

For invariant G on M^n (with $\langle X, Y \rangle = \text{Re} \ \text{trace}(X^*Y)$),

if $G|_{D^n}$ is a norm, $G|_{D^n} = (G|_{D^n})^{**}$,
9. **DUALITY**

Von Neumann’s proof was duality-based.

If E is a Euclidean space and $G : E \to \mathbb{R}_+$ satisfies

$$G(\alpha X) = |\alpha| G(X) \quad (\alpha \in \mathbb{R}, \; X \in E)$$

$$\{X : G(X) \leq 1\} \text{ bounded},$$

then the **dual function**

$$G^*(Y) = \sup\{\langle X, Y \rangle : G(X) \leq 1\}$$

is a norm. Furthermore, G is a norm $\iff G = G^{**}$.

For invariant G on M^n (with $\langle X, Y \rangle = \text{Re } \text{trace}(X^*Y)$), if $G|_{D^n}$ is a norm, $G|_{D^n} = (G|_{D^n})^{**}$, so

$$G = (G|_{D^n})^{**} \circ \text{Diag} \circ \sigma$$
9. DUALITY

Von Neumann’s proof was duality-based.

If E is a Euclidean space and $G : E \rightarrow \mathbb{R}_+$ satisfies

$$G(\alpha X) = |\alpha|G(X) \quad (\alpha \in \mathbb{R}, \ X \in E)$$

$$\{X : G(X) \leq 1\} \text{ bounded},$$

then the dual function

$$G_*(Y) = \sup\{\langle X, Y \rangle : G(X) \leq 1\}$$

is a norm. Furthermore, G is a norm $\iff G = G^{**}$.

For invariant G on M^n (with $\langle X, Y \rangle = \text{Re} \text{ trace}(X^*Y)$), if $G|_{D^n}$ is a norm, $G|_{D^n} = (G|_{D^n})^{**}$, so

$$G = (G|_{D^n})^{**} \circ \text{Diag} \circ \sigma = ((G|_{D^n})_* \circ \text{Diag} \circ \sigma)_*$$

(by a variational argument),
9. DUALITY

Von Neumann’s proof was duality-based.

If E is a Euclidean space and $G : E \rightarrow \mathbb{R}_+$ satisfies

$$G(\alpha X) = |\alpha|G(X) \quad (\alpha \in \mathbb{R}, \ X \in E)$$

$$\{X : G(X) \leq 1\} \text{ bounded},$$

then the dual function

$$G^*(Y) = \sup\{\langle X, Y \rangle : G(X) \leq 1\}$$

is a norm. Furthermore, G is a norm $\iff G = G^{**}$.

For invariant G on M^n (with $\langle X, Y \rangle = \text{Re} \ \text{trace}(X^*Y)$), if $G|_{D^n}$ is a norm, $G|_{D^n} = (G|_{D^n})^{**}$, so

$$G = (G|_{D^n})^{**} \circ \text{Diag} \circ \sigma = ((G|_{D^n})_* \circ \text{Diag} \circ \sigma)_*$$

(by a variational argument), so G is a norm. \square
9. **DUALITY**

Von Neumann’s proof was duality-based.

If E is a Euclidean space and $G : E \to \mathbb{R}_+$ satisfies

$$G(\alpha X) = |\alpha|G(X) \quad (\alpha \in \mathbb{R}, \ X \in E)$$

$$\{X : G(X) \leq 1\} \text{ bounded},$$

then the **dual function**

$$G_*(Y) = \sup\{\langle X, Y \rangle : G(X) \leq 1\}$$

is a norm. Furthermore, G is a norm $\Leftrightarrow G = G_{**}$.

For invariant G on M^n (with $\langle X, Y \rangle = \text{Re} \ \text{trace}(X^*Y)$), if $G|_{D^n}$ is a norm, $G|_{D^n} = (G|_{D^n})_{**}$, so

$$G = (G|_{D^n})_{**} \circ \text{Diag} \circ \sigma = ((G|_{D^n})_* \circ \text{Diag} \circ \sigma)_*$$

(by a variational argument), so G is a norm. \qed

Note also the **duality formula**

$$G_*|_{D^n} = (G|_{D^n})_*.$$
10. CONJUGATES OF SPECTRAL FUNCTIONS

The **Fenchel conjugate** of a function $F : E \to (-\infty, +\infty]$,

$$F^*(Y) = \sup\{\langle X, Y \rangle - f(X)\}$$
10. CONJUGATES OF SPECTRAL FUNCTIONS

The Fenchel conjugate of a function $F : E \rightarrow (-\infty, +\infty]$,

$$F^*(Y) = \sup\{\langle X, Y \rangle - f(X)\}$$

is lower semicontinuous and convex.
The **Fenchel conjugate** of a function $F : E \rightarrow (-\infty, +\infty]$,
$$F^*(Y) = \sup\{\langle X, Y \rangle - f(X)\}$$
is lower semicontinuous and convex. Furthermore, F is lsc and convex $\iff F = F^{**}$.
The **Fenchel conjugate** of a function \(F : E \to (-\infty, +\infty] \),

\[
F^*(Y) = \sup \{ \langle X, Y \rangle - f(X) \}
\]

is lower semicontinuous and convex. Furthermore, \(F \) is lsc and convex \(\iff \) \(F = F^{**} \).

Conjugacy is central for convex optimization duality theory.
10. CONJUGATES OF SPECTRAL FUNCTIONS

The **Fenchel conjugate** of a function $F : E \to (-\infty, +\infty)$,

$$F^*(Y) = \sup \{ \langle X, Y \rangle - f(X) \}$$

is lower semicontinuous and convex. Furthermore, F is lsc and convex $\iff F = F^{**}$.

Conjugacy is central for convex optimization duality theory.

Example Typical convex F, G satisfy **Fenchel duality**:

$$\inf_X \{ F(X) + G(X) \} = \sup_Y \{ -F^*(Y) - G^*(-Y) \}.$$
10. CONJUGATES OF SPECTRAL FUNCTIONS

The **Fenchel conjugate** of a function $F : \mathbb{E} \to (-\infty, +\infty]$,

$$F^*(Y) = \sup \{ \langle X, Y \rangle - f(X) \}$$

is lower semicontinuous and convex. Furthermore,

F is lsc and convex $\iff F = F^{**}$.

Conjugacy is central for convex optimization duality theory.

Example Typical convex F, G satisfy **Fenchel duality**:

$$\inf_X \{ F(X) + G(X) \} = \sup_Y \{ -F^*(Y) - G^*(-Y) \}.$$

Imitating von Neumann’s argument now gives the Davis result (for lsc F),
10. **CONJUGATES OF SPECTRAL FUNCTIONS**

The **Fenchel conjugate** of a function $F : E \rightarrow (-\infty, +\infty]$,

$$F^*(Y) = \sup\{\langle X, Y \rangle - f(X)\}$$

is lower semicontinuous and convex. Furthermore, F is lsc and convex $\iff F = F^{**}$.

Conjugacy is central for convex optimization duality theory. **Example** Typical convex F, G satisfy **Fenchel duality**:

$$\inf_{X} \{F(X) + G(X)\} = \sup_{Y}\{-F^*(Y) - G^*(-Y)\}.$$

Imitating von Neumann’s argument now gives the Davis result (for lsc F), and the duality formula

$$F^*|_{D^n} = (F|_{D^n})^*.$$
The **Fenchel conjugate** of a function $F : E \to (-\infty, +\infty]$,

$$F^*(Y) = \sup\{\langle X, Y \rangle - f(X)\}$$

is lower semicontinuous and convex. Furthermore, F is lsc and convex $\iff F = F^{**}$.

Conjugacy is central for convex optimization duality theory. **Example** Typical convex F, G satisfy **Fenchel duality**:

$$\inf_X \{F(X) + G(X)\} = \sup_Y \{-F^*(Y) - G^*(-Y)\}.$$

Imitating von Neumann's argument now gives the Davis result (for lsc F), and the duality formula

$$F^*|_{D^n} = (F|_{D^n})^*.$$

What is the unifying thread?
11. HORN’S THEOREM (1954)

One route to the Davis result...
11. HORN’S THEOREM (1954)

One route to the Davis result...

Theorem Convex combinations of permutations of $y \in \mathbb{R}^n$ give all possible diagonals of $X \in S^m$ with eigenvalues $\{y_i\}$.
11. **HORN’S THEOREM (1954)**

One route to the Davis result...

Theorem Convex combinations of permutations of $y \in \mathbb{R}^n$ give all possible diagonals of $X \in S^n$ with eigenvalues $\{y_i\}$.
12. **AN ALGEBRAIC FRAMEWORK**

Theorem *(Kostant 1973)*
12. **AN ALGEBRAIC FRAMEWORK**

Theorem (Kostant 1973) Consider

- a real semisimple Lie group G,
12. AN ALGEBRAIC FRAMEWORK

Theorem (Kostant 1973) Consider

- a real semisimple Lie group G, with Lie algebra \mathfrak{g};
Theorem (Kostant 1973) Consider

- a real semisimple Lie group G, with Lie algebra \mathfrak{g};
- a maximal compact subgroup $K \subset G$,
12. AN ALGEBRAIC FRAMEWORK

Theorem (Kostant 1973) Consider

- a real semisimple Lie group G, with Lie algebra \mathfrak{g};
- a maximal compact subgroup $K \subset G$, with Lie algebra \mathfrak{k};
Theorem (Kostant 1973) Consider

- a real semisimple Lie group G, with Lie algebra \mathfrak{g};
- a maximal compact subgroup $K \subset G$, with Lie algebra \mathfrak{k};
- the corresponding **Cartan decomposition** $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$;
Theorem (Kostant 1973) Consider

- a real semisimple Lie group G, with Lie algebra \mathfrak{g};
- a maximal compact subgroup $K \subset G$, with Lie algebra \mathfrak{k};
- the corresponding Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$;
- a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p}$.
12. AN ALGEBRAIC FRAMEWORK

Theorem (Kostant 1973) Consider

- a real semisimple Lie group G, with Lie algebra \mathfrak{g};
- a maximal compact subgroup $K \subset G$, with Lie algebra \mathfrak{k};
- the corresponding **Cartan decomposition** $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$;
- a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p}$.

Then for $x \in \mathfrak{a}$, \[\text{proj}_a(K \cdot x) = \text{conv}(W \cdot x), \]
Theorem (Kostant 1973) Consider

- a real semisimple Lie group G, with Lie algebra \mathfrak{g};
- a maximal compact subgroup $K \subset G$, with Lie algebra \mathfrak{k};
- the corresponding **Cartan decomposition** $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$;
- a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p}$.

Then for $x \in \mathfrak{a}$,

$$\text{proj}_\mathfrak{a}(K \cdot x) = \text{conv}(W \cdot x),$$

where W is the **Weyl group**.

Example For Horn’s theorem,
12. AN ALGEBRAIC FRAMEWORK

Theorem (Kostant 1973) Consider

- a real semisimple Lie group G, with Lie algebra \mathfrak{g};
- a maximal compact subgroup $K \subset G$, with Lie algebra \mathfrak{k};
- the corresponding **Cartan decomposition** $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$;
- a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p}$.

Then for $x \in \mathfrak{a}$, $\text{proj}_\mathfrak{a}(K \cdot x) = \text{conv} (W \cdot x)$, where W is the **Weyl group**.

Example For Horn’s theorem, take

$$\{U \in \text{M}^n : U^T U = I, \det U = 1\}$$
Consider

- a real semisimple Lie group G, with Lie algebra \mathfrak{g};
- a maximal compact subgroup $K \subset G$, with Lie algebra \mathfrak{k};
- the corresponding **Cartan decomposition** $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$;
- a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p}$.

Then for $x \in \mathfrak{a}$, $\text{proj}_\mathfrak{a}(K \cdot x) = \text{conv} (W \cdot x)$, where W is the **Weyl group**.

Example For Horn’s theorem, take

$$\{ U \in \mathbb{M}^n : U^T U = I, \ \det U = 1 \} \subset \{ U : \det U = 1 \}.$$
AN ALGEBRAIC FRAMEWORK

Theorem (Kostant 1973) Consider

- a real semisimple Lie group G, with Lie algebra \mathfrak{g};
- a maximal compact subgroup $K \subset G$, with Lie algebra \mathfrak{k};
- the corresponding Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$;
- a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p}$.

Then for $x \in \mathfrak{a}$, \(\text{proj}_\mathfrak{a}(K \cdot x) = \text{conv} (W \cdot x) \),
where W is the Weyl group.

Example For Horn’s theorem, take

\[
\{ U \in M^n : U^T U = I, \ det U = 1 \} \subset \{ U : \ det U = 1 \},
\]

\[
\{ \text{skews} \} \oplus \{ \text{traceless symmetric} \} = \{ \text{traceless} \}.
\]
12. **AN ALGEBRAIC FRAMEWORK**

Theorem (Kostant 1973) Consider

- a real semisimple Lie group G, with Lie algebra \mathfrak{g};
- a maximal compact subgroup $K \subset G$, with Lie algebra \mathfrak{k};
- the corresponding **Cartan decomposition** $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$;
- a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p}$.

Then for $x \in \mathfrak{a}$, $\text{proj}_\mathfrak{a}(K \cdot x) = \text{conv}(W \cdot x)$, where W is the **Weyl group**.

Example For Horn’s theorem, take

\[
\{ U \in M^n : U^T U = I, \ det U = 1 \} \subset \{ U : \ det U = 1 \}, \\
\{ \text{skews} \} \oplus \{ \text{traceless symmetric} \} = \{ \text{traceless} \} \\
\mathfrak{a} = \{ \text{diagonals} \}
\]
12. AN ALGEBRAIC FRAMEWORK

Theorem (Kostant 1973) Consider

- a real semisimple Lie group G, with Lie algebra \mathfrak{g};
- a maximal compact subgroup $K \subset G$, with Lie algebra \mathfrak{k};
- the corresponding Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$;
- a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p}$.

Then for $x \in \mathfrak{a}$, $\text{proj}_\mathfrak{a}(K \cdot x) = \text{conv}(W \cdot x)$, where W is the Weyl group.

Example For Horn’s theorem, take

\[
\{ U \in M^n : U^T U = I, \ det \ U = 1 \} \subset \{ U : \ det \ U = 1 \},
\]

\[
\{ \text{skews} \} \oplus \{ \text{traceless symmetric} \} = \{ \text{traceless} \}
\]

$\mathfrak{a} = \{ \text{diagonals} \}$ and $W = \{ \text{permutations} \}$.
13. CONVEXITY AND INVARIANCE

Kostant’s theory extends the von Neumann and Davis results.
Kostant’s theory extends the von Neumann and Davis results.

Theorem Given a maximal compact subgroup K, and a maximal abelian subspace α of a corresponding Cartan subspace \mathfrak{p},
13. CONVEXITY AND INVARIANCE

Kostant’s theory extends the von Neumann and Davis results.

Theorem Given a maximal compact subgroup K, and a maximal abelian subspace α of a corresponding Cartan subspace \mathfrak{p}, consider an **invariant** function $F : \mathfrak{p} \to \mathbb{R}$:

$$F(k \cdot x) = F(x) \quad (k \in K, \ x \in \mathfrak{p}).$$
13. CONVEXITY AND INVARIANCE

Kostant’s theory extends the von Neumann and Davis results.

Theorem Given a maximal compact subgroup K, and a maximal abelian subspace \mathfrak{a} of a corresponding Cartan subspace \mathfrak{p}, consider an **invariant** function $F : \mathfrak{p} \to \mathbb{R}$:

$$F(k \cdot x) = F(x) \quad (k \in K, \ x \in \mathfrak{p}).$$

Then we have:

Convexity characterization F is convex $\iff F|_{\mathfrak{a}}$ is convex.
13. CONVEXITY AND INVARIANCE

Kostant’s theory extends the von Neumann and Davis results.

Theorem Given a maximal compact subgroup K, and a maximal abelian subspace α of a corresponding Cartan subspace \mathfrak{p}, consider an invariant function $F : \mathfrak{p} \to \overline{\mathbb{R}}$:

$$F(k \cdot x) = F(x) \quad (k \in K, \ x \in \mathfrak{p}).$$

Then we have:

Convexity characterization F is convex $\iff F|_\alpha$ is convex.

Duality formula $F^*|_\alpha = (F|_\alpha)^*$.
Kostant’s theory extends the von Neumann and Davis results.

Theorem Given a maximal compact subgroup K, and a maximal abelian subspace a of a corresponding Cartan subspace p, consider an **invariant** function $F : p \rightarrow \mathbb{R}$:

$$F(k \cdot x) = F(x) \quad (k \in K, \ x \in p).$$

Then we have:

Convexity characterization F is convex $\iff F|_a$ is convex.

Duality formula $F^*|_a = (F|_a)^*$.

For invariant functions, convexity **lifts** from a to p,
13. CONVEXITY AND INVARIANCE

Kostant’s theory extends the von Neumann and Davis results.

Theorem Given a maximal compact subgroup K, and a maximal abelian subspace α of a corresponding Cartan subspace \mathfrak{p}, consider an **invariant** function $F : \mathfrak{p} \to \mathbb{R}$:

$$F(k \cdot x) = F(x) \quad (k \in K, \ x \in \mathfrak{p}).$$

Then we have:

Convexity characterization F is convex $\iff F|_\alpha$ is convex.

Duality formula $F^*|_\alpha = (F|_\alpha)^*$.

For invariant functions, convexity **lifts** from α to \mathfrak{p}, as do

- polynomials (Chevalley restriction theorem)
13. CONVEXITY AND INVARIANCE

Kostant’s theory extends the von Neumann and Davis results.

Theorem Given a maximal compact subgroup K, and a maximal abelian subspace a of a corresponding Cartan subspace p, consider an invariant function $F : p \to \mathbb{R}$:

$$F(k \cdot x) = F(x) \quad (k \in K, \ x \in p).$$

Then we have:

Convexity characterization F is convex $\iff F|_a$ is convex.

Duality formula $F^*|_a = (F|_a)^*$.

For invariant functions, convexity lifts from a to p, as do

- polynomiality (Chevalley restriction theorem)
- differentiability.
14. SENSITIVITY

For a nonsmooth convex function $F : E \rightarrow \overline{R}$ at $x \in E$, we replace gradients by **subgradients** $y \in \partial F(x)$:
For a nonsmooth convex function $F : E \rightarrow \overline{\mathbb{R}}$ at $x \in E$, we replace gradients by **subgradients** $y \in \partial F(x)$:

$$F(x) + \langle y, z - x \rangle \leq F(z) \quad (z \in E).$$
14. SENSITIVITY

For a nonsmooth convex function $F : E \to \overline{\mathbb{R}}$ at $x \in E$, we replace gradients by subgradients $y \in \partial F(x)$:

$$F(x) + \langle y, z - x \rangle \leq F(z) \quad (z \in E).$$

The set of subgradients encodes the directional derivative.
14. **SENSITIVITY**

For a nonsmooth convex function $F : E \to \overline{\mathbb{R}}$ at $x \in E$, we replace gradients by **subgradients** $y \in \partial F(x)$:

$$F(x) + \langle y, z - x \rangle \leq F(z) \quad (z \in E).$$

The set of subgradients encodes the **directional derivative**:

$$F'(x; w) = \sup \{ \langle y, w \rangle : y \in \partial F(x) \}.$$
For a nonsmooth convex function $F : \mathbb{E} \to \overline{\mathbb{R}}$ at $x \in \mathbb{E}$, we replace gradients by subgradients $y \in \partial F(x)$:

$$F(x) + \langle y, z - x \rangle \leq F(z) \quad (z \in \mathbb{E}).$$

The set of subgradients encodes the directional derivative:

$$F'(x; w) = \sup \{ \langle y, w \rangle : y \in \partial F(x) \}.$$
14. SENSITIVITY

For a nonsmooth convex function $F : E \to \mathbb{R}$ at $x \in E$, we replace gradients by subgradients $y \in \partial F(x)$:

$$F(x) + \langle y, z - x \rangle \leq F(z) \quad (z \in E).$$

The set of subgradients encodes the directional derivative:

$$F'(x; w) = \sup\{\langle y, w \rangle : y \in \partial F(x)\}.$$

Theorem In Kostant’s framework, if $F : \mathfrak{p} \to \mathbb{R}$ is K-invariant, then $y \in \partial F(x) \iff y = k \cdot v$, $x = k \cdot u$, with $k \in K$, $v \in \partial F|_a(u)$.

Theorem Suppose $f : \mathbb{R}^n \rightarrow \overline{\mathbb{R}}$ is convex and permutation-invariant,
Theorem Suppose \(f : \mathbb{R}^n \to \overline{\mathbb{R}} \) is convex and permutation-invariant, so the spectral function \(F : S^n \to \overline{\mathbb{R}} \) defined by

\[
F(X) = f(\lambda(X))
\]

is convex (by Davis’ theorem).
15. **SUBGRADIENTS OF SPECTRAL FUNCTIONS**

Theorem Suppose \(f : \mathbb{R}^n \to \overline{\mathbb{R}} \) is convex and permutation-invariant, so the spectral function \(F : S^n \to \overline{\mathbb{R}} \) defined by

\[
F(X) = f(\lambda(X))
\]

is convex (by Davis’ theorem). Then \(Y \in \partial F(X) \iff X \text{ and } Y \text{ have a simultaneous spectral decomposition,} \)

\[
U^T U = I, \quad U^T (\text{Diag } x) U = X, \quad U^T (\text{Diag } y) U = Y,
\]

for some \(U \) and \(y \in \partial f(x) \).
15. **SUBGRADIENTS OF SPECTRAL FUNCTIONS**

Theorem Suppose \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex and permutation-invariant, so the spectral function \(F : S^n \rightarrow \mathbb{R} \) defined by

\[
F(X) = f(\lambda(X))
\]

is convex (by Davis’ theorem). Then \(Y \in \partial F(X) \iff X \) and \(Y \) have a **simultaneous spectral decomposition**,

\[
U^T U = I, \quad U^T (\text{Diag } x) U = X, \quad U^T (\text{Diag } y) U = Y,
\]

for some \(U \) and \(y \in \partial f(x) \).

This subgradient formula also extends to **nonconvex** functions.
15. **SUBGRADIENTS OF SPECTRAL FUNCTIONS**

Theorem Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is convex and permutation-invariant, so the spectral function $F : S^n \to \mathbb{R}$ defined by

$$F(X) = f(\lambda(X))$$

is convex (by Davis’ theorem). Then $Y \in \partial F(X) \iff X$ and Y have a **simultaneous spectral decomposition**,

$$U^T U = I, \quad U^T (\text{Diag } x) U = X, \quad U^T (\text{Diag } y) U = Y,$$

for some U and $y \in \partial f(x)$.

This subgradient formula also extends to **nonconvex** functions. Eg Clarke’s generalized gradient:
Theorem Suppose $f : \mathbb{R}^n \rightarrow \bar{\mathbb{R}}$ is convex and permutation-invariant, so the spectral function $F : S^n \rightarrow \bar{\mathbb{R}}$ defined by

$$F(X) = f(\lambda(X))$$

is convex (by Davis’ theorem). Then $Y \in \partial F(X) \iff X$ and Y have a **simultaneous spectral decomposition**, $U^T U = I$, $U^T (\text{Diag } x) U = X$, $U^T (\text{Diag } y) U = Y$, for some U and $y \in \partial f(x)$.

This subgradient formula also extends to **nonconvex** functions. Eg **Clarke’s generalized gradient**:

$$\partial f(x) = \text{cl conv} \{ \lim \nabla f(x_r) : x_r \rightarrow x \}$$

(for Lipschitz f) etc...
Theorem (Lidskii 1950) If $X, Z \in S^n$, then $\lambda(Z) - \lambda(X)$ is a convex combination of permutations of $\lambda(Z - X)$.
16. EIGENVALUE PERTURBATION THEORY

Theorem (Lidskii 1950) If $X, Z \in S^n$, then $\lambda(Z) - \lambda(X)$ is a convex combination of permutations of $\lambda(Z - X)$.

A proof via nonsmooth analysis
Theorem (Lidskii 1950) If $X, Z \in S^n$, then $\lambda(Z) - \lambda(X)$ is a convex combination of permutations of $\lambda(Z - X)$.

A proof via nonsmooth analysis

- Via a separating hyperplane, we need, for any $w \in \mathbb{R}^n$

$$w^T(\lambda(Z) - \lambda(X))$$
16. EIGENVALUE PERTURBATION THEORY

Theorem (Lidskii 1950) If $X, Z \in S^n$, then $\lambda(Z) - \lambda(X)$ is a convex combination of permutations of $\lambda(Z - X)$.

A proof via nonsmooth analysis

- Via a separating hyperplane, we need, for any $w \in \mathbb{R}^n$
 \[
 w^T(\lambda(Z) - \lambda(X)) \leq [w]^T \lambda(Z - X),
 \]
 where $w \mapsto [w]$ maps components into decreasing order.
16. EIGENVALUE PERTURBATION THEORY

Theorem (Lidskii 1950) If $X, Z \in S^n$, then $\lambda(Z) - \lambda(X)$ is a convex combination of permutations of $\lambda(Z - X)$.

A proof via nonsmooth analysis

- Via a separating hyperplane, we need, for any $w \in \mathbb{R}^n$

 $$w^T(\lambda(Z) - \lambda(X)) \leq [w]^T\lambda(Z - X),$$

 where $w \mapsto [w]$ maps components into decreasing order.

- Consider the (nonconvex) spectral function

 $$F(X) = w^T\lambda(X).$$
16. EIGENVALUE PERTURBATION THEORY

Theorem (Lidskii 1950) If \(X, Z \in S^n \), then \(\lambda(Z) - \lambda(X) \) is a convex combination of permutations of \(\lambda(Z - X) \).

A proof via nonsmooth analysis

- Via a separating hyperplane, we need, for any \(w \in \mathbb{R}^n \)
 \[
 w^T (\lambda(Z) - \lambda(X)) \leq [w]^T \lambda(Z - X),
 \]
 where \(w \mapsto [w] \) maps components into decreasing order.

- Consider the (nonconvex) spectral function
 \[
 F(X) = w^T \lambda(X).
 \]
 A nonsmooth mean value theorem shows
 \[
 F(Z) - F(X) = \langle Y, Z - X \rangle
 \]
 for some \(Y \in \partial F(W) \) where \(W \in [X, Z] \).
16. EIGENVALUE PERTURBATION THEORY

Theorem (Lidskii 1950) If $X, Z \in S^n$, then $\lambda(Z) - \lambda(X)$ is a convex combination of permutations of $\lambda(Z - X)$.

A proof via nonsmooth analysis

- Via a separating hyperplane, we need, for any $w \in \mathbb{R}^n$
 \[w^T(\lambda(Z) - \lambda(X)) \leq [w]^T \lambda(Z - X), \]
 where $w \mapsto [w]$ maps components into decreasing order.

- Consider the (nonconvex) spectral function
 \[F(X) = w^T \lambda(X). \]

A nonsmooth mean value theorem shows

\[F(Z) - F(X) = \langle Y, Z - X \rangle \]

for some $Y \in \partial F(W)$ where $W \in [X, Z]$.

- Now apply the subgradient formula. \[\square \]
17. SUMMARY

- **Hyperbolic polynomials** give a simple, general framework for studying **primal** convex optimization.
17. SUMMARY

• Hyperbolic polynomials give a simple, general framework for studying **primal** convex optimization. But:

 – No apparent duality theory;
17. SUMMARY

- **Hyperbolic polynomials** give a simple, general framework for studying **primal** convex optimization. But:
 - No apparent duality theory;
 - Is it really more general than semidefinite programming?
17. **SUMMARY**

- **Hyperbolic polynomials** give a simple, general framework for studying **primal** convex optimization. But:
 - No apparent duality theory;
 - Is it really more general than semidefinite programming?

- **Semisimple Lie theory** gives a broad framework for studying **duality**:
17. **SUMMARY**

- **Hyperbolic polynomials** give a simple, general framework for studying **primal** convex optimization. But:
 - No apparent duality theory;
 - Is it really more general than semidefinite programming?

- **Semisimple Lie theory** gives a broad framework for studying **duality**:
 - Fenchel conjugates;
17. SUMMARY

- **Hyperbolic polynomials** give a simple, general framework for studying *primal* convex optimization. But:
 - No apparent duality theory;
 - Is it really more general than semidefinite programming?

- **Semisimple Lie theory** gives a broad framework for studying *duality*:
 - Fenchel conjugates;
 - convex and nonconvex subdifferentials.