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Abstract

Diverse optimization algorithms correctly identify, in finite time, intrinsic

constraints that must be active at optimality. Analogous behavior extends

beyond optimization to systems involving partly smooth operators, and in

particular to variational inequalities over partly smooth sets. As in classical

nonlinear programming, such active-set structure underlies the design of ac-

celerated local algorithms of Newton type. We formalize this idea in broad

generality as a simple linearization scheme for two intersecting manifolds.
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1 Introduction

Active set methods for optimization and more general variational problems proceed,
either explicitly or implicitly, in two phases. The first phase relies on a globally con-
vergent process to identify activity in the underlying constraints at the solution.
After correct identification, the problem simplifies locally: the algorithm transitions
to a second phase with accelerated local convergence, typically as a result of lineariz-
ing the simplified problem. Standard texts like [8,33] include overviews of active set
methods for traditional nonlinear programming and variational inequalities, but the
algorithmic philosophy also extends to less classical large-scale settings [14,19,21,23].

The idea of partial smoothness, introduced in [17], formalizes the property driv-
ing the first phase: “identifiability”. This term originated in [38], with precursors
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in [1–4,7,10,11]. Applications to convergence and sensitivity analysis for large-scale
convex optimization include [9,22–25,36,37]. Rather than active sets of constraints,
partly smooth geometry focuses on the “active manifold” defined by those con-
straints. The equivalence with identifiability is explored in detail in [5].

In contrast with most of this prior literature, in this work we concentrate on
the second phase of active-set methods: in partly smooth settings, how should we
understand accelerated local convergence? A formalism parallel to partial smooth-
ness with related algorithmic ambitions, “VU theory”, emerged in [16], and in-
cludes [12, 15, 26–29], and most recently the survey [35]. Algorithms exploiting the
active manifold structure, and the resulting connections between partial smooth-
ness, VU theory, and classical nonlinear programming were explored in [30]. Our
aims here, rooted in the partly smooth framework, are more general, formal and
geometric.

In essence, as explained in [18], partial smoothness is a constant-rank prop-
erty. Assuming this simple differential-geometric condition, the underlying problem
reduces, locally, to finding the unique point in two manifolds that intersect transver-
sally. Just like the classical Newton method for solving equations, via linearization
we arrive at fast local algorithms.

A standard illustration (see [18]) involves C(2)-smooth functions gi : R
n → R,

for indices i = 1, 2, 3 . . . , m, and a corresponding set

F =
{

x : gi(x) ≤ 0 ∀i
}

.

Given a cost vector c̄ ∈ Rn, the first-order optimality condition for the optimization
problem supx∈F 〈c̄, x〉 is a generalized equation involving the normal cone to F :

(1.1) c̄ ∈ NF (x).

Consider any feasible point x ∈ F for which the constraint gradients ∇gi(x) for i in
the active set

I(x) = {i : gi(x) = 0}

are linearly independent: for such points, we can describe the normal cone operator
using Lagrange multiplier vectors λ ∈ Rm:

NF (x) =
{

∑

i

λi∇gi(x) : λ ≥ 0, λi = 0
(

i 6∈ I(x)
)

}

.

Let us focus on a particular such point, x̄, that solves the equation (1.1), with
corresponding multiplier λ̄. Assuming strict complementarity (meaning λ̄i > 0 for
all i ∈ I(x̄)), the operator NF is partly smooth at x̄ (for c̄): around the pair (x̄, c̄),
its graph, gphNF , is a manifold, and the canonical projection is constant-rank and
maps gphNF locally onto the active manifold

M =
{

x : gi(x) = 0
(

i ∈ I(x̄)
)

}

.
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In particular, for any nearby pair (x, c) in the graph, the point x must lie inM, so
has the same active set: this is the property of identifiability. For more details in
the setting of this standard example, see [18].

Now, however, suppose in addition that the given point x̄ also satisfies the stan-
dard second-order sufficient conditions: the Lagrangian

∑

i λ̄i∇gi − c is not only
critical at x̄, but also its Hessian is positive definite on the tangent space toM:

{

d ∈ Rn : 〈∇gi(x̄), d〉 = 0
(

i ∈ I(x̄)
)

}

.

In that case, locally around the pair (x̄, c̄), the graph of the normal cone operator,
gphNF , and the space Rn × {c̄} are manifolds intersecting at the unique point
(x̄, c̄), and furthermore the intersection is transversal. Based at a nearby point
(x, c) ∈ gphNF , we could linearize gphNF , calculate the intersection point of the
resulting tangent space with Rn×{c̄}, restore this point to gphNF , and repeat. As
we discuss later, such a process fundamentally underlies the philosophy of classical
sequential quadratic programming.

In this classical example, we see that our theme just results in a standard
methodology, namely sequential quadratic programming for nonlinear programming.
Nonetheless, as should be apparent, even the concise summary we gave inevitably in-
volves an extended set-up involving active constraint indices, Lagrange multipliers,
strict complementarity, and second-order sufficient conditions. Rather than algo-
rithmic innovation, in this case our contribution is conceptual. By contrast with
the traditional development, our theme is simpler and geometric, involving just fun-
damental ideas about manifolds: tangent spaces, transversality, and constant-rank
maps. In summary, while we hope that the ideas we develop here may help illu-
minate numerical methods in less traditional settings, our primary goal is not the
immediate design of new algorithms. Rather our aim is a simple unifying framework
in which to study active-set-type acceleration techniques for a much broader class
of optimization and variational problems.

2 Manifolds

We begin our more formal development with a brief summary of terminology for
manifolds. We refer the reader to [13] for basic background in differential geometry.

We consider manifolds in a Euclidean space E, by which we mean sets defined,
locally, by smooth equations with linearly independent gradients. More precisely, a
set X ⊂ E is a C(r)-manifold around a point z ∈ X (for some degree r = 1, 2, 3, . . .)
if there exists a C(r)-smooth map F : E→ Rm (for some number m) with surjective
derivative DF (z) such that the inverse image F−1(0) is a neighborhood of z in X .
Equivalently, there exists a number k, an open neighborhood U of zero in Rk, and a
C(r)-smooth map G : U → E with value G(0) = z, everywhere injective derivative,
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and range G(U) a neighborhood of z in X . In that case the number k = dimE−m

is called the dimension of the the manifold X around z, and we refer to G as a local
coordinate system.

With the notation above, the tangent and normal spaces to X at z are given
respectively by

TX (x) = Null
(

DF (z)
)

= Range
(

DG(0)
)

NX (x) = Range
(

DF (z)∗
)

= Null
(

DG(0)∗
)

.

These two orthogonal complements are independent of the choice of maps F and
G. We say that two C(2)-manifolds around z intersect transversally there if the two
corresponding normal spaces intersect trivially.

3 A Newton method for intersecting manifolds

The following simple scheme uses standard ideas. We study the intersection of two
manifolds by linearizing just one of them.

Theorem 3.1 (Semi-linearization error) In a Euclidean space, consider an iso-
lated point of intersection z of two C(2)-manifolds X and Y around z, and suppose
that the intersection is transversal. Then there exists an open neighborhood W of z
such that, for all points x ∈ X ∩W , the linear approximation x+ TX (x) intersects
the set Y ∩W at a unique point y(x), which satisfies

(3.2) |y(x)− z| = O(|x− z|2) as x→ z.

Proof Since the manifolds X and Y intersect at a singleton, and transversally, their
dimensions sum to dimE. We can represent X using a local coordinate system: an
open neighborhood U of zero in Rk and a C(2)-smooth map G : U → E with value
G(0) = z, everywhere injective derivative, and range G(U) an open neighborhood
of z in X . By definition, there also exists a C(2)-smooth map F : E → Rk with
surjective derivative DF (z) such that the inverse image F−1(0) is a neighborhood
of z in Y .

The transversality condition is

{0} = NX (z) ∩NY(z) = Null
(

DG(0)∗
)

∩ Range
(

DF (z)∗
)

.

Hence all vectors v ∈ Rk satisfy

DG(0)∗
(

DF (z)∗v
)

= 0 ⇔ DF (z)∗v = 0.

By assumption the adjoint map DF (z)∗ is injective, so the right-hand side is equiv-
alent to v = 0. Consequently the composition DG(0)∗ ◦DF (z)∗ is injective, so its
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adjoint DF (z) ◦DG(0) : Rk → Rk is surjective and hence in fact invertible. By the
inverse function theorem, the composite map F ◦ G : Rk → Rk has a C(2)-smooth
inverse map around zero.

We can express any point x ∈ X near z as x = G(u) for some small vector
u ∈ Rk. In that case, the point we seek has the form y(x) = G(u) + DG(u)v for
some small vector v ∈ Rk, where

(3.3) F
(

G(u) +DG(u)v
)

= 0.

The function of (u, v) on the left-hand side, which we denote H(u, v), is C(1)-smooth.
Its value at (u, v) = (0, 0) is zero, and its derivative there with respect to v is
DvH(0, 0) = DF (z)◦DG(0). Since this derivative is invertible, the implicit function
theorem implies that, for all small vectors u ∈ Rk, equation (3.3) has a unique small
solution v(u) ∈ Rk, depending smoothly on u, and satisfying v(0) = 0.

Since the map G is C(2)-smooth, we have

(3.4) G(u+ v) = G(u) +DG(u)v +O(|v|2)

for all small vectors u and v. Since the map F is Lipschitz, we deduce

F
(

G
(

u+ v(u)
)

)

= F
(

G(u) +DG(u)v(u) +O
(

|v(u)|2
)

)

= F
(

G(u) +DG(u)v(u)
)

+O
(

|v(u)|2
)

= O
(

|v(u)|2
)

,

as u→ 0, and hence
u+ v(u) = O

(

|v(u)|2
)

,

since the inverse map (F ◦G)−1 is Lipschitz. But since

|v(u)| ≤ |u|+ |u+ v(u)| = |u|+O
(

|v(u)|2
)

≤ |u|+
1

2
|v(u)|

for all small u, we deduce |v(u)| ≤ 2|u|. Equation (3.4) implies

y(x)− z = G(u) +DG(u)v(u)− z = G
(

u+ v(u)
)

+O
(

|v(u)|2
)

− z

= G
(

O
(

|v(u)|2
)

− z +O
(

|v(u)|2
)

= O
(

|v(u)|2
)

= O(|u|2) = O
(

|G(u)− z|2
)

= O(|x− z|2)

as claimed. ✷

If we can somehow restore the point y(x) in the manifold Y to a nearby point in
the manifold X , by iterating we rapidly converge to the intersection point z. Based
on this idea, the following simple result is the foundation for all the Newton schemes
we consider.
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Corollary 3.5 (Semi-linearization for intersecting manifolds) Following the
framework of Theorem 3.1, consider two manifolds X and Y intersecting transver-
sally at their unique common point z, and in addition a Lipschitz map R : Y → X
satisfying R(z) = z. Then, starting from any point x ∈ X near z, the iteration

x← R
(

y(x)
)

converges quadratically to z.

Proof Using the fixed point and Lipschitz properties, and equation (3.2), we deduce

∣

∣R
(

y(x)
)

− z
∣

∣ =
∣

∣R
(

y(x)
)

− R(z)
∣

∣ = O(|y(x)− z|) = O(|x− z|2),

for all points x ∈ X near z, as required. ✷

Since X is a C(2)-smooth manifold around the point z, a natural candidate for
the restoration map R is ProjX , the corresponding nearest-point projection map
onto X , which is C(1)-smooth and hence Lipschitz around z, and which obviously
leaves z fixed. However, in the broad scenario that we have in mind, this projection
may not be the most natural choice. We describe this scenario next.

4 Generalized equations

Henceforth we fix a Euclidean space U, and consider the problem of finding a zero
of a set-valued mapping Φ, or in other words a solution of the generalized equation

0 ∈ Φ(u).

Henceforth we rely on standard terminology from variational analysis, as presented
in monographs such as [32, 34].

Assuming that the graph of Φ is a manifold, locally, we can frame this equation as
an intersection problem as in the previous section and Theorem 3.1. The underlying
Euclidean space is now E = U2, the sets X and Y are the graphs of Φ and the zero
mapping respectively,

X = gphΦ = {(u, v) ∈ U2 : v ∈ Φ(u)}

Y = U× {0},

and the intersection point is z = (ū, 0). The transversality condition is

NgphΦ(ū, 0) ∩NU×{0}(ū, 0) = {(0, 0)}.

Automatically, then, we must have dim gphΦ = dimU.
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Using the language of coderivatives, we have by definition for any set-valued
mapping Φ the relation

(v,−y) ∈ NgphΦ(ū, 0) ⇔ v ∈ D∗Φ(ū|0)(y).

In this definition, N denotes the limiting normal cone, which coincides with the
classical normal space for manifolds. Hence, since

NU×{0}(ū, 0) = {0} ×U,

we can rewrite the transversality condition as in the following assumption.

Assumption 4.1 The point ū ∈ U is an isolated zero of a set-valued mapping
Φ: U →→ U. Furthermore, the graph of Φ is a C(2)-smooth manifold around the
point (ū, 0), and the transversality condition

(4.2) 0 ∈ D∗Φ(ū|0)(y) ⇒ y = 0.

holds.

We remark in passing that the coderivative criterion (4.2) plays a fundamental
role throughout the variational analysis literature. For any set-valued mapping Φ
with closed graph and satisfying 0 ∈ Φ(ū), it is equivalent to metric regularity [34,
Theorem 9.43]: the ratio of two distances

dist
(

u,Φ−1(v)
)

dist
(

v,Φ(u)
)

is uniformly bounded above for pairs (u, v) near (ū, 0) (where we interpret 0
0
= 0).

Turning to the linearization step in Theorem 3.1, given a current point u ∈ U
and a current value v ∈ Φ(u), using the language of graphical derivatives, we have
by definition

(4.3) (u′, 0) ∈ (u, v) + TgphΦ(u, v) ⇔ −v ∈ DΦ(u|v)(u′ − u).

In this definition, T denotes the standard tangent cone, which coincides with the
classical tangent space for manifolds. Having calculated the new point u′ ∈ U from
this relationship, to apply Corollary 3.5 we need a Lipschitz map to restore the point
(u′, 0) to a nearby point on gph Φ.

Example: classical Newton method

For illustration, consider the case where the mapping Φ is just a single-valued C(2)-
smooth map F : U→ U. The transversality condition (4.2) reduces to invertibility
of the derivative map DF (ū). At the current pair (u, F (u)) ∈ gphF , the lineariza-
tion step (4.3) results in a new pair (u′, 0) ∈ U×{0} where u′ = u−(DF (u))−1F (u).
Rather than trying to project (u′, 0) onto gphF , we can use the natural restoration
map R defined by (u′, 0) 7→

(

u′, F (u′)
)

, which fixes the point (ū, 0) and obviously in-
herits the Lipschitz property of F . Corollary 3.5 now simply recovers the quadratic
convergence of the classical Newton iteration for solving F (u) = 0.
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Example: variational inequalities

More generally, consider the case

Φ = F +Ψ,

for a single-valued C(2)-smooth map F : U→ U and a maximal monotone operator
Ψ: U →→ U. In particular, Ψ might be the subdifferential operator ∂g for a proper
closed convex function g : U → R. This case includes two important examples:
the special case when F is the derivative ∇f of a smooth function f : U → R,
corresponding to the optimization problem inf{f + g}, and the special case when
g is the indicator function for a closed convex set K ⊂ U, corresponding to the
variational inequality

VI(K,F ) : 0 ∈ F (u) +NK(u).

We assume that the point ū ∈ U is an isolated zero of the mapping F + Ψ,
and that the graph of the operator Ψ is a C(2)-smooth manifold around the point
(

ū,−F (ū)
)

. Standard nonsmooth calculus (or direct calculation) implies

D∗(F +Ψ)(ū|0)(y) = DF (ū)∗y +D∗Ψ
(

ū| − F (ū)
)

(y)

D(F +Ψ)(u|F (u) + w)(s) = DF (u)s+DΨ
(

u|w
)

(s)

for w ∈ Ψ(u). Hence the transversality condition (4.2) becomes

−DF (ū)∗y ∈ D∗Ψ
(

ū| − F (ū)
)

(y) ⇒ y = 0.

Given a current vector u ∈ U and a vector w ∈ Ψ(u) corresponding to the choice
v = F (u) + w in the relation (4.3), the linearization step is defined by

−F (u)− w ∈ DF (u)(u′ − u) +DΨ
(

u|w)
)

(u′ − u).

It remains to find a Lipschitz map restoring the new point (u′, 0) to gph (F +Ψ).
To that end we can use Minty’s Theorem [34, Theorem 12.15], which guarantees
that, for any choice of λ > 0, the resolvent map (I+λΨ)−1 : U→ U is single-valued
and nonexpansive. Define a Lipschitz map Q : U→ U by

(4.4) Q(u) = (I + λΨ)−1
(

u− λF (u)
)

.

Clearly zeros of the mapping F + Ψ coincide with fixed points of Q, and simple
calculations show

(

Q(u),
1

λ

(

u−Q(u)
)

− F (u) + F
(

Q(u)
)

)

∈ gph (F +Ψ) for all u ∈ U.

Hence we can use the restoration map R : U×{0} → gph (F +Ψ) defined by setting
R(u, 0) to the left-hand side of this inclusion. This map is clearly Lipschitz, and
fixes the point (ū, 0), as required.
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In the smooth case (Ψ = 0), we arrive at a slight variant of the classical Newton
method for the smooth equation F (u) = 0 that we saw in the previous example
(and coinciding with it in the limiting case λ = 0). A simple extension is when the
mapping Ψ is the normal cone operator NL for a linear subspace L ⊂ U, in which
case we arrive at a slight variant of the natural projected Newton scheme for solving
F (u) = 0, u ∈ L.

5 Identifying primal activity: partial smoothness

Corollary 3.5 describes the basic Newton-type approach to the manifold intersection
scenario

X ∩ Y = {z}

and more particularly for the special case associated generalized equation 0 ∈ Φ(u):

gphΦ ∩ (U× {0}) = {(ū, 0)}.

The Newton iteration depends fundamentally on a Lipschitz restoration map R

from the manifold X into the manifold Y that fixes the intersection point z. In
general it may be unclear how to construct such a map, and even in special cases
when a closed form is available, as in the previous maximal monotone examples,
the resulting conceptual algorithm is not transparent, and involves simultaneous
coupled updates to primal variables (in the domain of the mapping Φ) and dual
variables (in the range of Φ).

In this section we describe a systematic approach to the restoration map R,
motivated by traditional active-set optimization algorithms. We decouple updates
to the primal and dual variables, thereby decomposing R into a composition of two
maps. The first map updates the primal variables by identifying an underlying
active submanifold in the primal manifold Y = U× {0}. The second map fixes the
primal variables and updates the dual variables to restore the iterate to the manifold
X = gphΦ. This approach depends crucially on the existence of a constant-rank
map from X into Y : in the special case of the generalized equation 0 ∈ Φ(u), this
assumption amounts to the “partial smoothness” of the mapping Φ, language that
we argue elsewhere is convenient for the philosophy of active set identification.

Theorem 5.1 (Active set method for manifold intersection) In a Euclidean
space, consider an isolated point of intersection z of two C(2)-manifolds X and Y
around z, and suppose that the intersection is transversal. Suppose furthermore that
there exists a map P : X → Y that fixes the point z and is C(2)-smooth and constant
rank nearby. Then, for any sufficiently small neighborhood W of z, the following
properties hold:

(a) The imageM = P (X ∩W ) ⊂ Y is a C(2)-manifold around z.
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(b) There exists a Lipschitz map S : Y ∩ W → M that fixes the point z. In
particular, we could choose S to be the projection map

ProjM : Y ∩W →M.

(c) There exists a Lipschitz map Q :M∩W → X that fixes the point z and is a
right inverse for P :

P
(

Q(w)
)

= w for all w ∈M∩W.

In particular, we could define

Q(w) = ProjP−1(w)(w) for all w ∈M∩W.

(d) For all points x ∈ X ∩W , the linear approximation x + TX (x) intersects the
set Y ∩W at a unique point y(x).

Furthermore, starting from any point x ∈ X near z, the iteration

x← Q
(

S
(

y(x)
)

)

converges quadratically to z.

Proof Property (a) follows from the Constant Rank Theorem. Property (b) fol-
lows from the well-known fact that the projection onto a C(2)-manifold around a
point z is C(1)-smooth around z. Property (d) and the final conclusion follow from
Corollary 3.5. To complete the proof, we show that the map Q defined in part (c)
is in fact C(1)-smooth around z.

By the Constant Rank Theorem, there exist local coordinate systems for the
manifolds X and Y around the point z with respect to which the map P is linear,
and in fact maps the point with coordinate vector (u, v) ∈ U×V to the point with
coordinate vector (u, 0) ∈ U×W, for suitable Euclidean spaces U, V, and W. To
be more precise, there exist C(2)-smooth maps G : U×V → E and H : U×W → E
(the coordinate systems for X and Y respectively), satisfying G(0, 0) = z = H(0, 0)
and with injective derivatives DG(0, 0) and DH(0, 0), and such that

P
(

G(u, v)
)

= H(u, 0) for all small u ∈ U, v ∈ V.

Around z, the manifoldM then just consists of points of the form H(u, 0) for small
vectors u ∈ U. An obvious example of a right inverse map Q with the desired
properties is given by

Q
(

H(u, 0)
)

= G(u, 0) for all small u ∈ U,
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since then we have

P
(

Q
(

H(u, 0)
)

)

= P
(

G(u, 0)
)

= H(u, 0) for all small u ∈ U.

For any small δ > 0, the coordinate map G is a diffeomorphism from the compact
set

{(u, v) ∈ U×V : |u| ≤ δ, |v| ≤ δ}

onto a compact neighborhood X̂ of the point z in the manifold X , and the map
u 7→ H(u, 0) is a diffeomorphism from the the compact set {u ∈ U : |u| ≤ δ}
onto a compact neighborhood of z in the manifoldM. Furthermore, for all u ∈ U
satisfying |u| ≤ δ we have

P−1
(

H(u, 0)
)

∩ X̂ = {G(u, v) : v ∈ V, |v| ≤ δ}.

Thus for all small u, projecting the point w = H(u, 0) onto the set P−1(w) amounts
to solving the optimization problem

inf
v∈V

{

|G(u, v)−H(u, 0)|2 : |v| ≤ δ
}

.

The infimum is attained, by compactness. By an easy continuity argument, if u
is sufficiently small, any optimal v satisfies |v| < δ, and hence also the first-order
necessary condition

(5.2) DvG(u, v)∗
(

G(u, v)−H(u, 0)
)

= (0, 0).

The left-hand side of this equation is C(1)-smooth. When u = 0, the equation
reduces to

DvG(0, v)∗
(

G(0, v)
)

= (0, 0).

The derivative at v = 0 of the map on the left-hand side is DvG(0, 0)∗DvG(0, 0),
which is invertible since DvG(0, 0) is injective. By the implicit function theorem,
for all small u ∈ U, equation (5.2) has a unique small solution v(u), depending
smoothly on u, and clearly v(0) = 0. Since we have shown, for such u, the property

ProjP−1(H(u,0))

(

H(u, 0)
)

= G
(

u, v(u)
)

,

the result now follows. ✷

Returning to the setting of generalized equations 0 ∈ Φ(u), for a variable u in
a Euclidean space U and a set-valued mapping Φ: U →→ U, we next introduce the
notion of partial smoothness developed in [18].

Definition 5.3 (Partly smooth mappings) For any degree r = 1, 2, 3, . . ., a set-
valued mapping Φ: U→→ U is called C(r)-partly smooth at a point ū ∈ U for a value
v̄ ∈ Φ(ū) when its graph is a C(r)-smooth manifold around the point (ū, v̄) and the
map defined by (u, v) 7→ u for (u, v) ∈ gphΦ is constant rank nearby.
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By definition, the constant rank condition means that the coderivative

D∗Φ(u, v)(0) =
{

w ∈ U : (w, 0) ∈ Ngph Φ(u, v)
}

,

is a subspace of constant dimension for points (u, v) near (ū, v̄). The following result
is [18, Proposition 3.2].

Proposition 5.4 (Active manifold) Assuming Definition 5.3, there exists a set
M in the space U such that any point (u, v) sufficiently near the point (ū, v̄) in the
graph of the mapping Φ satisfies u ∈M. Any such setM is a C(r)-smooth manifold
around ū and is locally unique: that is, any two such sets are identical around ū.

We call the setM in this result the active manifold at ū for v̄.
With this terminology, we can specialize Theorem 5.1 to generalized equations.

Theorem 5.5 (Active set method for generalized equations)
Consider an isolated zero ū ∈ U for a set-valued mapping Φ: U→→ U. Suppose that
Φ is C(2)-partly smooth at ū for 0, with active manifold M ⊂ U, and assume the
transversality condition

0 ∈ D∗Φ(ū|0)(y) ⇒ y = 0.

Then, for any sufficiently small neighborhood W of ū, the following properties hold:

• There exists a Lipschitz map S : W →M that fixes the point ū. In particular,
we could choose S to be the projection map

ProjM : W →M.

• There exists a Lipschitz map Q :M∩W → U satisfying Q(ū) = 0 and

Q(u) ∈ Φ(u) for all u ∈M∩W.

In particular, we could define

Q(u) = ProjΦ(u)(0) for all u ∈M∩W.

• For all points (u, v) ∈ gphΦ near (ū, 0), the linearized equation

−v ∈ DΦ(u|v)(w − u), w ∈ W

has a unique solution w(u, v).

Furthermore, starting from any point (u, v) ∈ gphΦ near (ū, 0), the iteration

u← S
(

w(u, v)
)

, v ← Q(u)

converges quadratically to (ū, 0).
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Proof We simply apply Theorem 5.1 in the framework of Section 4:

X = gphΦ, Y = U× {0}

P (u, v) = (u, 0) for (u, v) ∈ gphΦ.

The result follows immediately. ✷

6 Partly smooth variational inequalities

Consider an isolated solution ū of the variational inequality VI(K,F ):

0 ∈ F (u) +NK(u),

for a C(2)-smooth map F : U→ U and a closed (possibly nonconvex) setK ⊂ U. (In
particular, if F = ∇f for some C(3)-smooth function f : U→ R, then the variational
inequality reduces to the first-order condition for the optimization problem infK f .)
Our aim is to apply Theorem 5.5 (Active set method for generalized equations).

To this end, we first suppose that the set K is prox-regular at −F (ū), and that
ū is in fact (following standard terminology [8]) a nondegenerate solution:

−F (ū) ∈ riNK(ū).

(The practically important but much more complex case where nondegeneracy fails
is analyzed in [9].) Next, we assume that K is C(3)-partly smooth at ū for −F (ū)
relative to some C(3)-manifold M ⊂ K around ū, by which we mean that the
normal cone mapping NK is inner semicontinuous at ū relative toM and satisfies
the sharpness condition

spanNK(ū) = NM(ū).

In this case we have the local property [5]

(6.1) gphNK = gphNM around
(

ū,−F (ū)
)

.

(The graph of NM is sometimes called the normal bundle for the manifoldM.) It is
precisely this property that underlies active set approaches to the original problem.

Example: the basic projection algorithm

To illustrate, suppose for this example that the set K is convex. For any constant
a > 0, by defining a continuous map ya : U→ Q by

ya(u) = ProjK
(

u−
1

a
F (u)

)

13



for points u ∈ U, following a standard route [8, Section 12.1] we can convert the
variational inequality into a fixed-point problem: u solves VI(K,F ) if and only if
ya(u) = u. Indeed, the map above is just a special case of the map (4.4) that we
defined for more general maximal monotone operators. In the example of convex
optimization, where F is the gradient of a smooth convex function, the iteration
u ← ya(u) is just the projected gradient method. Again specializing our earlier
discussion, by definition we have

a
(

u− ya(u)
)

− F (u) ∈ NK

(

ya(u)
)

for all points u ∈ U . Under certain general conditions [Facchinei-Pang Thm 12.1.2],
any sequence of iterates uk ∈ U (for k = 0, 1, 2, . . .) must converge to the solution
ū. By continuity we have

yk = ya(uk)→ ū,

and also
vk = a(uk − yk)− F (uk) → − F (ū),

with
vk ∈ NK(yk).

Hence, by the reduction property (6.1), we deduce yk ∈ M eventually: in other
words, the sequence yk identifies the active manifoldM. In the case of the projected
gradient method for convex optimization, this is exactly the result of [38], based
on earlier work in [7]. The monograph [8] includes a wide-ranging discussion of
general solution algorithms for variational inequalities: the identification behavior
above holds for quite broad classes. Global techniques often aim to drive down the
natural residual ‖u− ya(u)‖ indirectly by driving down a merit function such as the
regularized gap

θa(u) = sup
y∈K

{

〈F (u), u− y〉 −
a

2
‖u− y‖2

}

or the D-gap given by the function θa− θb, for some constant b in the interval (0, a)
(see [Facchinei-Pang Propositions 10.3.7 and 10.3.8]). Such approaches also lead to
identification: if the iterates uk converge to some limit ū, and the corresponding
residuals converge to zero, then continuity ensures that ū is a fixed point of the map
ya and hence a solution of the variational inequality, so under the partial smoothness
assumptions above, the nearby sequence ya(uk) eventually lies in the manifoldM.

Returning to the general case, property (6.1) shows that, locally, around the so-
lution ū, the original variational inequality VI(K,F ) is equivalent to the variational
inequality VI(M, F ):

0 ∈ F (u) +NM(u).

As we remarked, this reduction captures the essence of the active set philosophy:
we can henceforth focus on applying Theorem 5.5 for the mapping Φ = F +NM.
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Following [18], the normal space mapping NM is C(2)-partly smooth at ū for
−F (ū), with active manifold M, so by an easy calculus rule [18], the mapping
F +NM is C(2)-partly smooth at ū for 0, as we need in order to apply Theorem 5.5.
The theorem involves two more key ingredients. The first is the transversality
condition to check, which we can write

−
(

DF (ū)
)∗
y ∈ D∗NM

(

ū| − F (ū)
)

(y) ⇒ y = 0,

using routine coderivative calculus [34, Example 10.43]. The second is the linearized
equation: given points u ∈ U near ū and small v ∈ F (u) +NM(u), we solve

−v ∈ DF (u)(w − u) +DNM

(

u|v − F (u)
)

(w − u)

for the new iterate w. Here, once again we have applied some standard calculus,
this time for derivatives [34, Example 10.43].

In this light, we therefore next discuss how to compute the derivative and
coderivative maps

(6.2) DNM(u|z) and D∗NM(u|z)

for u ∈ M and z ∈ NM(u). These are second-order concepts, since NM = ∂δM.
Indeed, using the notation of the Mordukhovich generalized Hessian [31], we have

D∗NM = ∂2δM.

The Hessian of a C(2)-smooth function f : U → R has an important symmetry
property that we can express as the relationship

D(∇f) = D∗(∇f).

By contrast, for general setsM, there is no relationship between the derivative and
coderivative mappings (6.2). On the other hand, for fully amenable sets (and hence,
in particular, for manifolds) we always have the derivative-coderivative inclusion

DNM(u|z) ⊂ D∗NM(u|z);

see [34, Theorem 13.57]. Our next result shows that, for manifolds, this inclusion
in fact holds with equality: informally, second derivatives of manifold indicator
functions are symmetric.

Theorem 6.3 (Derivative-coderivative equality for manifolds)
Consider a C(2)-smooth manifold M ⊂ U around a point u ∈ M, and a normal
vector v ∈ NM(u). Then the normal mapping NM : U→→ U satisfies the derivative-
coderivative equality

DNM(u|v) = D∗NM(u|v).
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Proof By definition, we can suppose the manifold M to be defined as the set
of common zeros near the point u of C(2)-smooth functions hi : U → R (for i =
1, 2, 3, . . . , m), where the gradients ∇hi(u) are linearly independent, and that v =
∑

i λi∇hi(u) for some vector λ ∈ Rm. Define a corresponding self-adjoint linear
map H : U→ U by H =

∑

i λi∇
2hi(u). By definition, for vectors u, w ∈ U we have

z ∈ DNM(u|v)(w)

if and only if
(w, z) ∈ TgphNM

(u, v),

which is equivalent (by [20, Theorem 2.8]) to

(6.4) w ∈ TM(u) and z −Hw ∈ NM(u).

On the other hand, we have

z ∈ D∗NM(u|v)(w)

if and only if
(z,−w) ∈ NgphNM

(u, v),

which is also equivalent (by [20, Theorem 2.8]) to condition (6.4). ✷

As an aside, we note an elegant consequence of this result: again informally
speaking, partly smooth functions have symmetric second derivatives. To be precise,
we gather together in the next result various properties of functions f : U→ R that
are partly smooth in the sense of [6], the functional version of the definition for sets
in [5]. This idea is a slight variant of the original notion from [17]: it corresponds
closely to our current notion of partial smoothness applied to the subdifferential
mapping ∂f .

Corollary 6.5 Consider a C(r)-smooth manifold M ⊂ U around a point ū ∈ M,
for some degree r > 1. Suppose a subgradient v of a function f : U → R at ū

satisfies the nondegeneracy condition

v̄ ∈ ri ∂f(ū),

as well as the following conditions:

• f is prox-regular and subdifferentially continuous at ū for v̄;

• f agrees with some C(r)-smooth function f̄ : U→ R onM around ū;

• The affine span of the regular subdifferential ∂̂f(ū) is a translate of the normal
space NM(ū);
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• For some neighborhood W of v̄, the mapping u 7→ ∂f(u) ∩W is inner semi-
continuous at ū relative to M.

Then the subdifferential mapping ∂f is C(r−1)-partly smooth at ū for v̄, with active
manifoldM, and, locally, satisfies

gph ∂f = {(u,∇f̄(u) + v) : u ∈M, v ∈ NM(u)} around (ū, v̄).

Furthermore, the following derivative-coderivative equality holds:

D(∂f)(ū|v̄) = D∗(∂f)(ū|v̄) = ∂2f(ū|v̄) = ∇2f̄(ū) +D(NM)
(

ū|v̄ −∇f(ū)
)

.

Note: The bulleted properties (without the assumption of subdifferential continu-
ity) together constitute the definition of partial smoothness of f at ū for v̄.

Proof All except the final claim is simply a restatement from [18]. The final
claim follows from the fact that the graphs of the mappings ∂f and ∇f̄ + NM

agree around the point (ū, v̄), and hence these mappings have the same derivative
and coderivative mappings. The result now follows from derivative and coderivative
calculus and Theorem 6.3. ✷

Having calculated the relevant derivatives and coderivatives in Theorem 6.3, we
can now interpret the active set method described in Theorem 5.5 for the variational
inequality VI(K,F ). Under the partial smoothness assumptions at the beginning
of this section, the problem reduces locally around the solution ū to variational
inequality

0 ∈ F (u) +NM(u),

or equivalently, using the notation of the proof of Theorem 6.3, to the system

F (u) +
m
∑

i=1

λi∇hi(u) = 0(6.5)

hi(u) = 0 (i = 1, 2, 3, . . . , m).(6.6)

in the variables u ∈ U and λ ∈ Rm. By assumption, there exists a unique vector
λ̄ ∈ Rm such that the function G = F +

∑

i λ̄i∇hi is zero at ū.
As we have seen, the transversality condition is

−
(

DF (ū)
)∗
y ∈ D∗NM

(

ū| − F (ū)
)

(y) ⇒ y = 0,

or equivalently, by property (6.4),

y ∈ TM(ū) and DG(ū)∗y ∈ NM(ū) ⇒ y = 0.

Not surprisingly, this simply amounts to the invertibility of the system (6.5) and
(6.6) linearized around the solution (ū, λ̄). In particular, under these conditions the
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fact that ū is an isolated solution is an automatic consequence. In the case of opti-
mization (where the map F is a gradient), the condition reduces to nonsingularity
of the Hessian of the Lagrangian function, projected onto the tangent space TM(ū).

Turning to the linearized equation, we consider a current point u ∈ U near ū

and small vector v ∈ F (u) +NM(u), which we can write as L(u), where

L = F +
∑

i

λi∇hi,

is the Lagrangian, for some unique multiplier vector λ ∈ Rm. We must solve

−v ∈ DF (u)s+DNM

(

u

∣

∣

∣

∑

i

λi∇hi(u)
)

s

for the Newton step s, and then update u ← u + s. We can write this equation
equivalently, by property (6.4), as the linear system

s ∈ TM(u) and L(u) +DL(u)s ∈ NM(u),

so this step amounts to seeking a critical point of the Lagrangian restricted to the
tangent space, a familiar operation in sequential quadratic programming approaches.

We can now interpret Theorem 5.5, after using this active-set approach to reduce
to the concrete system (6.5) and (6.6). We linearize this system around the current
iterate u and current Lagrange multiplier estimate λ ∈ Rm, and solve for the new
pair (u′, λ′). We then resort to exact feasibility restoration — often unrealistic
in practice, but nonetheless useful conceptually. To be precise, we map the first
component u′ back onto a new iterate u on the active manifold M defined by the
equations (6.6): conceptually, we could simply consider the nearest-point projection,
especially if the original set K is convex, since then the projections ProjK and ProjM
agree near the solution. Finally, we estimate a new multiplier vector λ ∈ Rm, for
example by minimizing ‖F (u) +

∑

i λi∇hi(u)‖. Repeating this process generates
iterates (u, λ) converging quadratically to the solution pair (ū, λ̄).
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[4] P.H. Calamai and J.J. Moré. Projected gradient methods for linearly con-
strained problems. Math. Program., 39(1):93–116, 1987.

[5] D. Drusvyatskiy and A.S. Lewis. Optimality, identifiability, and sensitivity.
Math. Program., 147:467–498, 2014.

[6] D. Drusvyatskiy and A.S. Lewis. Optimality, identifiability, and sensitivity.
arXiv:1207.6628, 2014.

[7] J.C. Dunn. On the convergence of projected gradient processes to singular
critical points. J. Optim. Theory Appl., 55(2):203–216, 1987.

[8] F. Facchinei and J. Pang. Finite Dimensional Variational Inequalities and
Complementarity Problems. Springer Series in Operations Research, Springer-
Verlag, New York, 2003.
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[29] R. Mifflin and C. Sagastizábal. A VU -algorithm for convex minimization. Math.
Program., 104:583–608, 2005.

20

http://arxiv.org/abs/1807.03134


[30] S.A. Miller and J. Malick. Newton methods for nonsmooth convex minimiza-
tion: connections among U-Lagrangian, Riemannian Newton and SQP meth-
ods. Math. Program., 104:609–633, 2005.

[31] B.S. Mordukhovich. Sensitivity analysis in nonsmooth optimization. In The-
oretical Aspects of Industrial Design (Wright-Patterson Air Force Base, OH,
1990), pages 32–46. SIAM, Philadelphia, PA, 1992.

[32] B.S. Mordukhovich. Variational Analysis and Generalized Differentiation I:
Basic Theory. Grundlehren der mathematischen Wissenschaften, Vol 330,
Springer, Berlin, 2006.

[33] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Opera-
tions Research and Financial Engineering. Springer, New York, second edition,
2006.

[34] R.T. Rockafellar and R.J-B. Wets. Variational Analysis. Grundlehren der
mathematischen Wissenschaften, Vol 317, Springer, Berlin, 1998.
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