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The Belgian chocolate problem. Illustrating the difficulty of control design
problems, Blondel [1] proposed the following problem in 1994:

Given a real 4, find stable real polynomials p and ¢ such that the
polynomial 7(s) = (s? — 28s + 1)p(s) + (s% — 1)q(s) is also stable.
(We call a polynomial p stable if its abscissa a(p) = max{Res : p(s) = 0} is
nonpositive.) Clearly the problem is unsolvable if § = 1, since then r(1) = 0; more
delicate results (summarized in [7]) show it remains unsolvable for é < 1 close to 1.
Blondel offered a prize of 1kg of Belgian chocolate for the case § = 0.9, a problem
solved via randomized search in [7].

To illustrate the theme of this talk, we first outline (based on joint work with
D. Henrion) a more systematic, optimization approach to the chocolate problem.
We fix the degrees of the polynomials p and ¢ (say 3, for example), without loss
of generality suppose p is monic, and consider the resulting problem

(CP) min{«a(pgr) : p,q cubic, p monic}.

A feasible solution with negative objective value would solve Blondel’s problem.

A simple nonsmooth algorithm. For nonsmooth optimization problems like
(CP), it is convenient to have on hand a simply-implementable, intuitive, robust
algorithm for minimizing a nonsmooth function f. We present such a method in
[3]. To motivate it, suppose for simplicity f (unlike the abscissa «) is Lipschitz.

Fundamental for good behavior in nonsmooth optimization is the reqularity of
the function f at points z, which means we can write the directional derivative as

f'(z;d) = limsup Vf(x)"d, for all d
y—x

(noting the almost everywhere differentiability of f on its domain in R"). Both
convex and smooth functions are regular. Assuming regularity, we can check that
the steepest descent direction at z is

fliilgargmin{ﬂd” :d € conv{Vf(y):y€a+eB}},

where B denotes the unit ball. The Gradient Sampling algorithm of [3] approxi-
mates this direction by a random vector

G (z) = —argmin{||d|| : d € conv{V f(Y;) :i =1,2,...,m}},

for some fixed radius €, fixed m > n, and independent, uniformly distributed,
random points Y; € x+€eB. (In practice, we add the point x.) The algorithm then
performs a simple line search along this direction, and repeats.
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The performance of Gradient Sampling. The Gradient Sampling algorithm
is intuitive, and straightforward to implement when function and gradient evalu-
ations are cheap. Experiments on a wide variety of examples are very promising
[3]. Rigorous justifications include the almost sure convergence of the search di-
rection G (x) to a “robust” steepest descent direction as the sample size m grows
[2], and convergence results for the algorithm under a variety of underlying as-
sumptions and implementation regimes (for reducing the radius ¢, for example)
[3]. Among these results, however, the following fact is particularly suggestive of
the “smoothing” effect of the algorithm.

Theorem 1. The expectation of the search direction G (x) depends continuously
on the point x.

We sketch a proof suggested by S. Henderson. First, we sample the points Y;
corresponding to the current point x, as above. Next, we construct random points
Y/ corresponding to a perturbed point a’, but “coupled” with the points Y; as
follows. If Y; € o’ + €B, then we set Y/ = Y;; otherwise we choose Y, uniformly

distributed on the set (' + eB) \ (x + eB). The resulting random points Y] are
mutually independent, and uniformly distributed on the ball 2’ + €B, as required.
Since the set (z + eB) \ (2’ 4+ €B) has measure O(||Jz — 2’||), the sets {Y;} and
{Y/} (and hence the vectors G (x) and G (z')) are identical with probability
1—0O(]]Jx —2'||). On the other hand, even if this latter event does not occur, since
f is Lipschitz, the vector GI*(x) — G (2’) is uniformly bounded. In summary, the

expectation of this latter vector must be O(||lz — 2'||).

Solving the chocolate problem. The Gradient Sampling algorithm suggests
numerically that the solution of the problem (CP) for any value of § near 0.9 has
a distinctive structure: the polynomial ¢ is a constant, and the polynomial r has
a negative real zero of order five. Armed with this observation, a simple hand
calculation reveals a unique feasible solution of this form under the assumption
0 < %\/ 242~ 0.924, in particular solving Blondel’s problem.

A nice exercise in nonsmooth calculus verifies our numerical observation that
the above solution is indeed a local minimizer for the problem (CP), at least when
we further restrict the polynomial ¢ to be constant. The requisite nonsmooth
chain rule we need relies heavily on the following striking result [4].

Theorem 2. The abscissa « is reqular throughout the set of degree-k polynomials.

Structural persistence in nonsmooth optimization. The persistent solution
structure for the chocolate problem (C'P) as the parameter § varies illustrates
another important feature of concrete nonsmooth optimization problems, akin to
active set phenomena in nonlinear programming. For classical nonlinear programs,
the second-order sufficient conditions have several important consequences:
(i) the current point is a strict local minimizer;
(ii) as we perturb the problem’s parameters, this minimizer varies smoothly
on an “active” manifold;
(iii) we can calculate perturbed minimizers via smooth systems of equations.
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Properties (ii) and (iii) do not rely fundamentally on second-order theory, and
indeed they also hold for a broad class of nonsmooth functions introduced in [6].
For simplicity once again, we restrict attention to Lipschitz functions f. We
call f partly smooth relative to the active manifold M if f is regular throughout
M and the directional derivative f'(z;d) is continuous as x varies on M, with

f(z;—d) > — f'(x;d) whenever 0 #d L M at z.

¢

This last condition enforces a “vee-shape” on the graph of f around a “ridge”
corresponding to M. Partial smoothness holds, for example, for the function
x — max{z; }, the Euclidean norm, and the maximum eigenvalue of a symmetric
matrix, and the property is typically preserved under smooth composition, gen-
erating a wealth of applications. Furthermore, critical points of partly smooth
functions typically satisfy the sensitivity properties (ii) and (iii) above.

The structural persistence we first observed numerically in the chocolate prob-
lem (CP) is explained by the following refinement of Theorem 2. We associate
with any polynomial p a list of multiplicities of those zeroes of p with real part
equal to the abscissa, listed in order of decreasing imaginary part.

Theorem 3. The abscissa a is partly smooth relative to any manifold of polyno-
mials having a fized list of multiplicities.

By contrast with the sensitivity properties (ii) and (iii) above, convenient checks
for property (i) (strict local minimality) do typically involve second-order analysis.
For partly smooth functions f, the extra assumption we need is proz-regularity [5].
This property requires, locally, that the nearest-point projection onto the epigraph
{(z,7) : v > f(x)} should be unique (as typically holds if f is the pointwise
maximum of some smooth functions, for example). The question of the prox-
regularity of the abscissa « remains open. The essential ingredient is the following
question, with which we end.

Question 1. Does every degree-k polynomial p(s) near the polynomial s* have a
unique nearest stable polynomial?
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