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The Belgian chocolate problem. Illustrating the difficulty of control design
problems, Blondel [1] proposed the following problem in 1994:

Given a real δ, find stable real polynomials p and q such that the
polynomial r(s) = (s2 − 2δs + 1)p(s) + (s2 − 1)q(s) is also stable.

(We call a polynomial p stable if its abscissa α(p) = max{Re s : p(s) = 0} is
nonpositive.) Clearly the problem is unsolvable if δ = 1, since then r(1) = 0; more
delicate results (summarized in [7]) show it remains unsolvable for δ < 1 close to 1.
Blondel offered a prize of 1kg of Belgian chocolate for the case δ = 0.9, a problem
solved via randomized search in [7].

To illustrate the theme of this talk, we first outline (based on joint work with
D. Henrion) a more systematic, optimization approach to the chocolate problem.
We fix the degrees of the polynomials p and q (say 3, for example), without loss
of generality suppose p is monic, and consider the resulting problem

(CP ) min{α(pqr) : p, q cubic, p monic}.

A feasible solution with negative objective value would solve Blondel’s problem.

A simple nonsmooth algorithm. For nonsmooth optimization problems like
(CP ), it is convenient to have on hand a simply-implementable, intuitive, robust
algorithm for minimizing a nonsmooth function f . We present such a method in
[3]. To motivate it, suppose for simplicity f (unlike the abscissa α) is Lipschitz.

Fundamental for good behavior in nonsmooth optimization is the regularity of
the function f at points x, which means we can write the directional derivative as

f ′(x; d) = lim sup
y→x

∇f(x)T d, for all d

(noting the almost everywhere differentiability of f on its domain in Rn). Both
convex and smooth functions are regular. Assuming regularity, we can check that
the steepest descent direction at x is

− lim
ε↓0

argmin
{
‖d‖ : d ∈ conv{∇f(y) : y ∈ x + εB}

}
,

where B denotes the unit ball. The Gradient Sampling algorithm of [3] approxi-
mates this direction by a random vector

Gm
ε (x) = −argmin

{
‖d‖ : d ∈ conv{∇f(Yi) : i = 1, 2, . . . ,m}

}
,

for some fixed radius ε, fixed m > n, and independent, uniformly distributed,
random points Yi ∈ x+ εB. (In practice, we add the point x.) The algorithm then
performs a simple line search along this direction, and repeats.
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The performance of Gradient Sampling. The Gradient Sampling algorithm
is intuitive, and straightforward to implement when function and gradient evalu-
ations are cheap. Experiments on a wide variety of examples are very promising
[3]. Rigorous justifications include the almost sure convergence of the search di-
rection Gm

ε (x) to a “robust” steepest descent direction as the sample size m grows
[2], and convergence results for the algorithm under a variety of underlying as-
sumptions and implementation regimes (for reducing the radius ε, for example)
[3]. Among these results, however, the following fact is particularly suggestive of
the “smoothing” effect of the algorithm.

Theorem 1. The expectation of the search direction Gm
ε (x) depends continuously

on the point x.

We sketch a proof suggested by S. Henderson. First, we sample the points Yi

corresponding to the current point x, as above. Next, we construct random points
Y ′

i corresponding to a perturbed point x′, but “coupled” with the points Yi as
follows. If Yi ∈ x′ + εB, then we set Y ′

i = Yi; otherwise we choose Y ′
i uniformly

distributed on the set (x′ + εB) \ (x + εB). The resulting random points Y ′
i are

mutually independent, and uniformly distributed on the ball x′ + εB, as required.
Since the set (x + εB) \ (x′ + εB) has measure O(‖x − x′‖), the sets {Yi} and
{Y ′

i } (and hence the vectors Gm
ε (x) and Gm

ε (x′)) are identical with probability
1−O(‖x−x′‖). On the other hand, even if this latter event does not occur, since
f is Lipschitz, the vector Gm

ε (x)−Gm
ε (x′) is uniformly bounded. In summary, the

expectation of this latter vector must be O(‖x− x′‖).

Solving the chocolate problem. The Gradient Sampling algorithm suggests
numerically that the solution of the problem (CP ) for any value of δ near 0.9 has
a distinctive structure: the polynomial q is a constant, and the polynomial r has
a negative real zero of order five. Armed with this observation, a simple hand
calculation reveals a unique feasible solution of this form under the assumption
δ < 1

2

√
2 +

√
2 ≈ 0.924, in particular solving Blondel’s problem.

A nice exercise in nonsmooth calculus verifies our numerical observation that
the above solution is indeed a local minimizer for the problem (CP ), at least when
we further restrict the polynomial q to be constant. The requisite nonsmooth
chain rule we need relies heavily on the following striking result [4].

Theorem 2. The abscissa α is regular throughout the set of degree-k polynomials.

Structural persistence in nonsmooth optimization. The persistent solution
structure for the chocolate problem (CP ) as the parameter δ varies illustrates
another important feature of concrete nonsmooth optimization problems, akin to
active set phenomena in nonlinear programming. For classical nonlinear programs,
the second-order sufficient conditions have several important consequences:

(i) the current point is a strict local minimizer;
(ii) as we perturb the problem’s parameters, this minimizer varies smoothly

on an “active” manifold;
(iii) we can calculate perturbed minimizers via smooth systems of equations.
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Properties (ii) and (iii) do not rely fundamentally on second-order theory, and
indeed they also hold for a broad class of nonsmooth functions introduced in [6].

For simplicity once again, we restrict attention to Lipschitz functions f . We
call f partly smooth relative to the active manifold M if f is regular throughout
M and the directional derivative f ′(x; d) is continuous as x varies on M, with

f ′(x;−d) > −f ′(x; d) whenever 0 6= d ⊥M at x.

This last condition enforces a “vee-shape” on the graph of f around a “ridge”
corresponding to M. Partial smoothness holds, for example, for the function
x 7→ max{xi}, the Euclidean norm, and the maximum eigenvalue of a symmetric
matrix, and the property is typically preserved under smooth composition, gen-
erating a wealth of applications. Furthermore, critical points of partly smooth
functions typically satisfy the sensitivity properties (ii) and (iii) above.

The structural persistence we first observed numerically in the chocolate prob-
lem (CP ) is explained by the following refinement of Theorem 2. We associate
with any polynomial p a list of multiplicities of those zeroes of p with real part
equal to the abscissa, listed in order of decreasing imaginary part.

Theorem 3. The abscissa α is partly smooth relative to any manifold of polyno-
mials having a fixed list of multiplicities.

By contrast with the sensitivity properties (ii) and (iii) above, convenient checks
for property (i) (strict local minimality) do typically involve second-order analysis.
For partly smooth functions f , the extra assumption we need is prox-regularity [5].
This property requires, locally, that the nearest-point projection onto the epigraph
{(x, r) : r ≥ f(x)} should be unique (as typically holds if f is the pointwise
maximum of some smooth functions, for example). The question of the prox-
regularity of the abscissa α remains open. The essential ingredient is the following
question, with which we end.

Question 1. Does every degree-k polynomial p(s) near the polynomial sk have a
unique nearest stable polynomial?
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