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Abstract

The BFGS quasi-Newton methodology, popular for smooth minimization,
has also proved surprisingly effective in nonsmooth optimization. Through a
variety of simple examples and computational experiments, we explore how
the BFGS matrix update improves the local metric associated with a convex
function even in the absence of smoothness and without using a line search.
We compare the behavior of the BFGS and Shor r-algorithm updates.
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1 Introduction

We consider unconstrained minimization methods for a function f : Rn → R. Our
aim is to explore basic theory, so for simplicity we assume throughout that f is
convex and everywhere finite, even though many of the algorithms we consider are
also interesting for functions that may be nonconvex or extended-valued.

Since the 1970’s, an extensive literature has documented the powerful properties
of the BFGS (Broyden-Fletcher-Goldfarb-Shanno) update in quasi-Newton mini-
mization algorithms. The update accumulates information about the curvature of
the objective, allowing, like Newton’s method, a beneficial transformation of the
space. Remarkably, this process seems to help reliably even when the objective is
nonsmooth [13]. In this work we try to illuminate this phenomenon.
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When studying the BFGS algorithm in the context of nonsmooth optimization,
an interesting point of comparison is the Shor r-algorithm [18]. Shor’s method also
uses a quasi-Newton-like transformation, simpler than BFGS, but without satisfy-
ing the secant condition standard in smooth optimization [15]. The algorithm is
challenging to analyze [5], and hard to implement systematically in practice, al-
though there have been promising attempts [12]. One fundamental difficulty is how
to incorporate into the method a systematic line search. By contrast, a simple line
search (satisfying the standard weak Wolfe conditions) is easy to incorporate into a
nonsmooth BFGS algorithm, and seems very successful in practice [13].

Unfortunately, we lack almost any theoretical insight into the benefits of the
BFGS (or Shor) update in nonsmooth optimization. The interplay of a line search
with quasi-Newton updates complicates the question still further. In this work, we
therefore try to isolate the behavior of the BFGS update, in particular, and try to
understand its beneficial effects with no line search.

On simple random nonsmooth convex optimization problems, a BFGS method
can dispense almost entirely with the usual line search and seemingly still reliably
succeed. More precisely, if the objective f is smooth at the current iterate x ∈ Rn (as
holds generically) and the current BFGS matrix is H (n-by-n and positive-definite),
then traditionally we calculate x+ = x−tH∇f(x), where the stepsize t > 0 is chosen
through the line search, apply a standard BFGS update formula to H, and update
x = x+. However, a more rudimentary idea is simply to choose t = 1, and update
H, but only update x if the step generates descent: f(x+) < f(x). We refer to this
stripped-down method as linesearch-free BFGS.

In Figure 1, we illustrate the typical performance of the linesearch-free BFGS
method on a simple example, where the objective function f : R5 → R is the maxi-
mum of four random strictly convex quadratics. Somewhat surprisingly, the method
minimizes f reliably, generating a sequence of iterates that appear to converge lin-
early to the minimizer. Experiments such as these prompt our quest for insight into
the BFGS update for nonsmooth functions.

2 Space dilation via Shor and BFGS

We begin our exploration with a simpler method: the Shor r-algorithm for minimiz-
ing the function f . At each iteration we consider the current iterate x ∈ Rn, and
a current subgradient g ∈ ∂f(x). The classical subgradient method takes a step
from x in the direction −g. Shor [18, Section 3.6] proposed accelerating this idea
by successively rescaling the space using a current n-by-n matrix V , initially equal
to the identity matrix I. We update the iterate via

(2.1) s = −V TV g; x+ = x+ ts;
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Figure 1: A typical run of the linesearch-free BFGS method for a nonsmooth f on
R5, plotting the value f(xk) − min f against the iteration count k. Flat segments
(such as between the red dots) indicate BFGS updating without iterate updating.

the stepsize t > 0 being chosen through some kind of line search. At the new iterate
x+ we then find a new subgradient g+ ∈ ∂f(x+), define a unit vector e ∈ Rn by

e = V (g − g+); e =
e

‖e‖
;

update the matrix via

W = I − eeT

2‖e‖2
; V+ = WV ;

update x = x+; g = g+; V = V+; and repeat. (The factor “2” that appears in
the denominator in the definition of W has no special significance and could be
replaced by any constant greater than 1.) Shor described his method as one of
“space dilation”: after making a current change of variables x = V Ty, the unit
vector e lies in the direction of the difference of two successive subgradients of the
objective function y 7→ f(V Ty), and the transformation W dilates the space in this
direction.

Consider the canonical special case of minimizing a sublinear function:

f(x) = max
h∈Q

hTx,

for a nonempty compact set of nonzero vectors Q ⊂ Rn. Then x = 0 is nonoptimal
if and only if there exists a descent direction: a vector d ∈ Rn and a scalar α < 0
such that hTd ≤ α for all h in Q. This condition states that a hyperplane normal
to d separates zero from Q (or equivalently its convex hull convQ).
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We could apply Shor’s method, seeking to minimize the function f starting (and
remaining) at the point zero, and terminating once we find a descent direction. More
precisely, at each iteration the current iterate is x = 0 and the current subgradient
g lies in the set Q. We choose the stepsize t = 1, terminate if f(s) < 0, and
otherwise choose a new subgradient g+ ∈ Q to maximize the inner product sTg+.
(As we discuss and motivate in Section 5, this choice of g+ correctly models the
function in the search direction: f(s) = sTg+.) We then update the matrix V and
the subgradient g, maintain x = 0, and repeat.

Following the change of variables we introduced above, if we define h = V g and
p = V g+, we arrive at the following simple procedure for separating a set Q from
zero, relying only on a linear optimization oracle over Q.

Algorithm 2.2 (Shor update method for 0 ∈ convQ)
Choose h ∈ Q; V = I;
while not done do

find a minimizer p of 〈·, h〉 over Q;
if pTh > 0 then

terminate with V Th “normal to separating hyperplane”;
end if
e = h− p; W = I − eeT

2‖e‖2 ; Q = WQ; V = WV ; h = Wp;
end while

Geometrically, the procedure tests whether the current vector h ∈ Q is normal to a
hyperplane separating Q from zero, and if not applies to the set Q a simple linear
transformation W , a symmetric rank-one perturbation of the identity.

In its intuitive simplicity and apparent versatility, the procedure has a certain
appeal. Furthermore, experiments on small examples suggest it typically works:
when zero lies outside the convex hull of Q, the procedure terminates, and otherwise
the vector h converges to zero. Especially simple is the case when Q is a finite set
of nonzero vectors, in which case we seek to separate the polytope convQ from
zero, or equivalently, find a solution d for the homogeneous system of inequalities
hTd < 0 for all h ∈ Q (a core problem of linear programming). The oracle — linear
optimization over Q — is then particularly easy.

Each iteration is computationally simple, involving just elementary operations
on all the vectors in Q. The procedure is not as “elementary” as methods like
the Perceptron Algorithm, that in particular preserve sparsity, being closer in spirit
to rescaled perceptron methods [1]. As we discuss later, it also has some formal
similarities with versions of the Ellipsoid Algorithm.

To illustrate, consider the following example in dimension n = 5. For each index
j, denote the corresponding unit vector in R5 by ej. Define vectors aj = 4jej,
along with a convex combination p = (

∑
4−j)−1

∑
ej. Fix a parameter ε > 0,

and let the set Q consist of the points aj − (1 + ε)p (for each j) along with −p.
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Figure 2: Separating a point from a polytope: mean of number of required iterations
to terminate from a random start.

Geometrically, Q consists of the vertices of an irregular simplex. When ε is small the
point zero is outside the simplex but close to one of the facets, making the problem
ill-posed. Figure 2 plots the number of iterations needed by several algorithms to
find a separating hyperplane, averaged over the starting point in Q, as a function
of the parameter ε. The figure compares this Shor update method (labeled “Classic
Shor”) with several other algorithms discussed below: a randomized Shor method, a
BFGS method, and a version of the ellipsoid algorithm. As we see from the plot, on
this small and simple example, Shor updating is reliable, terminating after a couple
of dozen iterations even with ε = 10−3. Figure 3 shows some typical trajectories.

A simple nonpolyhedral problem seeks to separate a point c from an ellipsoid in
Rn. If we describe the ellipsoid as AB, where B ⊂ Rn is the closed unit ball and A
is an invertible n-by-n matrix, then we seek a normal vector z ∈ Rn to a separating
hyperplane, or in other words a solution of the inequality ‖AT z‖ < cT z. If Q is the
boundary of the ellipsoid AB− c, we arrive at following simple procedure (involving
no matrix inversion): if it terminates, the output vector z solves our problem.
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Figure 3: Separating a point from a polytope: typical trajectories.

Algorithm 2.3 (Shor updating to separate point c from ellipsoid AB)
Choose unit x ∈ Rn; V = I;
while not done do
h = Ax− c; y = −ATh; y = y

‖y‖ ; p = Ay − c;
if pTh > 0 then

terminate with z = V Th “normal to separating hyperplane”;
end if
e = h− p; W = I − eeT

2‖e‖2 ; A = WA; V = WV ; c = Wc; x = y;
end while

(In the notation of Algorithm 2.2, the current iterate h is Ax−c for some unit vector
x, and we compute p by minimizing 〈p, h〉 with p = Ay − c, over unit vectors y.)

We illustrate this idea in dimension n = 5, for a diagonal matrix A with diagonal
[1 10 102 103 104]. We generate a hundred instances by choosing the vector c =
(1 + d)Au, where u ∈ R5 is a random unit vector, and we set the scalar d (which
controls the ill-posed of the instance) to be both 1 and 10−1 to illustrate the effect
of ill-posedness. The figures below (Figure 4) plot histograms of the number of
instances requiring certain numbers of iterations to terminate.

As we see from the plots, on these random examples on a low-dimensional ellip-
soid, moderately ill-conditioned and well separated from zero, this Shor updating
method works reliably. It typically finds a separating hyperplane after a couple of
dozen iterations. Not surprisingly, the required number of iterations grows as the
parameter d (and hence distance to ill-posedness) shrinks: examples with d = 10−2

may need more than 100 iterations, and d = 10−3 may need more than 1000. The
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Figure 4: Shor updating to separate a point from an ellipsoid in R5. Histograms of
number of required iterations to terminate, for 100 random examples.

method remains viable as the dimension grows. When the matrix A has diagonal
entries [1 10 102 · · · 109], with d = 10−1, a hundred random instances all terminated
in less than 200 iterations.

Bolstered by such random experiments, where Shor updating systematically suc-
ceeds, we might hope for a simple proof validating Algorithm 2.2, and thereby some
insight into the Shor r-algorithm. Sadly, while the procedure is simple, its behavior
is not: sporadically, it can fail. For example, numerical experiments with the ellip-
soid separation procedure (Algorithm 2.3) revealed that on the small example in R2

defined by

A =

[
1 0
0 10

]
, v = −

[
10
39

]
, c = (1 + 10−2)A

v

‖v‖
,

a thousand iterations do not suffice for termination. Furthermore, the failure seems
unambiguous: after a few steps, iterations seem to behave cyclically, with a period
of five iterations. In particular, the cosine of the angle between the vectors p and
h is bounded above by −1/100, so the termination criterion always fails. Figure 5
plots this cosine for the first hundred iterations.

Sporadic failures notwithstanding, the numerical evidence suggests that the Shor
update in Algorithm 2.2 improves the geometry of the problem in some average
sense, perhaps analogous to randomized algorithms for convex programming like
[1, 8]. To try to isolate this effect, we consider a simple modification of Algorithm
2.2. The original method remembers the new element p ∈ Q at the end of an
iteration, and uses it, transformed as h = Wp, to start the next iteration. The
modified method below forgets p after the iteration, starting each new iteration
afresh by simply choosing h to optimize over Q in a random direction.
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Figure 5: Cyclic behavior of the angle between p and h during Shor updating.

Algorithm 2.4 (Randomized Shor for 0 ∈ convQ)
V = I;
while not done do

choose random u ∈ Rn;
find a minimizer h of 〈·, u〉 over Q;
find a minimizer p of 〈·, h〉 over Q;
if pTh > 0 then

terminate with V Tp “normal to separating hyperplane”;
end if
e = h− p; W = I − eeT

2‖e‖2 ; Q = WQ; V = WV ;
end while

We could, for example, distribute the random vector u normally. In the special case
of the ellipsoid separation procedure, we arrive at a Randomized Algorithm 2.3,
where x, rather than equalling y, is just the normalized vector ATu for a random
vector u. In the figure, we compare the results for the randomized procedure with
those for the original “classic” procedure, and like that procedure, it seems reliable
on small random examples. On the one hand, we observe no failures. On the
other hand, shrinking the ill-posedness parameter d seems to slow the randomized
procedure more than the original version. With d = 10−2 (not shown in the figure),
the original version terminates in every instance within around a hundred iterations,
whereas the randomized version often takes thousands. In summary, reusing the
previous element of the set Q at each iteration seems to accelerate the procedure.

We noted in the introduction that the BFGS method, as a general-purpose non-
smooth optimization tool, shows more promise than the Shor r-algorithm, and is
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Figure 6: BFGS updating to separate a point from an ellipsoid in R5. Histograms
of number of required iterations to terminate, for 100 random examples.

quite successful in practice [13]. A single modification to each of the space-dilation
algorithms above transforms the motivation from the Shor update to the BFGS
quasi-Newton update. Specifically, as we explain in Section 8, we simply change the
updating transformation from

W = I − eeT

2‖e‖2

to

W = I −
( e

hT e
− h

‖h‖
√
hT e

)
hT

A geometric interpretation of the resulting BFGS-based procedure is almost identical
to that for the Shor updating procedure. The only difference is that the matrix W
transforming the space, while still a rank-one perturbation of the identity, is now no
longer symmetric. As with the Shor update, any convergence theory for this BFGS
procedure seems elusive, but its simplicity and apparent effectiveness are intriguing.

On polyhedral separation examples (Figure 2), the BFGS method is successful
but seems slower than the Shor method as the ill-posedness parameter ε shrinks.
The previous ellipsoid separation examples suggest a similar comparison (Figure 6):
the Shor method seems faster as the ill-posedness parameter shrinks (although the
randomized version seems slower), and sporadic failure is a possibility.
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3 The BFGS update

To begin a more careful discussion of the BFGS update, we first recall the classical
idea of Newton’s method as a steepest descent method in a local metric. Suppose the
function f is C2-smooth, and consider a point x ∈ Rn at which the Hessian ∇2f(x)
is positive definite. If we denote the gradient ∇f(x) by g, then the unit steepest
descent step, with respect to the Euclidean norm, is the minimizer of the linear
approximation gT s over the unit ball {s : ‖s‖ ≤ 1}, namely s = − 1

‖g‖g (assuming

g 6= 0). If instead we minimize over the ball {s : sT∇2f(x)s ≤ 1} corresponding to
a natural local metric associated with f at x, we instead arrive at the Newton step
s = −∇2f(x)−1g. In stark contrast to the steepest descent step, taking the Newton
step from x and iterating — Newton’s method — rapidly reduces the objective
value, at least close to a minimizer x̄ with ∇2f(x̄) positive definite. If the initial
point is far from x̄, a simple backtracking line search along the direction of the
Newton step can guarantee progress into the neighborhood where the unit Newton
step is acceptable.

Turning to quasi-Newton methods, the classical idea is to use an approxima-
tion H in the place of the inverse Hessian ∇2f(x)−1, updated after each step. In
particular, the BFGS (Broyden-Fletcher-Goldfarb-Shanno) update, assuming, like
Newton’s method, a unit step, uses a matrix H in the set Sn++ of positive-definite
n-by-n symmetric matrices. We update H as follows:

s = −Hg, x+ = x+ s, g+ = ∇f(x+), y = g+ − g(3.1)

V = I − syT

sTy
, H+ = V HV T +

ssT

sTy
.(3.2)

In this update, we assume that the quantity sTy is strictly positive: it must be
nonnegative, by convexity, but unless f is strictly convex, it may be zero. For
future reference, we make the following definition.

Definition 3.3 Given a C1-smooth convex function f : Rn → R and a point x
in Rn, denote the gradient ∇f(x) by g. The unit-step BFGS update is the map
BFGSf,x : Sn++ → Sn++ defined by BFGSf,x(H) = H+ for a matrix H ∈ Sn++, where
the matrix H+ is given by equations (3.1) and (3.2). If sTy = 0 in equation (3.1),
the matrix H+ is undefined.

Like Newton’s method, if the initial point x and approximation H are close to
the minimizer x̄ and inverse Hessian ∇2f(x̄)−1 respectively, then updating x = x+,
g = g+, H = H+, and iterating, rapidly reduces the objective value [7, Thm 8.6].
Far from x̄, a line search again can guarantee progress into the neighborhood where
the unit step is acceptable, resulting in an algorithm with good global and local
convergence properties: see [15] for more details and an extended discussion of
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the enduringly popular BFGS method. Again like Newton’s method, rather than
thinking of H as an inverse Hessian approximation, we can instead associate it with
a local metric at x, and thereby interpret the BFGS as a variable metric method.
This viewpoint better suits our current development, where the objective function
f may not be smooth.

For nonsmooth optimization, although supported by little theory, extensive com-
putational experiments suggest that the BFGS method can also be surprisingly ef-
fective [13]. Under reasonable conditions, with a suitably randomized initial point,
the function f is smooth at all points encountered by the method, so the update
equations (3.1) and (3.2) make sense. In general, as in the smooth case, it is cru-
cial to incorporate a suitable line search, scaling the step s defined in equation
(3.1) at the outset of the update. In particular, the experiments in [13] rely on a
weak Wolfe line search, ensuring both a sufficient decrease condition on the new
objective value f(x+) and a curvature condition. Classically, these conditions serve
multiple purposes. The sufficient decrease condition is important in convergence
proofs (although in practice simply ensuring decrease typically seems to suffice).
The curvature condition guarantees in particular the condition sTy > 0, which in
turn ensures that the update H+ is positive definite (although for strictly convex ob-
jectives f this property is automatic). Well-known self-correcting properties of the
BFGS update, allowing recovery from badly scaled approximations H, are thought
to depend heavily on the line search [15].

Important as it is, the line search complicates the already challenging task of
understanding how the BFGS update improves the local metric, especially in the
nonsmooth case. The line search may sometimes be irrelevant, as occurs asymptot-
ically in the smooth case, for example. We therefore ask:

• What can we learn simply from the unit-step BFGS update (3.1) and (3.2),
with no line search?

• In particular, when does repeated application of the unit-step BFGS update
at a fixed point generate a descent step?

• Can unit-step BFGS updating underly a nonsmooth minimization algorithm?

4 BFGS updating for smooth functions

Although our primary interest is in nonsmooth functions, we begin with the simplest
smooth case. Consider a C1-smooth strictly convex function f : Rn → R, a point
x ∈ Rn at which the gradient g = ∇f(x) is nonzero, and an initial matrix H ∈ Sn++.
Consider the following procedure, which repeatedly applies the unit-step BFGS
update (Definition 3.3) at the fixed point x until it generates a descent step.
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Algorithm 4.1 (BFGS updating for smooth function f)
while f(x−Hg) ≥ f(x) do
H = BFGSf,x(H);

end while

(Strict convexity of f ensures that the update is always well-defined.) When must
this iteration terminate? We begin with the one-dimensional case.

Theorem 4.2 BFGS updating (Algorithm 4.1) terminates for any C1-smooth strictly
convex function f : R→ R at any noncritical point x.

Proof We argue by contradiction. Suppose without loss of generality g = f ′(x) = 1
and the iteration does not terminate. The matrix H is now simply a scalar h > 0,
and we have s = −h, x+ = x − h, g+ = f ′(x − h), y = f ′(x − h) − 1, and V = 0.
We then update:

h← h+ =
h

1− f ′(x− h)
.

By assumption, f(x − h) ≥ f(x), so f ′(x − h) < 0. Hence h+ < h at every
iteration, so h decreases to some limit h̄ ≥ 0. By continuity we have f ′(x− h̄) ≤ 0.
If f ′(x − h̄) = 0, then we obtain a contradiction, since then the points x − h
approach the minimizer x− h̄ so eventually f(x− h) < f(x). Hence in fact we have
f ′(x− h̄) < 0. But now we obtain the contradiction

h+ =
h

1− f ′(x− h)
→ h̄

1− f ′(x− h̄)
< h̄.

This completes the proof. 2

Using standard theory from the classical quasi-Newton literature [7,10], we next
work towards an analogous result for multivariate quadratic functions. Consider
first the special case f(x) = 1

2
‖x‖2 (for x ∈ Rn). In that case a quick calculation

shows that Algorithm 4.1 becomes the following.

Algorithm 4.3 (BFGS updating for 1
2
‖ · ‖2)

while ‖x−Hx‖ ≥ ‖x‖ do
s = −Hx; z = s

‖s‖ ; H = (I − zzT )H(I − zzT ) + zzT ;
end while

In fact the case of a general strictly convex quadratic function f(x) = 1
2
‖Rx‖2

(for x ∈ Rn), where the n-by-n matrix R is invertible, follows immediately from this
special case. The change of variables x̂ = Rx and Ĥ = RHRT shows, after some
algebra, that the BFGS updating algorithm is essentially identical to Algorithm 4.3:
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while ‖x̂− Ĥx̂‖ ≥ ‖x̂‖ do
s = −Ĥx̂; z = s

‖s‖ ; Ĥ = (I − zzT )Ĥ(I − zzT ) + zzT ;
end while

To proceed, we begin with some geometry in the Euclidean space Sn of n-by-n
symmetric matrices with the inner product defined by 〈X, Y 〉 = trace(XY ), for
matrices X, Y ∈ Sn. We start with a tool whose proof is immediate.

Lemma 4.4 Consider any matrix P ∈ Sn satisfying P 2 = P . For any matrix
X ∈ Sn, the matrix X+ = PXP is orthogonal to the matrix X+ −X.

For the next step, we denote the smallest eigenvalue of a matrix H ∈ Sn by λmin(H).

Lemma 4.5 For any unit vector z ∈ Rn, and any matrix H ∈ Sn, the matrix

H+ = (I − zzT )H(I − zzT ) + zzT

satisfies the orthogonality condition (H+ − I) ⊥ (H+ −H), and consequently

‖(H − I)z‖2 ≤ ‖H − I‖2 − ‖H+ − I‖2,

and furthermore λmin(H+) ≥ min{λmin(H), 1}.

Proof In Lemma 4.4, we consider the matrices P = I− zzT and X = H− I. Then
we have

X+ = (I − zzT )(H − I)(I − zzT ) = H+ − I,

so the orthogonality condition follows. Using this, and noting H+z = z, since

‖(H − I)z‖2 = ‖(H −H+)z‖2 ≤ ‖H −H+‖2 = ‖H − I‖2 − ‖H+ − I‖2,

and the first inequality follows.
Turning to the second inequality, choose a unit vector u ∈ Rn satisfying uTH+u =

λmin(H+). Then we deduce

λmin(H+) =
(
u− (zTu)z

)T
H
(
u− (zTu)z

)
+ (zTu)2

≥ ‖u− (zTu)z‖2λmin(H) + (zTu)2

=
(
1− (zTu)2

)
λmin(H) + (zTu)2

=
(
1− λmin(H)

)
(zTu)2 + λmin(H).

The result now follows. 2

We can now complete our analysis in the quadratic case.
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Theorem 4.6 BFGS updating (Algorithm 4.1) terminates for any strictly convex
quadratic function f at any noncritical point.

Proof We apply Lemma 4.5. As we have argued, it suffices to consider Algorithm
4.3 at any nonzero point x ∈ Rn, so suppose by way of contradiction that the pro-
cedure does not terminate. As the iterations progress, the nonnegative quantity
‖H − I‖ is nonincreasing. The first important consequence is the uniform bound-
edness of the matrix H and hence that of the vector s. Secondly, we also deduce
(H − I)z → 0. Denoting the initial matrix H by H0, we see by induction the
inequality λmin(H) ≥ min{λmin(H0), 1} > 0. Thus the matrix H−1 also stays uni-
formly bounded, so we deduce 1

‖s‖s+ x = (I − H−1)z → 0. Consequently we see
s→ −x, contradicting the assumption that the procedure does not terminate. 2

The argument above in fact proves more.

Theorem 4.7 The linesearch-free BFGS method converges to the minimizer of any
strictly convex quadratic function.

Proof As above, after a suitable change of variables it suffices to prove the result
for the case f(x) = 1

2
‖x‖2. Starting from any nonzero initial point x ∈ Rn and

matrix H ∈ Sn++, we are therefore repeating the following procedure.

while ‖x−Hx‖ ≥ ‖x‖ do
s = −Hx; x+ = x+ s; z = s

‖s‖ ; H = (I − zzT )H(I − zzT ) + zzT ;
end while
x = x+;

Exactly as before, we argue that the matrices H and H−1 remain uniformly bounded.
By the definition of the sequence of iterates x, we know ‖x‖ is nonincreasing, so the
steps s are also uniformly bounded. We deduce x+ → 0, since as before we know

(4.8)
s+ x

‖s‖
→ 0.

If the iterates x do not converge to zero, then they are uniformly bounded away
from zero, and hence eventually we always accept the step because ‖x+‖ < ‖x‖.
But this is a contradiction, since x+ → 0. 2

The argument shows a little more. After taking the inner product with the unit
vector s

‖s‖ , equation (4.8) shows 1
‖s‖2 s

Tx→ −1 and hence 1
‖s‖2 (‖x+‖2−‖x‖2)→ −1.

Thus eventually we always accept the step because ‖x+‖ < ‖x‖. We have thus shown
that the linesearch-free BFGS method applied to a strictly convex quadratic always
accepts the step eventually. The method then reduces to the classical method, and
hence converges superlinearly to the minimizer [15].
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5 BFGS updating for nonsmooth functions

In practice we can apply the classical BFGS method directly to nonsmooth functions,
after a randomized initialization, as we noted in the introduction (see [13]). However,
our aim here is to illuminate the effect of the BFGS update for nonsmooth functions
as simply as possible, so we first consider more formally how we should define it.

To that end, consider a convex function f : Rn → R, possibly nonsmooth. Given
a current point x, subgradient g ∈ ∂f(x), and matrix H ∈ Sn++, generalizing the
classical BFGS method (with a unit step) leads to the following update:

s = −Hg, x+ = x+ s(5.1)

g+ ∈ argmax
{
zT s : z ∈ ∂f(x+)

}
(5.2)

y = g+ − g, V = I − syT

sTy
, H+ = V HV T +

ssT

sTy
.(5.3)

A priori it seems that we might choose the subgradient g+ arbitrarily from ∂f(x+).
The motivation for the particular choice in equation (5.2) deserves some explanation.

As we have discussed, practical BFGS methods, both in the classical smooth
case and in the nonsmooth case, use a line search, suitably scaling the step s before
updating x← x+, g ← g+, H ← H+ and repeating. The curvature condition in the
line search depends crucially on the directional derivative f ′(x+; s) of the objective
f at the new point x+ along the search direction s. By standard convex analysis [3],
that directional derivative is given by

f ′(x+; s) = max
{
zT s : z ∈ ∂f(x+)

}
= gT+s.

Thus our choice of the new subgradient g+ corresponds to the correct linear ap-
proximation to the objective f at the new point x+ along the direction of the last
step s. Worth noting too is that, for analogous reasons, this choice of subgradi-
ent is also reminiscent of the subgradients generated by bundle methods for convex
optimization [11].

Repeating this generalized unit-step BFGS update at a fixed point x presents a
fresh difficulty: not only must we choose a subgradient g+ ∈ ∂f(x+) but we may also
update the original subgradient g ∈ ∂f(x). An analogous argument to the previous
paragraph suggests the choice

(5.4) g++ ∈ argmax
{
zT s : z ∈ ∂f(x)

}
,

since this corresponds to the correct linear approximation to the objective f at the
fixed point x along the direction of the last trial step s: f ′(x; s) = gT++s. We are
therefore led to the following generalized definition.
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Definition 5.5 Consider a convex function f : Rn → R and a point x in Rn. The
(nonsmooth) unit-step BFGS update is the set-valued mapping

BFGSf,x : ∂f(x)× Sn++ →→ ∂f(x)× Sn++

defined, for any subgradient g ∈ ∂f(x) and a matrix H ∈ Sn++, by

BFGSf,x(g,H) =
{

(g++, H+) : (5.1), (5.2), (5.3), (5.4) hold
}
.

Notice that the set of updates BFGSf,x(g,H) is empty if sTy = 0 in equation (5.3).
When the function f is smooth, the set BFGSf,x(∇f(x), H) consists of just one
element, namely the matrix we called BFGSf,x(H) in our previous notation.

We can now pose our questions at the end of the introduction more precisely.
In particular, consider the nonsmooth unit-step BFGS update algorithm for the
objective function f at a fixed point x:

(5.6) while f(x−Hg) ≥ f(x), (g,H)← BFGSf,x(g,H).

• If x is not a minimizer, what conditions guarantee termination with descent:
f(x−Hg) < f(x)?

• If x is a minimizer, what conditions guarantee that the step −Hg converges
to zero?

6 BFGS updating for sublinear functions

We now return to the interesting special case we discussed in Section 2, when the
point of interest is x = 0, and the function f is sublinear. In that case the unit-step
BFGS update simplifies. As a consequence of the following result, whose proof is an
easy exercise, the distinction between the sets of acceptable subgradients g+ and g++

vanishes in this case. To simplify the update in this case, we can choose g++ = g+.

Proposition 6.1 For any sublinear function f : Rn → R and any vector s ∈ Rn,
the maximum value of the linear function 〈s, ·〉 over the subdifferential ∂f(0) is f(s),
and the set of maximizers is ∂f(s).

We can consider any sublinear function f : Rn → R as the support function δ∗C
of a nonempty compact set C ⊂ Rn, namely C = ∂f(0). Hence the nonsmooth
unit-step BFGS update algorithm (5.6) for deciding whether or not the point zero
minimizes a sublinear function f = δ∗C is equivalent to the following algorithm for
deciding whether or not zero lies in the compact convex set C.
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Algorithm 6.2 (BFGS for 0 ∈ C)
Choose g ∈ C, and H ∈ Sn++;
for k = 0, 1, 2, . . . do

if g = 0 then
terminate with “0 ∈ C”;

end if
s = −Hg;
Find a maximizer g+ of 〈·, s〉 over C;
if gT+s < 0 then

terminate with s “normal to hyperplane separating 0 from C”;
end if
y = g+ − g; V = I − syT

sT y
; H+ = V HV T + ssT

sT y
; H = H+; g = g+;

end for

Notice that if both the stopping conditions fail, so g 6= 0 and gT+s ≥ 0, then

yT s = gT+s− gT s ≥ gTHg > 0,

so the BFGS update is well-defined.
We can translate the questions at the end of the previous section for this special

case. Consider Algorithm 6.2 applied to a compact convex set C. What conditions
ensure the following properties?

• 0 6∈ C ⇒ correct termination.

• 0 ∈ C ⇒ either correct termination or convergence of the step s to zero.

The algorithm depends on being able to maximize linear functionals over the
compact convex set C ⊂ Rn, so is most realistic when C is the convex hull of a
possibly simpler (even finite) compact set D ⊂ Rn. In that case we can choose
to restrict our attention to maximizers g+ in D rather than C. Furthermore, if
0 6∈ D, we can omit the first termination criterion. We then arrive at the following
algorithm for deciding whether or not zero lies in the convex hull of a compact set
D ⊂ Rn not containing zero.
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Algorithm 6.3 (BFGS for 0 ∈ convD)
Choose g ∈ D, and H ∈ Sn++;
for k = 0, 1, 2, . . . do
s = −Hg;
Find a maximizer g+ of 〈·, s〉 over D;
if gT+s < 0 then

terminate with s “normal to hyperplane separating 0 from convD”;
end if
y = g+ − g; V = I − syT

sT y
; H = V HV T + ssT

sT y
; g = g+;

end for

Many authors (such as [2, p. 1051]) have noted the similarities between quasi-
Newton algorithms like the BFGS method, and the Ellipsoid Algorithm and related
space-dilation techniques (especially the Shor r-algorithm [18, Section 3.6]). The
Ellipsoid Algorithm for minimizing, over the unit ball, the support function δ∗C ,
when the set C is the convex hull of a compact set D ⊂ Rn not containing zero,
takes the following form [4, p. 249]. We note the similarities with Algorithm 6.3.

Algorithm 6.4 (Ellipsoid algorithm for 0 ∈ convD)
x = 0; H = I;
for k = 0, 1, 2, . . . do

if ‖x‖ > 1 then
g = x;

else
Find a maximizer g of 〈·, x〉 over D;
if gTx < 0 then

terminate with “x separates 0 from convD”;
end if

end if
s = −Hg; x = x+ s

(n+1)
√
−sT g

; H = n2

n2−1

(
H + 2ssT

(n+1)sT g

)
;

end for

7 Symmetry and the unit ball

We begin with the second of our two questions: how does Algorithm 6.2 behave
when the compact convex set C contains zero? We recall the following measure of
the symmetry of the set C:

sym(C) = max{t : g ∈ C ⇒ −tg ∈ C}.

This measure often appears in complexity analysis for convex optimization [9,14,17].
We also use the following standard result, whose proof entails simple linear algebra
[15, equation (6.45)].
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Lemma 7.1 The matrices H and H+ in Algorithm 6.2 satisfy

detH+

detH
= − sTg

sTy
.

In fact this result holds for any matrices H,H+ ∈ Sn related via the BFGS update
equations (5.1) and (5.3).

Our next result shows that when the set C contains zero in its interior, the
determinant of the matrix H must converge to zero, and at a linear rate controlled
by the symmetry measure.

Proposition 7.2 If the compact convex set C contains zero, then the matrices H
and H+ in Algorithm 6.2 always satisfy

detH+ ≤
detH

1 + sym(C)
.

Proof Since g ∈ C, by definition we have −sym(C)g ∈ C. By Lemma 7.1 we
deduce

detH

detH+

=
sT (g − g+)

sTg
= 1 +

maxC 〈·, s〉
−sTg

≥ 1 +
〈−sym(C)g, s〉
−sTg

.

The result follows. 2

When the set C is simply the unit ball, Algorithm 6.2 becomes particularly
simple. Numerical experiments suggest the following conjecture.

Conjecture 7.3 (BFGS for the unit ball) Given any initial unit vector g ∈ Rn

and matrix H ∈ Sn++, if we repeatedly set

s = −Hg, g+ =
s

‖s‖
, y = g+ − g, V = I − syT

sTy
, H+ = V HV T +

ssT

sTy
,

and update g = g+ and H = H+, then the trial step s converges to zero.

Figure 7 shows overlaid plots of ‖s‖ against iteration count for a thousand randomly
initiated runs in dimension n = 5. Such numerical results strongly suggest a linear
convergence rate, and one that grows quite slowly with dimension n. Figure 8 plots
against dimension n, on a log-log scale, the number of iterations (averaged over 200
random runs) to reduce ‖s‖ by a factor 10−8 in Conjecture 7.3: the number grows

roughly like n1/
√
2.

As a first theoretical step we prove the following result. We denote the largest
and smallest eigenvalues of H by λmax(H) and λmin(H) respectively, and we write
E � F for matrices E,F ∈ Sn to mean E − F ∈ Sn++.
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Figure 7: 1000 random runs of the iteration in Conjecture 7.3. Step size ‖s‖ plotted
against iteration count.

Figure 8: Mean number of iterations, over 200 random runs, to reduce ‖s‖ by a
factor 10−8 in Conjecture 7.3, plotted against dimension n.
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Theorem 7.4 The matrices H and H+ in Conjecture 7.3 satisfy

detH+ ≤
1

2
detH and λmax(H+) ≤ λmax(H).

Proof The first inequality follows from Proposition 7.2. Turning to the second,
notice that the update of the matrix H to H+ is positively homogeneous: if we
replace H by γH for some positive scalar γ then H+ is replaced by γH+. After
a suitable scaling of H, we can therefore assume that the step s is a unit vector.
Similarly, if we replace H by UTHU , for an orthogonal matrix U , and g by UTg,
then H+ is replaced by UTH+U . After such an orthogonal transformation, we can
therefore also assume that s is just e1, the first unit vector.

Partitioning vectors, we can write s = [1 0]T and g = −[α b]T , for some scalar
α ∈ (0, 1] and vector b ∈ Rn−1 satisfying α2 + ‖b‖2 = 1. Since s = −Hg, we can
also partition the matrix H−1 as

H−1 =

[
α bT

b E

]
,

where, using the Schur complement, the matrix E ∈ Sn−1 satisfies E � bbT

α
. We can

write the BFGS update equivalently as

H−1+ = H−1 +
yyT

sTy
+
ggT

sTg

(see [15]), and we deduce

H−1+ =

[
1 + α bT

b E − bbT

α(1+α)

]
.

For any positive scalar λ satisfying λ < λmin(H−1) =
(
λmax(H)

)−1
, we seek to

show λ < λmin(H−1+ ) =
(
λmax(H+)

)−1
. Equivalently, via the Schur complement, we

know

α− λ > 0 and E − λI � bbT

α− λ
,

and we seek to prove

1 + α− λ > 0 and E − bbT

α(1 + α)
− λI � bbT

1 + α− λ
.

The first inequality is immediate. The second follows from the inequality

1

α− λ
≥ 1

α(1 + α)
+

1

1 + α− λ
,

which is equivalent to the inequality α(1 + α) ≥ (α− λ)(1 + α− λ), a consequence
of the monotonicity of the left-hand side. 2
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8 Cholesky factors and line segments

The Shor r-algorithm (see equation (2.1)) uses the search direction s = −V TV g,
where g is a current subgradient. The analogue of the quasi-Newton matrix H
is V TV , and the method updates the factor V . As we commented at the end
of Section 2, we can take a similar approach to the BFGS algorithm. Instead of
updating the inverse Hessian approximation H directly through the BFGS formula
(3.2), it can be useful (see [6, 16]) to update a factored form H = T TT , where the
matrix T is invertible. In that case we can write the update as H+ = T T+T+, where

T+ = T (I − qsT ), for q =
y

sTy
+

g√
−sTgsTy

.

Consider the BFGS algorithm for 0 ∈ C, with this notation. After some algebra
and the change of variables h = Tg, p = Tg+ (where g+ is the updated vector g),
and P = TC, we arrive at the following algorithm for deciding whether or not zero
lies in a compact convex set P .

Algorithm 8.1 (Cholesky BFGS for 0 ∈ P )
Choose h ∈ P ;
for k = 0, 1, 2, . . . do

if h = 0 then
terminate with “0 ∈ P”;

end if
Find a minimizer p of 〈·, h〉 over P ;
if pTh > 0 then

terminate with “0 6∈ P”;
end if
e = h− p; β = hT e; W = I − ehT

β
+ hhT

‖h‖
√
β
; P = WP ; h = Wp;

end for

As an example, consider the convex hull of nonzero vectors ai ∈ Rn indexed by
a finite set I. We can implement the algorithm above as follows.

Algorithm 8.2 (Cholesky BFGS for 0 ∈ conv{ai : i ∈ I})
Choose i ∈ I;
for k = 0, 1, 2, . . . do

Find j ∈ I minimizing aTi aj;
if aTi aj > 0 then

terminate with “0 lies outside the convex hull”;
end if
e = ai − aj; β = aTi e;
for each r ∈ I do
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ar = ar − (aTi ar)(
e
β
− ai
‖ai‖
√
β
);

end for
i = j;

end for

To illustrate, consider how this method behaves for a set of just two distinct
nonzero vectors a1 = c 6= d = a2 in Rn. The algorithm becomes the following.

Algorithm 8.3 (Cholesky BFGS for 0 ∈ [c, d])
for k = 0, 1, 2, . . . do

if cTd > 0 then
terminate with “0 /∈ [c, d]”;

end if
e = c− d; β = cT e;
d+ = d− (cTd)( e

β
− c
‖c‖
√
β
); c+ = c− (cT c)( e

β
− c
‖c‖
√
β
);

c = d+; d = c+;
end for

We introduce a measure to track the conditioning of the line segments:

γ[c, d] =

√
‖c‖2‖d‖2 − (cTd)2

‖c− d‖2
.

This quantity is well-defined since the right-hand side is symmetric in c and d. It is
also invariant under scaling and orthogonal transformations: γ(α[c, d]) = γ[c, d] =
γ(U [c, d]) for any nonzero scalar α and any n-by-n orthogonal matrix U .

Obviously the vectors in the algorithm all evolve in the two-dimensional space
spanned by the original line segment [c, d]. Choosing a suitable basis, we therefore
lose no generality in studying the special case a1 = c = [1 0]T and a2 = d = [−p q]T
with q ≥ 0, in which case we have

(8.4) γ[c, d] =
q

(1 + p)2 + q2
.

We arrive at the following tool for recognizing when the algorithm will terminate.

Lemma 8.5 (Angle recognition) Assuming the condition cTd ≤ 0, the line seg-
ment [c, d] satisfies γ[c, d] ≤ 1

2
. Under the additional assumption 0 6∈ [c, d], the

segment also satisfies γ[c, d] > 0.

Proof Assuming the special case above, we have p ≥ 0. We deduce

(1 + p)2 + (q − 1)2 ≥ 1,

and the first claim now follows from equation (8.4). The second claim is easy. 2

If the original line segment [c, d] does not contain zero, eventually the termination
criterion will hold, as a consequence of the following conditioning improvement.
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Lemma 8.6 If cTd ≤ 0, then γ[c+, d+] ≥ γ[c, d] + (γ[c, d])3.

Proof We consider the special case above again, so by assumption, p ≥ 0. Since
(8.4) holds, in particular we have

(8.7) γ[c, d] ≤ q

(1 + p)3/4
.

A quick calculation shows

γ[c+, d+] =
q

(1 + p)3/2
.

We deduce

γ[c+, d+]

γ[c, d]
=

(1 + p)2 + q2

(1 + p)3/2
= (1 + p)1/2 +

q2

(1 + p)3/2
≥ 1 + (γ[c, d])2,

by inequality (8.7). The result follows. 2

We can be more precise, using the following lemma.

Lemma 8.8 For any K > 0, consider the finite sequence (βk) defined (for integers
k ≥ 0) by βk = (K + 1 − k)−1/2 for all k ≤ K. Suppose a second sequence (γk)
satisfies γ0 ≥ β0 and γk+1 ≥ γk + γ3k for all k ≤ K− 1. Then γk ≥ βk for all k ≤ K.

Proof To prove the result by induction, we just need to show βk+1 ≤ βk + β3
k for

all k ≤ K − 1. Squaring both sides, we obtain

β2
k+1 =

β2
k

1− β2
k

≤ β2
k + 2β4

k + β6
k ,

or equivalently, β4
k + β2

k ≤ 1. This last inequality is valid, since β2
k ≤ 1

2
. 2

Suppose the original segment [c, d] does not contain zero, and denote the condi-
tion measure γ[c, d] after k = 0, 1, 2, . . . iterations by γk. Then we have γ0 = γ[c, d]
and γk+1 ≥ γk + γ3k so we deduce by the previous lemma, γk ≥ (γ−20 − k)−1/2 for
all k ≤ γ−20 − 1. In particular, this inequality holds when k is the integral part
bγ−20 − 1c, if the algorithm has not already terminated. In that case, k > γ−20 − 2,
so γk ≥ (γ−20 − k)−1/2 > 2−1/2 > 1

2
, so the algorithm terminates.

We have proved the following result.

Theorem 8.9 For any distinct nonzero vectors c, d ∈ Rn, if the line segment [c, d]
does not contain zero, then, after a number of iterations not exceeding

‖c− d‖4

‖c‖2‖d‖2 − (cTd)2

Algorithm 8.3 terminates correctly.
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9 Conclusion

This work explores the relative effectiveness of the BFGS method and the Shor
r-algorithm in the context of nonsmooth convex optimization. Incorporating line
searches complicates the analysis, so here we try to separate their impact from the
effect of the quasi-Newton or Shor update. In particular, we consider a simple
linesearch-free BFGS algorithm.

Our experiments illustrate the effectiveness of improving the local metric in
nonsmooth optimization. We focus especially on simple examples where the cur-
rent subdifferential is a polytope, ball or ellipsoid, presenting both numerical and
theoretical results. The algorithms simplify even further, conceptually, when rather
than updating the approximate Hessian matrix, we instead work with its Cholesky
factors. In summary, this exploration only heightens our appreciation for the mys-
terious power of the BFGS methodology.
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