
1

Eigenvalues and nonsmooth optimization
Adrian Lewis

Cornell University

Abstract

Variational analysis concerns the geometry and calculus of nonsmooth
sets and functions, often viewed from an optimization perspective. Over
several decades, variational analysis has matured into a powerful and
elegant theory. One rich source of concrete examples involves the eigen-
values of symmetric and nonsymmetric matrices, sometimes deriving
from dynamical or feedback control questions. This essay presents some
central ideas of variational analysis, developed from first principles, in-
cluding convexity and duality, generalized gradients, sensitivity, Clarke
regularity, and numerical nonsmooth optimization. Illustrative examples
from eigenvalue optimization, many from joint work with J.V. Burke and
M.L. Overton, include semidefinite programming, asymptotic stability,
simultaneous plant stabilization, and the distance to instability.

1.1 Introduction

The eigenvalues of a matrix vary nonsmoothly as we perturb the ma-
trix. For example, as the real parameter τ decreases through zero, the
eigenvalues of the matrix [

0 τ

1 0

]
coalesce at zero from opposite sides of the real axis and then split along
the imaginary axis. This inherent nonsmoothness constrains standard
developments of eigenvalue perturbation theory, such as Kato (1982),
Bhatia (1997). The traditional theory, albeit a powerful tool in many
applications, primarily focuses either on precise sensitivity results with
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respect to a single parameter, or on broader bounds for more general
perturbations.

The modern theory of variational analysis offers an elegant attack on
this dilemma. Growing originally out of the calculus of variations, and
driven by the broad successes of the systematic approach to convex-
ity popularized by Rockafellar’s Convex Analysis (1970), the noncon-
vex theory pioneered by Clarke (1973, 1983) has now blossomed into a
comprehensive and powerful framework for optimization and variational
problems beyond the realm of classical calculus. The monographs Clarke
(1998) and Rockafellar and Wets (1998) give excellent overviews of vari-
ational analysis; Borwein and Lewis (2000) is a broad introduction.

This essay sketches the symbiotic relationship between variational
analysis and eigenvalue perturbation theory. I illustrate the main themes
with examples chosen heavily from my own recent work on symmetric
matrices and my collaboration with Jim Burke and Michael Overton
on nonsymmetric matrices. On the one hand, the language and tools
of variational analysis and nonsmooth optimization crystallize spectral
properties of matrices beyond the usual reach of eigenvalue perturbation
theory. On the other hand, classical mathematical knowledge about
matrix spectra, and their broad applicability, ensure that nonsmooth
spectral analysis serves as a significant testing ground for nonsmooth
optimization theory.

1.2 Convexity, hyperbolic polynomials, and Lidskii’s theorem

Modern variational analysis grew originally from a systematic study of
convexity, so it is with convexity that we begin. Eigenvalues of real
symmetric matrices exhibit remarkable convexity properties, underlying
an explosion of interest throughout the optimization community over
the last decade in a far-reaching generalization of linear programming
known as semidefinite programming: see Ben-Tal and Nemirovski (2001)
and Todd (2001).

Denote by Sn the Euclidean space of n-by-n real symmetric matrices,
equipped with the inner product 〈X, Y 〉 = trace(XY ). Within this
space, the positive semidefinite matrices Sn

+ constitute a closed convex
cone. Semidefinite programming is the study of linear optimization over
intersections of Sn

+ with affine subspaces.
An illuminating and strikingly general framework in which to consider

the most basic convexity properties of symmetric matrix eigenvalues is
that of hyperbolic polynomials, a notion originally associated with par-
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tial differential equations— see G̊arding (1951). The determinant is a
hyperbolic polynomial on Sn relative to the identity matrix I: in other
words, it is homogeneous (of degree n), and for any X ∈ Sn, the poly-
nomial λ 7→ det(X − λI) has all real roots, namely the eigenvalues
λ1(X) ≥ · · · ≥ λn(X). With this notation, we can consider the charac-
teristic map λ : Sn → Rn. A spectral set in Sn is an inverse image of
the form

λ−1(S) = {X ∈ Sn : λ(X) ∈ S}

for any set S ⊂ Rn.
The core perturbation property of the eigenvalues of symmetric matri-

ces is the following result (which forms a central theme of Bhatia (1997),
for example). We denote the group of n-by-n permutation matrices by
Pn. For a vector x ∈ Rn, we denote by Pnx the set {Px : P ∈ Pn}.
Analogously, for a set S ⊂ Rn, we denote by PnS the set ∪x∈SPnx, and
we call S symmetric if PnS = S. We denote the convex hull operation
by conv , the standard Euclidean norm on Rn by ‖ · ‖, and the positive
orthant and its interior by Rn

+ and Rn
++ respectively.

Theorem 1.2.1 (Lidskii, 1950) Any matrices X, Y ∈ Sn satisfy

λ(X)− λ(Y ) ∈ conv (Pnλ(X − Y )).

Immediate corollaries include many important classical properties of
eigenvalues of symmetric matrices, some of which are collected below:
see Horn and Johnson (1985), and Stewart and Sun (1990). Lidskii’s
theorem is not the easiest avenue to any of these results, but it does
provide a unifying perspective: see Bhatia (1997).

Corollary 1.2.1 (characteristic map behavior) The characteristic
map λ : Sn → Rn has the following properties.

Monotonicity The map λ is monotone relative to the orderings induced
by the cones Sn

+ and Rn
+: any matrices X, Y ∈ Sn satisfy

X − Y ∈ Sn
+ ⇒ λ(X)− λ(Y ) ∈ Rn

+.

Convexity If the set C ⊂ Rn is symmetric and convex, then the spectral
set λ−1(C) is convex. In particular, the hyperbolicity cone
λ−1(Rn

++) is convex.
Nonexpansivity The map λ is nonexpansive: ‖λ(X)−λ(Y )‖ ≤ ‖X−Y ‖.

The same inequality also holds using the infinity norm on Rn

and the spectral norm on Sn.
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Hyperbolic polynomials are strikingly simple to define, and form a
broad, rich class: see Bauschke et al. (2001). Nonetheless, hyperbolic
polynomials in three or fewer variables have a very specific structure. In
one or two variables, this observation is easy and uninteresting; in three
variables, it is neither. The following result, conjectured in Lax (1958),
was observed in Lewis et al. (2005) to be equivalent to a recent result of
Helton and Vinnikov (2002).

Theorem 1.2.2 (“Lax conjecture”) A polynomial p on R3 is homo-
geneous of degree 3, hyperbolic relative to the direction e = (1, 0, 0), and
satisfies p(e) = 1, if and only if it has the form

p(x) = det(x1I + x2A + x3B)

for some matrices A,B ∈ Sn.

At first sight, the Lax conjecture looks rather narrow in it applicabil-
ity. However, as the next corollary due to Gurvits (2004) exemplifies, it
is a much more general tool than first appearances suggest.

Corollary 1.2.2 Lidskii’s theorem holds for any hyperbolic polynomial.

Proof Suppose the degree-n polynomial p is hyperbolic on Rk relative
to the direction d. By normalizing, we can suppose p(d) = 1. For any
vectors x, y, we want to prove λ(x) − λ(y) ∈ conv(Pnλ(x − y)). Apply
the Lax conjecture to the polynomial on Rk defined by w ∈ R3 7→
p(w1d + w2x + w3y), which is itself hyperbolic relative to e. The result
now follows by appealing to Lidskii’s theorem on Sn.

As an immediate consequence of this result, or alternatively, by di-
rectly applying the same proof technique, each part of Corollary 1.2.1
also holds for any hyperbolic polynomial. Each of these results has a
more direct proof. The monotonicity result appeared in G̊arding (1959),
which also contains a short proof of the central fact that the hyper-
bolicity cone is convex. The more general convexity result appears in
Bauschke et al. (2001), along with the nonexpansive property, for which
we need to make the nondegeneracy assumption λ(x) = 0 ⇒ x = 0
and define ‖x‖ = ‖λ(x)‖.
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1.3 Duality and normal cones

A characteristic feature of convex analysis
and optimization is the heavy use of du-
ality arguments, featuring separating hy-
perplanes in various guises: see Rockafellar
(1970). The most basic form of this idea is
duality for cones. The dual cone of a set
S ⊂ Rn is the closed convex cone

S∗ =
⋂
x∈S

{y : 〈x, y〉 ≤ 0}

(interpreting ∅∗ = Rn). The set S is itself
a closed convex cone if and only S = S∗∗.

In addition to the “primal” properties of the characteristic map λ :
Sn → Rn listed in Corollary 1.2.1, λ also behaves well under duality
operations. The following basic theorem is one of several analogous
results concerning polar sets and Fenchel conjugate functions in Lewis
(1996c).

Theorem 1.3.1 (dual spectral cones) For symmetric sets S ⊂ Rn,

(λ−1(S))∗ = λ−1(S∗).

This result is reminiscent of von Neumann’s 1937 characterization
of unitarily invariant matrix norms on the Euclidean space of n-by-n
complex matrices Mn (equipped with the Frobenius norm). Part of von
Neumann’s development is the formula

(σ−1(G))D = σ−1(GD),

where σ : Mn → Rn maps any matrix to a vector with components its
singular values (in decreasing order), G is any symmetric norm-unit-ball
satisfying x ∈ G ⇔ |x| ∈ G (the absolute value applied componentwise),
and GD denotes the dual unit ball. Semisimple Lie theory provides one
algebraic framework for exploring the parallels between von Neumann’s
duality formula and Theorem 1.3.1 (dual spectral cones) Lewis (2000).
Other authors have investigated results like Theorem 1.3.1 for Euclid-
ean Jordan algebras, a popular setting in which to study interior-point
optimization algorithms: see Baes (2004) and Sun and Sun (2004).
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A principal application of the dual cone idea
is in the development of optimality conditions
for constrained optimization problems. Given
a convex set C ⊂ Rn, the normal cone to C

at a point x̄ ∈ C is

NC(x̄) = (C − x̄)∗.

Using this notation, we have the best approx-
imation condition:

x̄ ∈ argmin{‖z − x‖ : x ∈ C} ⇒ z − x̄ ∈ NC(x̄), (1.1)

(and in fact the converse also holds). Theorem 1.3.1 (dual spectral
cones) is a special case of the following characterization of normal cones
to spectral sets: see Lewis (1996a).

Theorem 1.3.2 (spectral normal cones) If the set C ⊂ Rn is sym-
metric and convex, then the spectral set λ−1(C) is convex, and matrices
X, Y ∈ Sn satisfy Y ∈ Nλ−1(C)(X) if and only if there exists vectors
x, y ∈ Rn and a real n-byn matrix U satisfying

X = UT (Diag x)U, UT U = I (1.2)

Y = UT (Diag y)U, y ∈ NC(x). (1.3)

In other words, if we can recognize normals to the symmetric convex set
C, then we can recognize normals to the convex spectral set λ−1(C) via
simultaneous spectral decompositions.

1.4 Normals to nonconvex sets and Clarke regularity

The normal cone to a convex set C ⊂ Rn has the following key elemen-
tary properties, which may be found in Rockafellar (1970), for example.

(i) NC(x) is a convex cone for any point x ∈ C.
(ii) The best approximation condition (1.1) holds.
(iii) The set-value mapping x ∈ C 7→ NC(x) has closed graph: if

(xr, yr)→ (x, y) in Rn ×Rn and yr ∈ NC(xr), then y ∈ NC(x).

This latter property guarantees some robustness for the normal cone, in
theory and algorithmic practice.
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To broaden the context of variational analy-
sis to nonconvex closed sets S ⊂ Rn (such
as smooth manifolds), we define the Clarke
normal cone mapping NS : S → Rn to be
the set-valued mapping satisfying properties
(i), (ii), (iii) with minimal graph: see Clarke
(1973) and Clarke et al. (1998). Thus the nor-
mal cone at a point x̄ ∈ S consists of all con-
vex combinations of limits of directions from
points near x̄ to their projections on S.

Variational analysis can also be developed in a parallel fashion without
the assumption of convexity in property (i): see Mordukhovich (1976)
and Rockafellar and Wets (1998). However, the Clarke cone suffices for
this essay.

The Clarke normal cone is a useful tool for describing necessary op-
timality conditions for variational problems. For example, the best ap-
proximation condition (1.1) generalizes as follows: see Clarke (1983).

Theorem 1.4.1 (necessary optimality condition) If the point x̄

minimizes the smooth function f : Rn → R on the closed set S ⊂ Rn,
then −∇f(x̄) ∈ NS(x̄).

We call a closed set S Clarke regular at a
point x ∈ S if any tangent direction to S at x

lies in NS(x)∗: see Clarke (1983). Geometri-
cally, for any sequences of points wr ∈ S and
zr ∈ Rn approaching x, if zr has a nearest
point xr in S, and the angle between zr − xr

and wr − x converges to θ, then θ is obtuse.
Clarke regularity is in fact independent of the
inner product. Convex sets and manifolds
are regular at every point x, in fact having
the stronger property of prox-regularity: every
point near x has a unique nearest point in S

(see Poliquin et al. (2000)).

Clarke regularity is a recurrent theme in this essay, and plays a central
role both in theoretical variational analysis and in algorithmic matters.
The following result, from Clarke (1983), is an example of the kind of
calculus that Clarke regularity expedites.
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Theorem 1.4.2 (chain rule) Suppose that the map Φ : Rm → Rn is
smooth around the point y ∈ Rm, and that the closed set S ⊂ Rn is
Clarke regular at the point Φ(y). If

NS(Φ(y)) ∩ ker(∇Φ(y))∗ = {0},

then the inverse image Φ−1(S) is Clarke regular at y, with Clarke normal
cone given by

NΦ−1(S)(y) = (∇Φ(y))∗NS(Φ(y)).

We return to the implications of Clarke regularity for nonsmooth opti-
mization algorithms towards the end of this essay.

Remarkably, the characteristic map behaves just as well with respect
to the Clarke normal cone as it does for normal cones to convex sets: see
Lewis (1996b). Furthermore, Clarke regularity “lifts” from Rn to Sn.

Theorem 1.4.3 (spectral Clarke normal cones) If the set S ⊂ Rn is
symmetric and closed, then matrices X, Y ∈ Sn satisfy Y ∈ Nλ−1(S)(X)
if and only if equations (1.2) and (1.3) hold. Furthermore, the spectral
set λ−1(S) is Clarke regular at X if and only if S is Clarke regular at
the point λ(X).

This result even remains unchanged for the nonconvex normal cone: see
Lewis (1999b).

As an example, consider the optimization problem

sup{〈X, Y 〉 : X ∈ Sn, λ(X) = x},

for a given vector x ∈ Rn with nonincreasing components and a given
matrix Y ∈ Sn. The characteristic map λ is nonexpansive, by Corollary
1.2.1 (characteristic map behavior), so in particular continuous, and
‖λ(X)‖ = ‖X‖ for all X ∈ Sn. Hence continuity and compactness
ensure this problem has an optimal solution X0. Applying Theorem
1.4.1 (necessary optimality condition) shows Y ∈ NΩ(X0), where Ω is
the spectral set λ−1(x) = λ−1(Pnx) , so Theorem 1.4.3 (spectral Clarke
normal cones) shows that the matrices X0 and Y have a simultaneous
spectral decomposition. An elementary argument then shows 〈X0, Y 〉 =
xT λ(Y ), so we deduce the well-known inequality (essentially due to von
Neumann (1937)).

〈X, Y 〉 ≤ λ(X)T λ(Y ), for any X, Y ∈ Sn. (1.4)
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1.5 Stability and the Belgian chocolate problem

We turn next to eigenvalues of nonsymmetric matrices. Our primary
focus is on the set of stable matrices Mn

st, which consists of those matrices
in Mn having all eigenvalues in the closed left halfplane. The stability
of a matrix A ∈Mn is closely related to the asymptotic behavior of the
dynamical system ẋ = Ax: specifically, as time t increases, eAt decays
like eαt if and only if A− αI is stable.

Analogously, a polynomial p(z) is stable if all its roots lie in the closed
left halfplane: if in fact they lie in the open halfplane, we call the poly-
nomial strictly stable. Thus a matrix is stable exactly when its charac-
teristic polynomial is stable. The set of stable monic polynomials

∆n =

w ∈ Cn : zn +
n−1∑
j=0

wjz
j stable


has the following beautiful variational property: see Burke and Overton
(2001b).

Theorem 1.5.1 (regularity of stable polynomials) The set of stable
monic polynomials ∆n is everywhere Clarke regular.

The corresponding property for the stable matrices Mn
st elegantly

illustrates the power of nonsmooth calculus. We consider the map
Φ : Mn → Cn taking a matrix X ∈Mn to its characteristic polynomial:

det(X − zI) = zn +
n−1∑
j=0

Φ(X)jz
j .

With this notation we have Mn
st = Φ−1(∆n). Even if X has a multiple

eigenvalue (as a root of its characteristic polynomial), the nonderogatory
case where each eigenspace is one-dimensional is “typical” (from the per-
spective of Arnold’s stratification of Mn into manifolds with fixed Jor-
dan structure—see Arnold (1971)). In this case, the derivative ∇Φ(X)
is onto, so we can calculate the Clarke normal cone to Mn

st at X easily
using the chain rule (Theorem 1.4.2), thereby recapturing the central
result of Burke and Overton (2001a).

Corollary 1.5.1 (regularity of stable matrices) The set of stable
matrices Mn

st is Clarke regular at any stable nonderogatory matrix X ∈
Mn, with Clarke normal cone

NMn
st

(X) = ∇Φ(X)∗N∆n(Φ(X)).
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An instructive two-part problem involving sets of stable polynomials
was proposed by Blondel (1994), as a challenge to illustrate the difficulty
of simultaneous plant stabilization in control. This problem illustrates
the interplay between modelling (in this case, control-theoretic), com-
putational experiments, and nonsmooth optimization theory.

Problem Given a real parameter δ, consider the problem of finding
real stable polynomials p, q, r satisfying

r(z) = (z2 − 2δz + 1)p(z) + (z2 − 1)q(z). (1.5)

(Notice the problem admits no solution if δ = 1.) Solve this problem
when δ = 0.9, and calculate how far δ can increase before the problem
is unsolvable.

Blondel offered a prize of one kilogram of Belgian chocolate for each
part of this problem. The first part was solved by a randomized search
in Patel et al. (2002). The second part remains open, although, following
work surveyed in Patel et al. (2002), the answer is known to be strictly
less than one.

Consider the following variational approach. We vary polynomials p

and q of fixed degree in order to move the roots of p, q, and r as far to
the left in the complex plane as possible. After normalizing so that the
product pqr is monic, we arrive at the following numerical optimization
problem.

(Blδ)


minimize α

subject to p(z + α)q(z + α)r(z + α) stable monic
p, q cubic, r given by equation (1.5)

In Section 1.8 we describe a simple, general-purpose, “gradient sam-
pling” method for numerical nonsmooth optimization. Computational
experiments with this technique suggest that, for all values of the para-
meter δ near 0.9, the optimal solution p̄, q̄, r̄, ᾱ of the problem (Blδ) has
a persistent structure:

• the polynomial q̄ is scalar;
• the polynomial z 7→ r̄(z + ᾱ) is a multiple of z5;
• the objective value satisfies ᾱ < 0 (solving Blondel’s problem);
• the polynomial z 7→ p̄(z + ᾱ) is strictly stable.

The figure below (from Burke et al. (2005a)) shows the roots of optimal
polynomials p̄ (+) and r̄ (×) for various values of δ.
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Having observed this structure computationally, some simple algebra
shows that for any value of δ near

δ̄ =
1
2

√
2 +
√

2 = 0.92 . . . ,

the problem (Blδ) has a unique feasible solution with this structure,
solving Blondel’s problem for δ ≤ δ̄. Furthermore, a little nonsmooth
calculus using Theorem 1.5.1 (regularity of stable polynomials) shows,
at least with the extra restriction that q is scalar, that this solution is a
strict local minimizer for (Blδ): see Burke et al. (2005a).

1.6 Partly smooth sets and sensitivity

The persistent structure of optimal solutions for Blondel’s problem in the
previous section exemplifies a widespread phenomenon in optimization.
Assuming appropriate nondegeneracy conditions, optimal solutions for
linear, nonlinear, semidefinite and semi-infinite programs all have struc-
tures that persist under small perturbations to the problem: in linear
programs, the optimal basis is fixed, in nonlinear programs, the active
set stays unchanged, and the rank of the optimal matrix in a semidefinite
program is constant. Variational analysis offers a unifying perspective
on this phenomenon.

Nonsmoothness abounds in optimization, but is usually structured.
The following definition from Lewis (2003) captures a key structural
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idea for the sensitivity analysis of smooth and nonsmooth optimization
problems.

We call a closed set S ⊂ Rn partly
smooth relative to a smooth manifold
M ⊂ S if the following properties hold.

• S is Clarke regular throughout M .
• M is a “ridge” of S: that is, NS(x)

spans NM (x) for all points x ∈M .
• The set-valued mapping

x ∈M 7→ NS(x) is continuous.

For example, feasible regions of linear programs are polyhedral: any
polyhedron is partly smooth relative to the relative interior of any of its
faces. Nonlinear programming considers more general feasible regions of
the form

S = {x ∈ Rn : gi(x) ≤ 0 for i = 1, 2, . . . ,m},

for smooth functions gi : Rn → R. Suppose the point x̄ ∈ S satisfies
the linear independence constraint qualification:

{∇gi(x̄) : i ∈ I} is linearly independent, where I = {i : gi(x̄) = 0}.

In this case the set defined by the active constraints

M =
{

x : gi(x) = 0 for i ∈ I, ‖x− x̄‖ < ε
}

is a manifold for small ε > 0, relative to which the set S is partly smooth.
As a final example, consider the semidefinite cone Sn

+. In the space
Sn, for any integer r = 0, 1, . . . , n, the set of matrices in Sn of rank r

constitute a manifold, relative to which Sn
+ is partly smooth. Feasible

regions of semidefinite programs are inverse images of Sn
+ under affine

maps. We can see that such sets are also partly smooth, using a chain
rule analogous to Theorem 1.4.2.

The notion of partial smoothness unifies a variety of active set ideas
in optimization. Typical sensitivity analysis for variational problems
shows that smooth perturbation of the parameters defining a problem
leads to a solution that varies smoothly while retaining a constant un-
derlying structure, often reflecting a persistent set of binding or “active”
constraints. Partial smoothness abstracts this general observation, gen-
eralizing earlier work on convex optimization in Burke and Moré (1988)
and Wright (1993).
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Consider for example a feasible region S ⊂ Rn and an optimization
problem

(Py) inf{〈y, x〉 : x ∈ S},

depending on the parameter y ∈ Rn. By Theorem 1.4.1 (necessary
optimality condition), any optimal solution x for (Py) must satisfy

(OCy) − y ∈ NS(x).

Suppose the instance (Pȳ) (for some particular vector ȳ ∈ Rn) has
an optimal solution x̄ lying on a manifold M ⊂ S relative to which
S is partly smooth. Let us make two further assumptions, typical in
sensitivity analysis:

(i) the Clarke normal cone NS(x̄) contains the vector −ȳ in its rel-
ative interior (that is, relative to its span);

(ii) perturbing the point x̄ on M leads to quadratic growth of the
linear function 〈ȳ, ·〉.

Condition (i) is a strengthening of condition (OCȳ) typically known
as a strict complementarity condition. Condition (ii) is a second-order
sufficient condition. With these assumptions, for any y near ȳ, the
optimality condition (OCy) has a unique solution x(y) ∈ M near x̄,
depending smoothly on y. If we assume that S is in fact prox-regular
(rather than simply Clarke regular) throughout M , then x(y) must be
a local minimizer for the instance (Py). Furthermore, in this case, a
variety of common conceptual algorithms applied to (Py) “identify” the
manifold M finitely: the algorithm generates iterates eventually lying in
this manifold— see Hare and Lewis (2004).

Partial smoothness offers a simple unifying language to illuminate
the persistent structure of the optimal solutions of perturbed linear,
nonlinear, and semidefinite programs. We next apply this idea to the
Belgian chocolate problem.

If a polynomial lies on the boundary of the
set of stable monics, then it has some purely
imaginary roots iy1, iy2, . . . , iyr (where we as-
sume y1 > y2 > . . . > yr). If each such root
iyj has multiplicity mj , we call the sequence
m1,m2, . . . ,mr the imaginary multiplicity list.
In the example to the right, the multiplicity
list is 3, 1, 2.
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The root cause for the persistent structure in the solutions to the
Belgian chocolate problem is then the following result.

Theorem 1.6.1 (partial smoothness of stable polynomials) Con-
sider a polynomial lying in the set of stable monics ∆n. The set of nearby
monics with the same imaginary multiplicity list constitute a manifold,
with respect to which ∆n is partly smooth.

Applying a suitable chain rule using the characteristic polynomial map,
just as we derived Corollary 1.5.1 (regularity of stable matrices) from
Theorem 1.5.1 (regularity of stable polynomials), we deduce the analo-
gous matrix version below: see Lewis (2003).

Corollary 1.6.1 (partial smoothness of stable matrices) Consider
a nonderogatory matrix lying in the stable set Mn

st. The set of nearby
matrices with the same imaginary eigenvalue multiplicity list constitute
a manifold, with respect to which Mn

st is partly smooth.

In practice, varying a parametrized matrix in order to move its eigen-
values as far as possible into the left halfplane typically leads to non-
derogatory optimal solutions with multiple eigenvalues: see Burke et al.
(2002b, 2005b). The above result crystallizes the underlying theoretical
cause of this phenomenon: see Burke et al. (2000, 2001).

1.7 Nonsmooth analysis and the distance to instability

So far in this essay we have taken a geometric approach to variational
analysis and nonsmooth optimization, emphasizing the role of the Clarke
normal cone. Conceptually, however, the theory is much broader, en-
compassing powerful generalizations of the derivative and of classical
calculus: see Clarke et al. (1998) and Rockafellar et al. (1998). We
next briefly sketch the beginnings of this development, building on the
geometric ideas we have already introduced.

Consider a function f : Rn → [−∞,∞]
with closed epigraph

epi(f) = {(x, r) ∈ Rn ×R : r ≥ f(x)}.

By analogy with the smooth case, we
define the Clarke generalized derivative by

∂f(x̄) = {y : (y,−1) ∈ Nepi(f)(x̄, f(x̄))}.
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Theorem 1.4.1 (necessary optimality condition) implies the following
central role for the generalized derivative in optimization:

x̄ minimizes f ⇒ 0 ∈ ∂f(x̄). (1.6)

We call f Clarke regular at x̄ if epi(f) is Clarke regular at (x̄, f(x̄)),
and make the analogous definition for prox-regularity: see Poliquin and
Rockafellar (1996). For example, any smooth function f is Clarke regu-
lar, with generalized derivative ∂f(x̄) = {∇f(x̄)}. Any convex function
is also Clarke regular, with generalized derivative agreeing with the clas-
sical convex subdifferential: see Rockafellar (1970).

Our approach to the generalized derivative above is appealing in its
theoretical economy, but is conceptually opaque. The definition makes
little obvious connection with classical differentiation. The following
result from Clarke (1973) relates the generalized derivative of a Lipschitz
function to the local behavior of its derivative, which is defined almost
everywhere by virtue of Rademacher’s theorem.

Theorem 1.7.1 (generalized derivatives of Lipschitz functions)
The Clarke generalized derivative of a Lipschitz function f : Rn → R
at a point x̄ ∈ Rn is given by

∂f(x̄) = conv {lim∇f(xr) : xr → x̄}.

The function f is Clarke regular at x̄ if and only if its directional deriv-
ative satisfies

f ′(x̄; d) = lim sup
x→x̄

〈∇f(x), d〉

for every direction d ∈ Rn

Without Clarke regularity, the optimality
condition (1.6) may be weak. For example,
zero maximizes minus the absolute value func-
tion, yet 0 ∈ ∂(−|· |)(0). With regularity how-
ever, (1.6) strengthens to the more intuitive
condition f ′(x̄; d) ≥ 0 for all directions d.

A class of functions very common in applications are those f : Rn →
R that can be written locally in the form

f(x) = max
t∈T

ft(x),

where the parameter set T is compact, each function ft : Rn → R
is C(2), and the map (x, t) 7→ ∇ft(x) is continuous. Such functions



16 Adrian Lewis

are called lower-C(2): they are prox-regular, so in particular, Clarke
regular—see Rockafellar et al. (1998).

A typical example of a lower-C(2) function, arising in robust control
systems design, is called the distance to instability in Byers (1988), and is
also known as the complex stability radius—see Hinrichson and Pritchard
(1986). It is the distance from a matrix in Mn to the set of unstable
matrices. An easy argument shows that, for any matrix X0 ∈Mn, this
function β : Mn → R can be written in the form

β(X) = min{‖Xu− zu‖ : ‖u‖ = 1, Re z ≥ 0, |z| ≤ k}

for all matrices X ∈Mn near X0, where the constant k depends on X0.
If X0 is strictly stable, then the quantity ‖Xu − zu‖ is bounded away
from zero for all X near X0, unit vectors u ∈ Cn, and complex z with
Re z ≥ 0. Consequently, the function −β is lower-C(2) on the strictly
stable matrices. For the H∞-norm in robust control (see Zhou et al.
(1996)), a similar analysis applies.

The figure below, from Burke et al. (2005a), shows the results of maxi-
mizing the minimum of the two distances to instability of the companion
matrices corresponding to the polynomials p and r in the chocolate prob-
lem. We restrict p to be a monic cubic, plotting its roots as ♦, and q

to be a scalar; we plot the roots of r as ◦. To compare, we leave the old
optimally stable roots in the plot. Notice how maximizing the stability
radius causes the root of order five to split, moving the roots closer to
the imaginary axis but nonetheless increasing the distance to instability.
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1.8 The gradient sampling method

Despite half a century of advances in computational optimization, and
several decades of development in the theory of nonsmooth optimiza-
tion, numerical minimization of nonsmooth nonconvex functions remains
challenging: dependable publicly-available code is scarce. The results
described above for the Belgian chocolate problem were obtained in
Burke et al. (2005a) using a simple intuitive numerical method based
on gradient sampling: see Burke et al. (2002b, 2005b).

To motivate this method, consider a Lipschitz function f : Rn → R
that is Clarke regular at the point x ∈ Rn. The direction of steepest
descent is the unit vector u ∈ Rn minimizing the directional derivative
f ′(x;u). Theorem 1.7.1 (generalized derivatives of Lipschitz functions)
shows that this vector lies in the direction of the vector

d = − lim
ε↓0

argmin{‖d‖ : d ∈ cl conv∇f(x + εB)}

(where B is the unit ball in Rn). For example, if f is smooth at x, then
d = −∇f(x).

To approximate the direction d, we fix some small radius ε > 0, and
sample some number m > n random, independent, uniformly distrib-
uted points Yj ∈ x + εB. Almost surely, f is differentiable at each Yj :
we assume, as is often the case in practice, that the gradients ∇f(Yj)
are readily available. We then define an approximate steepest descent
direction by

d̂ = − argmin{‖d‖ : d ∈ conv {∇f(Yj) : j = 1, . . . ,m}}.

In practice, we choose Y1 = x, to guarantee f ′(x; d̂) < 0.
Finally, we imitate the classical steepest descent method for smooth

minimization. We perform a simple linesearch to choose a stepsize

t̄ ≈ argmint≥0f(x + td̂),

(in practice often simply requiring the descent condition f(x + t̄d̂) <

f(x)). We then update x← x + t̄d̂, and repeat the whole process. The
loop terminates when the vector d̂ is small, at which point we may stop,
or restart with a smaller radius ε.

For nonsmooth nonconvex minimization problems with cheap function
and gradient evaluations and involving not too many variables, computa-
tional experience suggests that the gradient sampling method is a robust
and reliable tool: see Burke et al. (2005b). The random sampling ap-
proach to approximating the Clarke generalized derivative is motivated
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theoretically in Burke et al. (2002a). Under reasonable conditions and
suitably implemented, the minimization method converges almost surely
to a point whose generalized derivative contains zero (see Burke et al.
(2005b)): as discussed above, assuming Clarke regularity, this condi-
tion guarantees that there are no descent directions. Random sampling
helps the method avoid a common difficulty in designing nonsmooth
optimization algorithms: the expected value of the random search direc-
tion d̂ depends continuously on the current point x (see Lewis (2005)),
so the algorithm does not “jam”.

1.9 Lidskii’s theorem again

The Clarke normal cone and generalized derivative are powerful and ver-
satile tools. Our discussion in the previous section indicates their use
in understanding algorithms for nonsmooth optimization. Our analysis
of the Belgian chocolate problem and subsequent sketch of the idea of
partial smoothness suggests the utility of nonsmooth language for opti-
mality conditions and sensitivity analysis. To bring this essay full circle,
we end with a purely analytic application of nonsmooth optimization
ideas, using variational analysis to prove Lidskii’s eigenvalue perturba-
tion result (Theorem 1.2.1). The argument follows Lewis (1999a).

Given two matrices X, Y ∈ Sn, we wish to show

λ(X)− λ(Y ) ∈ conv(Pnλ(X − Y )).

If this inclusion fails, the separating hyperplane theorem implies the
existence of a vector w ∈ Rn satisfying the inequality

wT (λ(X)− λ(Y )) > max
P∈Pn

wT Pλ(X − Y ).

An elementary argument identifies the right hand side as [w]T λ(X−Y ),
where the vector [w] ∈ Rn has the same components as w rearranged
into nonincreasing order.

Turning our attention to the left hand side of the above inequality,
we consider the (nonconvex) spectral function F = wT λ. A suitable
nonsmooth version of the mean value theorem (see Clarke (1983)) ap-
plied to this function shows that, for some matrix V on the line segment
between X and Y and some matrix Z ∈ ∂F (V ), we have

F (X)− F (Y ) = 〈Z,X − Y 〉 ≤ λ(Z)T λ(X − Y ),

using von Neumann’s inequality (1.4). The analogous result to Theorem
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1.4.3 (spectral Clarke normal cones) for generalized derivatives shows
there exists vectors v, z ∈ Rn and a real n-by-n matrix U satisfying

V = UT (Diag v)U, UT U = I

Z = UT (Diag z)U, z ∈ ∂f(v),

where f : Rn → R is the function defined by f(v) = wT [v]. Theorem
1.7.1 (generalized derivatives of Lipschitz functions) implies ∂f(v) ⊂
conv (Pnw), so

λ(Z) = [z] ∈ conv (Pn[w]).

We quickly deduce the contradiction λ(Z)T λ(X − Y ) ≤ [w]T λ(X − Y ),
completing the proof.

1.10 Final thoughts

Modern variational analysis deserves a wider mathematical audience
than it has so far reached. This essay aims to make converts, by il-
lustrating the elegant interplay between eigenvalues and nonsmooth op-
timization.

Convexity is a ubiquitous mathematical idea, and its significance for
spectral properties of symmetric matrices is well known: Lidskii’s the-
orem is a central example. Hyperbolic polynomials provide a starkly
simple setting in which to view many of these classical properties. Con-
versely, the truth of the Lax conjecture extends a wealth of symmetric
matrix results and methods, including Lidskii’s theorem, to hyperbolic
polynomials.

Over several decades, convex analysis has developed into a widely-
used language for diverse areas of mathematics beyond just optimization,
neatly unifying the geometry, duality, and calculus of convex sets and
functions, and their normal cones and generalized derivatives. Building
on this success, the nonconvex theory pioneered by Clarke has matured
into a versatile toolkit. The spectral behavior of symmetric matrices
provides a powerful illustration of this theory in action.

Far from being pathological or rare, nonsmoothness is fundamental
to our understanding of optimization. Its occurrence in concrete prob-
lems is typically structured. In particular, Clarke regularity is often
a reasonable assumption, with far-reaching implications both in theory
and computational practice. Many nonsmooth optimization problems
exhibit partial smoothness, an advantageous mix of smooth and non-
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smooth behavior helping our understanding of sensitivity analysis and
algorithm convergence.

Optimizing the stability of polynomials or matrices exemplifies par-
tially smooth behavior: active roots or eigenvalues cluster at optimal
solutions. The Belgian chocolate problem is a typical illustration, both
of the theory and of the robust effectiveness of Gradient Sampling, a
simple and intuitive computational approach to nonsmooth optimiza-
tion.

Variational analysis, in its full generality, is less familiar and more
challenging than in the convex case. However, the nonsmooth nature
of eigenvalues makes it a natural ingredient for perturbation theory in
particular, and matrix analysis in general. It seems likely that the inter-
play between eigenvalues and nonsmooth optimization, briefly sketched
in this essay, will continue to flourish.
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