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One of the central tools for studying perturbation theory for the eigenvalues of
symmetric matrices is Lidskii’s theorem. This states that any matrices Z and Y in
Sn, the Euclidean space of n× n real symmetric matrices (with trace inner product),
satisfy

λ(Z + Y )− λ(Z) ≺ λ(Y ),(0.1)

where λ(Z) ∈ Rn is the column vector of eigenvalues of Z written by multiplicity and
in decreasing order. The symbol ≺ denotes majorization: u ≺ v for vectors u and v
in Rn means

u ∈ conv {Pv : P ∈ Pn},

where Pn is the group of n × n permutation matrices and “conv ” denotes convex
hull. A standard separation argument (see [6], for example) shows this inclusion is
equivalent to the condition

xTu ≤ x̄T v̄ for all x ∈ Rn,

where x̄ is the vector in Rn with the same components as x arranged in decreasing
order. Lidskii’s theorem is, for example, one of the unifying themes of the recent
book [1].

This note approaches Lidskii’s theorem via nonsmooth analysis, using the Clarke
generalized gradient (see [2]). For a real, locally Lipschitz function g defined close to
a point p in a Euclidean space, we can define the generalized gradient ∂g(p) as the
convex hull of the set of cluster points of gradients of g at points near p in a set of
full measure [2, Thm. 2.5.1]. Thus for a smooth function g, the generalized gradient
coincides with the usual gradient g′(p).

For a smooth function g, the classical mean value theorem states that, given
points q and r, there is a point p on the line segment between q and r satisfying the
equation

g(q)− g(r) = 〈g′(p), q − r〉.
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If g is merely locally Lipschitz, the Lebourg mean value theorem [2, Thm. 2.3.7]
generalizes this result, asserting the existence of an element s of ∂g(p) satisfying the
equation

g(q)− g(r) = 〈s, q − r〉.
We apply this mean value theorem to derive Lidskii’s theorem from a powerful

variational result about eigenvalues. This variational result calculates the Clarke
generalized gradient of the function f◦λ for an arbitrary locally Lipschitz permutation-
invariant function f : Rn → R (that is, f(Px) = f(x) for all matrices P in Pn and
vectors x in Rn). Specifically, the result (see [4]) considers diagonalizations of any
matrix X in Sn,

X = UT (Diagx)U, U ∈ On, x ∈ Rn,(0.2)

where On is the group of n× n orthogonal matrices, and states

∂(f ◦ λ)(X) = {UT (Diag y)U : (0.2) holds and y ∈ ∂f(x)}.(0.3)

The approach of this note is certainly not the simplest proof of Lidskii’s theorem,
formula (0.3) being a relatively difficult result (see also [5]). However, the approach
is delightfully transparent, and it reveals the increasing possibilities of applying non-
smooth analytic techniques in matrix analysis.

Lidskii’s theorem (0.1) is equivalent to the inequality

wT (λ(Z + Y )− λ(Z)) ≤ w̄Tλ(Y ) for all w ∈ Rn.(0.4)

Fix w and consider the (nonconvex) locally Lipschitz, permutation-invariant function
defined by

f(x) = wT x̄.

Note the relationship

(f ◦ λ)(X) = wTλ(X) for all X ∈ Sn.

Whenever x has distinct components (a subset of Rn of full measure), f is differen-
tiable at x with gradient f ′(x) = Pw for some matrix P in Pn. Hence at any point
x in Rn we have the inclusion

∂f(x) ⊂ conv {Pw : P ∈ Pn},(0.5)

by our definition of the generalized gradient. (There are more elementary although
less concise ways to see this inclusion.)

By the Lebourg mean value theorem applied to f ◦ λ, there is a matrix X in Sn

(between Z and Z + Y ) and a matrix V in ∂(f ◦ λ)(X) satisfying

wT (λ(Z + Y )− λ(Z)) = tr (V Y ) ≤ λ(V )Tλ(Y ),

the last inequality following from von Neumann’s trace theorem (see [3, Eq. (7.4.14)]).
But now we can apply the generalized gradient formulae (0.3) and (0.5) to deduce

λ(V ) ∈ conv {Pw : P ∈ Pn}
(or in other words, λ(V ) ≺ w̄). Hence λ(V )Tλ(Y ) ≤ w̄Tλ(Y ), and Lidskii’s theorem
(0.4) follows.
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