LIDSKII'S THEOREM VIA NONSMOOTH ANALYSIS*

A. S. LEWIS ${ }^{\dagger}$

Abstract

Lidskii's theorem on eigenvalue perturbation is proved via a nonsmooth mean value theorem.

Key words. Lidskii's theorem, eigenvalue optimization, nonsmooth analysis, Clarke generalized gradient

AMS subject classifications. Primary, 90C31, 15A18; Secondary, 49K40, 26B05

PII. S0895479898338676

One of the central tools for studying perturbation theory for the eigenvalues of symmetric matrices is Lidskii's theorem. This states that any matrices Z and Y in \mathbf{S}^{n}, the Euclidean space of $n \times n$ real symmetric matrices (with trace inner product), satisfy

$$
\begin{equation*}
\lambda(Z+Y)-\lambda(Z) \prec \lambda(Y), \tag{0.1}
\end{equation*}
$$

where $\lambda(Z) \in \mathbf{R}^{n}$ is the column vector of eigenvalues of Z written by multiplicity and in decreasing order. The symbol \prec denotes majorization: $u \prec v$ for vectors u and v in \mathbf{R}^{n} means

$$
u \in \operatorname{conv}\left\{P v: P \in \mathbf{P}^{n}\right\}
$$

where \mathbf{P}^{n} is the group of $n \times n$ permutation matrices and "conv" denotes convex hull. A standard separation argument (see [6], for example) shows this inclusion is equivalent to the condition

$$
x^{T} u \leq \bar{x}^{T} \bar{v} \text { for all } x \in \mathbf{R}^{n}
$$

where \bar{x} is the vector in \mathbf{R}^{n} with the same components as x arranged in decreasing order. Lidskii's theorem is, for example, one of the unifying themes of the recent book [1].

This note approaches Lidskii's theorem via nonsmooth analysis, using the Clarke generalized gradient (see [2]). For a real, locally Lipschitz function g defined close to a point p in a Euclidean space, we can define the generalized gradient $\partial g(p)$ as the convex hull of the set of cluster points of gradients of g at points near p in a set of full measure $[2$, Thm. 2.5.1]. Thus for a smooth function g, the generalized gradient coincides with the usual gradient $g^{\prime}(p)$.

For a smooth function g, the classical mean value theorem states that, given points q and r, there is a point p on the line segment between q and r satisfying the equation

$$
g(q)-g(r)=\left\langle g^{\prime}(p), q-r\right\rangle
$$

[^0]If g is merely locally Lipschitz, the Lebourg mean value theorem [2, Thm. 2.3.7] generalizes this result, asserting the existence of an element s of $\partial g(p)$ satisfying the equation

$$
g(q)-g(r)=\langle s, q-r\rangle
$$

We apply this mean value theorem to derive Lidskii's theorem from a powerful variational result about eigenvalues. This variational result calculates the Clarke generalized gradient of the function $f \circ \lambda$ for an arbitrary locally Lipschitz permutationinvariant function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ (that is, $f(P x)=f(x)$ for all matrices P in \mathbf{P}^{n} and vectors x in \mathbf{R}^{n}). Specifically, the result (see [4]) considers diagonalizations of any matrix X in \mathbf{S}^{n},

$$
\begin{equation*}
X=U^{T}(\operatorname{Diag} x) U, \quad U \in \mathbf{O}^{n}, \quad x \in \mathbf{R}^{n} \tag{0.2}
\end{equation*}
$$

where \mathbf{O}^{n} is the group of $n \times n$ orthogonal matrices, and states

$$
\begin{equation*}
\partial(f \circ \lambda)(X)=\left\{U^{T}(\operatorname{Diag} y) U:(0.2) \text { holds and } y \in \partial f(x)\right\} \tag{0.3}
\end{equation*}
$$

The approach of this note is certainly not the simplest proof of Lidskii's theorem, formula (0.3) being a relatively difficult result (see also [5]). However, the approach is delightfully transparent, and it reveals the increasing possibilities of applying nonsmooth analytic techniques in matrix analysis.

Lidskii's theorem (0.1) is equivalent to the inequality

$$
\begin{equation*}
w^{T}(\lambda(Z+Y)-\lambda(Z)) \leq \bar{w}^{T} \lambda(Y) \text { for all } w \in \mathbf{R}^{n} \tag{0.4}
\end{equation*}
$$

Fix w and consider the (nonconvex) locally Lipschitz, permutation-invariant function defined by

$$
f(x)=w^{T} \bar{x}
$$

Note the relationship

$$
(f \circ \lambda)(X)=w^{T} \lambda(X) \text { for all } X \in \mathbf{S}^{n}
$$

Whenever x has distinct components (a subset of \mathbf{R}^{n} of full measure), f is differentiable at x with gradient $f^{\prime}(x)=P w$ for some matrix P in \mathbf{P}^{n}. Hence at any point x in \mathbf{R}^{n} we have the inclusion

$$
\begin{equation*}
\partial f(x) \subset \operatorname{conv}\left\{P w: P \in \mathbf{P}^{n}\right\} \tag{0.5}
\end{equation*}
$$

by our definition of the generalized gradient. (There are more elementary although less concise ways to see this inclusion.)

By the Lebourg mean value theorem applied to $f \circ \lambda$, there is a matrix X in \mathbf{S}^{n} (between Z and $Z+Y)$ and a matrix V in $\partial(f \circ \lambda)(X)$ satisfying

$$
w^{T}(\lambda(Z+Y)-\lambda(Z))=\operatorname{tr}(V Y) \leq \lambda(V)^{T} \lambda(Y)
$$

the last inequality following from von Neumann's trace theorem (see [3, Eq. (7.4.14)]). But now we can apply the generalized gradient formulae (0.3) and (0.5) to deduce

$$
\lambda(V) \in \operatorname{conv}\left\{P w: P \in \mathbf{P}^{n}\right\}
$$

(or in other words, $\lambda(V) \prec \bar{w}$). Hence $\lambda(V)^{T} \lambda(Y) \leq \bar{w}^{T} \lambda(Y)$, and Lidskii's theorem (0.4) follows.

Acknowledgment. The author thanks the School of Operations Research and Industrial Engineering at Cornell University, where this work was completed.

REFERENCES

[1] R. Bhatia, Matrix Analysis, Grad. Texts in Math. 169, Springer-Verlag, New York, 1997.
[2] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983; reprinted as Classics Appl. Math. 5, SIAM, Philadelphia, 1990.
[3] R. A. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1985.
[4] A. S. Lewis, Derivatives of spectral functions, Math. Oper. Res., 6 (1996), pp. 576-588.
[5] A. S. Lewis, Nonsmooth analysis of eigenvalues, Math. Programming, 84 (1999), pp. 1-24.
[6] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Application, Academic Press, New York, 1979.

[^0]: *Received by the editors May 13, 1998; accepted for publication (in revised form) by M. Overton December 16, 1998; published electronically October 26, 1999. This research was partially supported by the Natural Sciences and Engineering Research Council of Canada.
 http://www.siam.org/journals/simax/21-2/33867.html
 ${ }^{\dagger}$ Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (aslewis@orion.uwaterloo.ca, http://orion.uwaterloo.ca/~aslewis).

