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Abstract. We calculate the Clarke and Michel-Penot subdifferentials of the function which maps a symmetric
matrix to itsmth largest eigenvalue. We show these two subdifferentials coincide, and are identical for all choices
of indexm corresponding to equal eigenvalues. Our approach is via the generalized directional derivatives of the
eigenvalue function, thereby completing earlier studies on the classical directional derivative.
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1. Introduction

Eigenvalue optimization is an important testing-ground for nonsmooth optimization the-
ory. Optimization problems involving the eigenvalues of a real symmetric matrix arise in
many applications, from engineering design to graph-partitioning: two extensive surveys are
[15, 22]. More general nonsmooth optimization problems are also common in engineering
(see for example [20]).

If we denote themth largest eigenvalue (counted with multiplicity) of a symmetric matrix
A by λm(A), then the functionλm may be nonsmooth. Generalized subdifferentials are
therefore good tools for any variational study of eigenvalues. In this paper we calculate the
subdifferentials ofλm in the sense of both Clarke [3] and Michel-Penot [16]. We find they
coincide, and are equal for all values of the indexm corresponding to the same eigenvalue.

Our calculation of the Michel-Penot subdifferential is new. The result for the Clarke
subdifferential has been proved previously, by various approaches. One approach uses
the characterization of the Clarke subdifferential as the convex hull of cluster points of
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gradients of the function at a local set of points of full measure [6, 13]. Another approach
first calculates the ‘approximate’ subdifferential (of Ioffe-Kruger-Mordukhovich) and then
constructs its convex hull [14].

By contrast to these techniques, our approach is more elementary and direct, and empha-
sizes a pleasing parallel between the Michel-Penot and Clarke calculations. Our starting
point is a known expression for the usual directional derivativeλ′m(A;G). We then simply
regularize this derivative in two different ways: allowing perturbations of the base matrixA
leads to the Clarke result, whereas allowing (suitable) perturbations of the direction matrix
G gives the Michel-Penot version.

2. Subdifferentials

Consider an open subsetÄ of Rn and a functionf :Ä → R. Given a pointx in Ä, the
(usualor radial) directional derivativeof f at x is the positively homogeneous function

d ∈ Rn 7→ f ′(x; d) = lim
t→0+

f (x + td)− f (x)

t
,

when this function exists—in this case we sayf is directionally differentiableat x.
Assuming, henceforth,f is Lipschitz nearx, we can write the above function in the form

lim
t→0+,v→d

f (x + tv)− f (x)

t
,

sometimes called the ‘tangential directional derivative’ off at x (in the directiond).
TheClarke directional derivativeis the function

d ∈ Rn 7→ f ◦(x; d) = lim sup
t→0+,y→x

f (y+ td)− f (y)

t
.

This function issublinear, by which we mean convex and positively homogeneous. When
it coincides with the usual directional derivative we say the functionf is Clarke regular
(or ‘strictly tangentially convex’) at the pointx. TheClarke subdifferentialof f at x is the
nonempty compact convex set

∂cl f (x) = {s ∈ Rn : 〈s, d〉 ≤ f ◦(x; d) for all d in Rn}

(see [3]).
When the functionf is directionally differentiable throughout the setÄ, we know, for

all pointsx in Ä and directionsd in Rn,

f ◦(x; d) = lim sup
y→x

f ′(y; d) (2.1)

(by [10, Section 2.2]). Thus the Clarke directional derivative is a ‘regularized’ version of
the usual directional derivative, which explains the good topological behaviour of the map
x 7→ f ◦(x; d).
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In general, formula (2.1) may have little practical use, since even when we know the
usual directional derivative explicitly, taking the lim sup may be intractable. Nevertheless,
this formula will be useful for eigenvalues.

There is an alternative to the Clarke directional derivative and subdifferential, due to
Michel-Penot [16, 17]. TheMichel-Penot directional derivativeof the function f at the
point x is the sublinear function

d ∈ Rn 7→ f ♦(x; d) = sup
y∈Rn

lim sup
t→0+

f (x + ty+ td)− f (x + td)

t
,

and theMichel-Penot subdifferentialof f at x is the set

∂♦ f (x) = {s ∈ Rn : 〈s, d〉 ≤ f ♦(x; d) for all d in Rn}.

If f is differentiable atx then∂♦ f (x)={∇ f (x)} (by contrast with the Clarke version), but
on the other hand the multifunction∂♦ f (·) does not enjoy the various continuity properties
of ∂cl f (·).

Clearly in general we have

f ′(x; ·) ≤ f ♦(x; ·) ≤ f ◦(x; ·),

so∂♦ f (x)⊂ ∂cl f (x). If the function f is positively homogeneous then it is easy to check

f ◦(0; d) = f ♦(0; d) = sup
y∈Rn
{ f (y+ d)− f (y)} (2.2)

for any directiond in Rn (cf. [10]), and hence∂♦ f (0)= ∂cl f (0). Finally, note f ′(x; ·)=
f ♦(x; ·) if and only if the usual directional derivative exists and is convex (cf. [16]).

Sublinear majorants

We have seen that the Michel-Penot and Clarke directional derivatives are sublinear ma-
jorants of the ordinary directional derivative. In general, any positively homogeneous
Lipschitz function p : Rn → R has a ‘best’ sublinear majorant∗p : Rn → R, defined,
for any directiond in Rn, by

∗p(d) = sup
y∈Rn
{p(y+ d)− p(y)}.

Clearly ∗p is a sublinear majorant ofp, and is the smallest such functionh satisfying the
condition

p(y+ d) ≤ p(y)+ h(d) for all y andd in Rn.
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Equation (2.2) shows that∗p is just the Clarke (or Michel-Penot) directional derivative of
p at the origin. See [10] and the references therein for more on this operation, as well as
[7, 8, 19]. If the functionf is directionally differentiable at the pointx then

f ♦(x; d) = sup
y∈Rn
{ f ′(x; d + y)− f ′(x; y)}, (2.3)

for all directionsd in Rn ([17, Lemma 1.3]). Thus the Michel-Penot directional derivative
is the ‘best’ sublinear majorant of the usual directional derivative:

f ♦(x; ·) = ∗( f ′(x; ·)).

If, on the other hand, the usual directional derivative fails to exist, one has to rely directly
on the definition. As we shall see, this is not the case for the eigenvalue functions we con-
sider.

3. Eigenvalues

We denote the inner product space ofn× n real symmetric matrices bySn, where the inner
product of two matricesAandB in Sn is〈A, B〉= tr AB. We write themth largest eigenvalue
of A (counted with multiplicity) asλm(A) (for m= 1, 2, . . . ,n). Thus the functionλm is
positively homogeneous.

It is well-known that the functionσm=
∑m

1 λi is sublinear: indeed, it is the support
function of the set

{C ∈ Sn : C and I −C are positive semidefinite, tr C = m} (3.1)

(see, for example, [11] or [18]). Thusλ1 is convex,λn is concave, andλm is the difference
of two finite convex functions,σm andσm−1, for 1<m< n. In particular,λm is Lipschitz.
(In fact the Lipschitz constant is 1.)

Associated with a fixed matrixA in Sn and a fixed indexm are two other indices,̂m and
m̄, defined by

m̂= min{i : λi (A) = λm(A)}, and m̄= max{i : λi (A) = λm(A)}.

Thus

λm̂−1(A) > λm̂(A) = · · · = λm(A) = · · · = λm̄(A) > λm̄+1(A)

(appropriately understood when̂m= 1 or m̄= n). Corresponding toA, fix an orthogonal
matrixU diagonalizingA, which is to say satisfying

U T AU = Diag(λ1(A), λ2(A), . . . , λn(A)), (3.2)

and letUm be the submatrix ofU consisting of the columns indexed bym̂, m̂+ 1, . . . , m̄.
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Theorem 3.3 (Directional derivatives). Any matrix H inSn satisfies

λ′m(A; H) = λm−m̂+1
(
U T

m HUm
)
. (3.4)

Furthermore, the sum of the eigenvalues coinciding withλm at A,

m̄∑
i=m̂

λi ,

is analytic near A.

Formula (3.4) follows easily from expressions for the directional derivative of the eigen-
value sumσm appearing in [11, 18]. The analyticity result appears in [21].

Observe that ifm̂=m then the above result showsσm−1 is analytic nearA, and since
σm is convex we deduceλm is Clarke regular atA. (In fact the converse is also true [14].)
A similar argument shows−λm is Clarke regular atA if m̄=m (and the converse is again
true). In particular,λm̂ and−λm̄ are both Clarke regular atA.

4. Subdifferentials at zero

We begin our subdifferential calculations by computing directional derivatives of themth
largest eigenvalueλm at zero. We know these directional derivatives are sublinear approx-
imants ofλm, so we start with some cruder estimates.

Clearly we have the following sublinear majorants ofλm, for all m:

λm ≤ σm

m
≤ λ1.

Furthermore, form< n we have the concave minorants

λm ≥ σn − σm

n−m
≥ λn.

Proposition 4.1. If 1<m< n, the functionλm has no linear minorant or majorant.

Proof: Suppose the matrixC in Sn satisfies

〈C,G〉 ≤ λm(G) for all G in Sn.

Choose an orthogonal matrixU diagonalizingC:

U TCU = Diag(c1, c2, . . . , cn) for some vectorc in Rn.

Then by choosingG=U (Diagx)U T in the above inequality (for vectorsx in Rn), we
deduce

cTx ≤ λm(Diag x).
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Now choosingx to be each standard basis vector in turn showsc≤ 0, but choosing
x= (−1,−1, . . . ,−1) gives a contradiction. The argument for majorants is similar.2

The above result shows the convex and concave subdifferentials

∂λm(A) = {C ∈ Sn : 〈C,G− A〉 ≤ λm(G)− λm(A) for all G ∈ Sn},
−∂(−λm)(A) = {C ∈ Sn : 〈C,G− A〉 ≥ λm(G)− λm(A) for all G ∈ Sn}

are both empty atA= 0, when 1<m< n. A similar argument shows the same result at an
arbitrary matrixA in Sn, and furthermore, that these subdifferentials remain empty atA
for any function having the formλm(·)+ o(· − A) nearA. Geometrically, the functionsλm

are very ‘bumpy’.
Recall (cf. (3.1)) the formula for the convex subdifferential ofλ1 at zero:

∂λ1(0) = {C ∈ Sn : C positive semidefinite, tr C = 1}.

Notice∂λ1(0) = −∂(−λn)(0).

Theorem 4.2 (Subdifferentials at zero). The Clarke and Michel-Penot subdifferentials
of the mth largest eigenvalueλm for m= 1, 2, . . . ,n all coincide at zero:

∂♦λm(0) = ∂clλm(0) = ∂λ1(0).

Proof: The first equality follows from the positive homogeneity ofλm (see formula (2.2)).
To prove the result we, therefore, need to show any matrixG in Sn satisfies

λ♦m(0;G) = λ′1(0;G),

or, using formula (2.2),

sup
H∈Sn
{λm(H + G)− λm(H)} = λ1(G). (4.3)

On the one hand, the inequality

λm(H + G) ≤ λm(H)+ λ1(G)

is a classical inequality of Weyl (see [12, Theorem 4.3.7], or [1]). To see the supre-
mum is attained, choose an orthogonal matrixU with U T GU = Diagλ(G) and any real
α >λ1(G)− λn(G). Then if we set

H = U Diag(0, 0, . . . ,0, α, α, . . . , α︸ ︷︷ ︸
m−1 terms

)U T
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we deduce

λm(H + G)− λm(H) = λm(U
T (H + G)U )− 0= λm(Diagd),

whered∈Rn is the vector

(λ1(G), λ2(G), . . . , λn−m+1(G), λn−m+2(G)+ α, λn−m+3(G)+ α, . . . , λn(G)+ α).

The right-hand side of the equation is just themth largest component ofd, which isλ1(G),
as required. 2

5. Subdifferentials away from zero

The Michel-Penot and Clarke subdifferentials of themth largest eigenvalueλm coincide at
zero simply by positive homogeneity. Away from zero, their equality is no longer immediate.
To prove these two subdifferentials are indeed equal we make the following steps for a fixed
matrix A in Sn.

• Use formula (3.4) to identify the usual directional derivativeλ′m(A; ·).
• Calculate the best sublinear majorant ofλ′m(A; ·) (which is exactly the Michel-Penot

directional derivativeλ♦m(A; ·)), using formula (2.3).
• Regularizeλ′m(A; ·), using formula (2.1), to identify the Clarke directional derivative
λ◦m(A; ·).

In general,λm(A) belongs to a block of equal eigenvalues. The leading eigenvalue in this
block isλm̂, and its usual directional derivative atA is sublinear, by formula (3.4). We show
its subdifferential coincides exactly with the Michel-Penot and Clarke subdifferentials of
λm at A.

Theorem 5.1 (Michel-Penot Subdifferential). The Michel-Penot subdifferentials of the
eigenvaluesλm at a matrix A inSn coincide for all choices of m corresponding to equal
eigenvalues:

∂♦λm(A) = ∂(λ′m̂(A, ·))(0) for all m.

Proof: We wish to show that any matrixG in Sn satisfies

λ♦m(A;G) = λ′m̂(A;G)

(sinceλ′m̂(A; ·) is sublinear). By formula (2.3), this is equivalent to

sup
H∈Sn
{λ′m(A; H + G)− λ′m(A; H)} = λ′m̂(A;G).



20 HIRIART-URRUTY AND LEWIS

Choose an orthogonal matrixU diagonalizingA as in Eq. (3.2). Then the directional
derivative formula (3.4), applied in turn toλm and toλm̂, shows the equation above is
equivalent to

sup
H∈Sn

{
λm−m̂+1

(
U T

m(H + G)Um
)− λm−m̂+1

(
U T

m HUm
)} = λ1

(
U T

mGUm
)
.

Since any matrixF in Sm̄−m̂+1 satisfies

U T
m

(
UmFU T

m

)
Um = F,

this is equivalent to

sup
F∈Sm̄−m̂+1

{
λm−m̂+1

(
F +U T

mGUm
)− λm−m̂+1(F)

} = λ1
(
U T

mGUm
)
,

and this follows from the proof of Theorem 4.2—see Eq. (4.3). 2

It is not difficult to see

∂(λ′m̂(A; ·))(0) = −∂(−λ′m̄(A; ·))(0).

The next result gives a clearer interpretation of our calculation above. We use the notation
conv to denote the convex hull of a set.

Proposition 5.2. For any matrix A inSn, denote the eigenspace corresponding to the mth
largest eigenvalueλm(A) byEm(A)⊂Rn. Then

∂(λ′m̂(A; ·))(0) = conv{xxT : x ∈ Em(A), ‖x‖ = 1}.

Proof: We wish to show that any matrixG in Sn satisfies

λ′m̂(A;G) = max{〈G, xxT 〉 : x ∈ Em(A), ‖x‖ = 1}.

As in the proof of the previous result, we can write this

λ1
(
U T

mGUm
) = max{xT Gx : x ∈ Em(A), ‖x‖ = 1}.

Since the columns of the matrixUm are an orthonormal basis forEm(A), the right-hand
side is

max{(Umy)T G(Umy) : y ∈ Rm̂−m̄+1, ‖y‖ = 1},

which equals the left-hand side. 2

We end this section with our main result.
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Theorem 5.3 (Michel-Penot and Clarke Subdifferentials). For any matrix A inSn with
eigenspaceEm(A)⊂Rn corresponding to the mth largest eigenvalueλm(A), the Michel-
Penot and Clarke subdifferentials ofλm at A are equal:

∂♦λm(A) = ∂clλm(A) = conv{xxT : x ∈ Em(A), ‖x‖ = 1}. (5.4)

These subdifferentials all coincide for all choices of m corresponding to equal eigenvalues.

Proof: We know∂♦λm(A)⊂ ∂clλm(A). For the opposite inclusion, fix a matrixG in Sn

and an indexm. By the regularization formula (2.1) there is a sequence of matricesAk

approachingA in Sn with

λ◦m(A;G) = lim
k→∞

λ′m(Ak;G).

By taking a subsequence we can assume the set of indices

{i : λi (Ak) = λm(Ak)}

is independent of the indexk: we denote it byI . Since the eigenvaluesλi are all continuous,
observe

I ⊂ {m̂, m̂+ 1, . . . , m̄}. (5.5)

For eachk choose an orthogonal matrixUk diagonalizingAk: that is,

(Uk)T AkU
k = Diagλ(Ak).

Again taking a subsequence we can assumeUk approaches an orthogonal matrixU which
diagonalizesA, sinceλ is continuous:U TAU=Diagλ(A).

Denote the submatrices ofU andUk with columns indexed byI by UI andUk
I . Now,

by the Directional Derivatives Theorem (3.3),

λ′m(Ak;G) ≤ λ1
((

Uk
I

)T
GUk

I

)→ λ1
(
U T

I GUI
)
.

If, as usual, we denote byUm the submatrix ofU with columns indexed by the right-hand
side set in inclusion (5.5), then we see

λ1
(
U T

I GUI
) = max

‖z‖=1
(UI z)

T G(UI z)

≤ max
‖y‖=1

(Umy)T G(Umy)

= λ1
(
U T

mGUm
)

= λ′m̂(A;G),
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as in the proof of Theorem 5.1, whence

λ◦m(A;G) ≤ λ′m̂(A;G).

Since the matrixG was arbitrary, we deduce

∂clλm(A) ⊂ ∂(λ′m̂(A; ·))(0),

and the result now follows by Theorem 5.1 and Proposition 5.2. (Alternatively, a more
direct calculation also shows the opposite inclusion.) 2

6. Comparison with earlier results

We can write the Clarke derivative formula (5.4) as

λ◦m(A;G) = max{xT Gx : x ∈ Em(A), ‖x‖ = 1},

a result first observed by Cox and Overton [6]. (A weaker inequality appeared in [9].)
One proof of this result appears in [13], based on the almost-everywhere differentiabil-
ity of λm. An alternative approach is developed in [14], this time via the Ioffe-Kruger-
Mordukhovich ‘approximate subdifferential’. Our approach here is more elementary than
either. The Michel-Penot result is, to our knowledge, new.

Cox [4] considered a continuously differentiable functionF : Rk → Sn, and studied the
Clarke subdifferential of the composite functionλm ◦ F (see also [2, 5] for related work).
A rather complex argument leads to an exact formula when the eigenvalue of interest is the
first or last in a block of equal eigenvalues, and just an inclusion otherwise: in our notation,
for any indexm and any pointsp andd in Rk, settingA= F(p), the result is

(λm̂ ◦ F)◦(p; d) = (λm̄ ◦ F)◦(p; d)
= max{xT (F ′(p)d)x : x ∈ Em(A), ‖x‖ = 1}
≤ (λm ◦ F)◦(p; d).

This now follows immediately from formula (5.4) by using the standard chain rule for the
Clarke subdifferential (see [3]). Since, as we have observed, bothλm̂ and−λm̄ are Clarke
regular atA, the chain rule is exact for these eigenvalues, whereas in general it shows only
an inclusion. The Michel-Penot subdifferential would permit a similar approach using a
general differentiable functionF .

One nice application of our main result, formula (5.4), is a transparent derivation
of a well-known isotonicity property of eigenvalues (see [12, p. 181]): for matricesX
andY in Sn,

X º Y⇒ λ(X) ≥ λ(Y)
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(whereXºY meansX−Y is positive semidefinite). To see this, note that for any indexm
the Lebourg Mean Value Theorem [3] implies the existence of a matrixZ in Sn such that

λm(X)− λm(Y) ∈ 〈∂λm(Z), X − Y〉
= conv{〈xxT , X − Y〉 : x ∈ Em(Z), ‖x‖ = 1}
= conv{xT (X − Y)x : x ∈ Em(Z), ‖x‖ = 1}
⊂ R+,

whence the result.
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Technical Report, Paul Sabatier University, France, 1981.
9. B. Gollan, “Eigenvalue perturbation and nonlinear parametric optimization,” Mathematical Programming

Study, vol. 30, pp. 67–81, 1987.
10. J.-B. Hiriart-Urruty, “Miscellanies on nonsmooth analysis and optimization,” in Nondifferentiable Optimiza-

tion: Motivations and Applications, Workshop at Sopron, 1984, V.F. Demyanov and D. Pallaschke (Eds.),
Lecture Notes in Economics and Mathematical Systems 255, Springer, 1985, pp. 8–24.

11. J.-B. Hiriart-Urruty and D. Ye,“Sensitivity analysis of all eigenvalues of a symmetric matrix,” Numer. Math.,
vol. 70, pp. 45–72, 1995.

12. R.A. Horn and C. Johnson, Matrix Analysis, Cambridge University Press: Cambridge, UK, 1985.
13. A.S. Lewis, “Derivatives of spectral functions,” Mathematics of Operations Research, vol. 6, pp. 576–588,

1996.
14. A.S. Lewis, “Nonsmooth analysis of eigenvalues,” Mathematical Programming, 1998, to appear.
15. A.S. Lewis and M.L. Overton, “Eigenvalue optimization,” Acta Numerica, vol. 5, pp. 149–190, 1996.
16. P. Michel and J.-P. Penot, “Calcul sous-diff´erentiel pour les fonctions lipschitziennes et non lipschitziennes,”

C.R. Acad. Sci. Paris, vol. 298, pp. 269–272, 1984.
17. P. Michel and J.-P. Penot, “A generalized derivative for calm and stable functions,” Differential and Integral

Equations, vol. 5, pp. 433–454, 1992.
18. M.L. Overton and R.S. Womersley, “Optimality conditions and duality theory for minimizing sums of the

largest eigenvalues of symmetric matrices,” Mathematical Programming, Series B, vol. 62, pp. 321–357, 1993.
19. J.-P. Penot, “Variations on the theme of nonsmooth analysis: Another subdifferential,” in Non-Differentiable

Optimization: Motivations and Applications, Workshop at Sopron, 1984, V.F. Demyanov and D. Pallaschke
(Eds.), Lecture Notes in Economics and Mathematical Systems 255, Springer, 1985, pp. 8–24.

20. E. Polak, “On the mathematical foundations of non-differentiable optimization in engineering design,” SIAM
Review, vol. 29, pp. 21–89, 1987.

21. N.-K. Tsing, M.K.H. Fan, and E.I. Verriest, “On analyticity of functions involving eigenvalues,” Linear
Algebra and its Applications, vol. 207, pp. 159–180, 1994.

22. L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Review, vol. 38, pp. 49–95, 1996.


