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ABSTRACT 

We characterize the exposed faces of convex sets L%’ of symmetric matrices, 
invariant under orthogonal similarity (UT@U = %’ for all orthogonal U). Such sets FL?? 
are exactly those determined by eigenvalue constraints: typical examples are the 
positive semidefinite cone and the unit balls of common matrix norms. The set 9 of 
all diagonal matrices in ‘%’ is known to be convex if and only if 59 is, and 9 is 
invariant under the group of permutations (acting on diagonal entries). We show how 
any exposed face of g is naturally associated with an exposed face of 9, by relating 
the stabilizer groups of the two faces. 0 1998 Elsevier Science Inc. 

1. INTRODUCTION 

The beautiful facial structure of the cone of real symmetric n x n 
positive semidefinite matrices has been well understood for many years [I!$ 
21. This structure is strikingly analogous to the facial structure of the positive 
orthant in R”. This paper aims to explain the foundations of this analogy, and 
thereby to understand the exposed faces of general convex sets of matrices 
satisfying eigenvalue constraints. 
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Faces of the positive orthant in R” play a crucial role in linear program- 
ming. Analogously, in the newer area of semidefinite programming, a number 
of recent papers have examined the role of the facial structure of the 
semidefinite cone (for example, [l, 13, 141). We hope to clarify the analogies, 
both between linear and semidefinite programming, and in more general 
eigenvalue optimization problems. 

Let fin) denote the space of real symmetric n x n matrices, and let 
fin), denote the positive semidefinite cone. A typical (exposed) face of this 
cone is 

where 0 < m =G n. In fact, these faces, together with their rotations V T9’V 
(for orthogonal V >, comprise all the nonempty faces of the cone. 

The Euclidean space R” (whose elements we always regard as column 
vectors) behaves very similarly. A typical exposed face of the positive or-&ant, 
R:, is 

E = ((# -+ 
where 0 Q m < n. These faces, together with their permutations PE (for 
permutation matrices P), comprise all the nonempty faces of R:. 

The diagonal matrices in fin>+ are naturally identified with R:. More 
generally, the diagonal matrices in the face Fare identified with the face E. 
Furthermore, the stabilizers of the two faces are related. Specifically, the 
orthogonal V for which V Tm = 9 are those with the block structure 

where Q is m X m; 

likewise, the permutation matrices P for which PE = E are those with the 
same block structure. 

Knowing the relationship between the stabilizers of the two faces, and 
between E and the diagonal matrices in 9, would enable us to “compute” 9 
from E. Hence we, could describe all the faces of fin>+ in terms of those of 
R;. It is this description we wish to generalize. 

Define the eigenvalue map A: fin) + R” by letting hi(X) be the ith 
largest eigenvalue of the symmetric matrix X (counted by multiplicity). It is 
easy to see that a subset &” of fin) is invariant under orthogonal similarity 
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(U’ZU = Z for all orthogonal U) if and only if there s a subset C of R” 
which is permutation-invariant (PC = C for all permutation matrices P) 
satisfying 

x= P(C) = {x Esqn) (A(X) E c). 

The condition that C is permutation-invariant is in some sense superfluous 
for this observation, but is crucial for our later development. For example, 
with this assumption the matrix set A?+ is closed and convex if and only if C is 
closed and convex (see [7, lo]). If we define the diagonal map Diag : R” -+ 
fin) by letting Diag x be a diagonal matrix with diagonal entries 
Xl> xq>. . .1 x,, then the set of diagonal matrices in Z is just Diag C. Our 
main result describes the exposed faces of A? in terms of those of C. 

Let E be a proper, exposed face of the closed, convex, permutation-in- 
variant set C: in other words, E is the intersection of C with a supporting 
hyperplane. The stabilizer of E is the group of permutation matrices 
satisfying PE = E: we show this subgroup consists of those P with a certain 
block-diagonal t s ructure associated with the face E (after a suitable reorder- 
ing of the basis). Now consider the group of orthogonal matrices with the 
same block-diagonal structure: we denote this group by B(n>_E . Our main 
result (Theorem 5.1) is that the matrix set 

Y= {Ur(Diag x)UIU E a(n)-, , x E 6) 

is an exposed face of A -l(C), as is any rotation Vr@V (for orthogonal V); 
furthermore, every exposed face of A-l(C) may be constructed in this 
manner from some exposed face of C. The case C = R; gives the example 
of the semidefinite cone. Other interesting examples arise from choosing C 
to be the 1, or I, unit ball: Section 6 has the details. 

We develop the theory for real symmetric matrices: the Hermitian 
versions of our results are entirely analogous, in the usual way. 

We might expect an analogous set of results for the unit balls of unitarily 
invariant matrix norms: an extensive study of the facial structure of such balls 
may be found in [4, 3, 51. In the above discussion, we replace the space fin) 
by the space of all complex n x n (or more generally n X m) matrices, the 
the map A is replaced by the analogous singular-v&e map (cf. [S]). Orthogo- 
nal similarity transformations are replaced by transformations X * UXV 
with unitary U and V, and the group of permutations is enlarged to allow 
coordinate sign changes. More generally, we might expect the present results 
to extend to the Lie algebraic framework described in [9]. We defer further 
discussion. 
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In the present framework, we might also expect a completely analogous 
set of results for faces, rather than exposed faces. Our wide application of 
duality arguments apparently facilitates the exposed case. Again, we defer 
further discussion. 

2. INVARIANT CONVEX SETS AND EXPOSED FACES 

This section concerns the facial structure of a nonempty, convex subset C 
of a Euclidean space E. We consider the implications of the invariance of C 
under a compact subgroup G of the general linear group GL(E). 

The stabilizer of C in G is the subgroup G, = {g E G ] gC = C}. It is 
easy to check that the stabilizer of any closed set is closed. We say C is 
invariant under G when Cc = G. For a point x in E, we write G, for Gt,,. 
The following slight refinement of a well-known result is fundamental for us. 

THEOREM 2.1 (Fixed point). If a nonempty, convex set C is invariant 
under a compact group G, then so is its relative interior ri C, which therefore 
contains a point which is invariant under G. 

Proof. For any transformation g in G, [15, Theorem 6.61 implies 
g ri C = ri gC = ri C, as required. The result follows by applying the fmed 
point theorem in [12, p. 1301. ??

DEFINITION 2.2. A convex set C is relatively invariant under a group G 
if every group element fling a point in ri C leaves C invariant: G, C G, for 
all x in ri C. 

PROPOSITION 2.3. A closed, convex set C is invariant under a linear 
transformation g (that is, gC = C> if and only if its relative interior is 
invariant under g. 

Proof. If C is invariant, then, as before, g ri C = ri gC = ri C. If, on 
the other hand, ri C is invariant, then since cl ri C = C by [15, Theorem 6.31, 

gc=gclricccl(gric) =clriC=C, 

by continuity. 
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It remains to show gC 2 C. Fix a point x in ri C (so gx also lies in ri C), 
and let L be the affne span of C (or, equivalently, of ri C). Notice that 

gL=g[x+R+(riC-x)] =gx+R+(griC-gx) 

= gx + R+(riC - gx) = L. 

Thus the restricted map g 1 L : L + L is invertible. Since g 1 L int, C = int, C, 
we deduce 

C = Clint, C = cl glii int, C 3 g]il Clint, C = gl;iC, 

by continuity. Thus gC = g I LC 2 C, as required. W 

COHOLLARY 2.4. A closed, convex set C is relatively invariant under a 
group G if and only y ‘t z 2 s relative interior is relatively invariant. 

Proof. By the previous proposition, C and ri C have the same stabilizer, 
and the result follows, since ri ri C = ri C. 

A face of C is a convex subset F c C such that points x and y in C 
must lie in F whenever Ax + (1 - A) y lies in F for some real A in (0,l). In 
this paper our primary interest is a special class of faces-exposed faces. The 
indicatorfunction of C is defined by 

and the support function is defined by 6,*(y) = supI E c ( x, y ) for any 
element y of E (where ( * , . > denotes the inner product for E). An exposed 
face of C is a set of the form 

(2.5) F = {x E Cl{ x, y) = a;(y)} 

for some y in E. (Any exposed face is a face.) If C is closed then 
F = as,*< y), where d, denotes the convex subdifferential (see [15]). Notice 
that the empty set is allowed: in fact it is not difficult to see that the empty 
set is an exposed face of a nonempty closed convex set C if and only if C is 
unbounded. 
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For results analogous to the following for cones, see [17, Theorem 3.3(a)] 
and [18, Lemma 3.71. 

THEOREM 2.6 (Equivalent faces). Suppose a convex set C is invariant 
under a linear transformation g, and consider a nonempty (exposed) face F 
of C. Then gF is also a(n) (exposed) f ace of C, and the following properties 
are equivalent: 

(i) gF = F; 
(ii) gF c F; 
(iii) F n g ri F # 0. 

Proof. By restricting to the subspace spanned by C we may without loss 
of generality assume g is invertible. To see gF is a face, suppose x E F, 
y, z E C, and gx = i( y + z). Because x = i<g-’ y + g-‘z) and F is a face 
we deduce g- ’ y and g-‘z belong to F so y and z lie in gF, as required. 

If F is an exposed face, we can describe it by Equation (2.5), and then it 
is easy to check 

gF = {x E CK x, u) = S,*(u)}, 

where u = (gP1>*(y> (* d enoting the adjoint). Thus gF is also an exposed 
face. 

The implication (i) * (iii) is immediate. To see (iii) * (ii), suppose the 
point x lies in ri F and satisfies gx E F. Noting gx E ri gF, we see that for 
any point y in gF there is a real E > 0 with gx + ??(gx - y) in gF. Since gx 
belongs to the face F, so must y. 

Finally, to prove (ii> * (i), note that gF and F are faces of the same 
dimension (since g is invertible), so the result follows (cf. [15, Theorem 
18.11). ??

For any compact subgroup G of GL(E), there is an inner product (*, - ) 
which is G-invariant: (gx, gy) = (x, y> for all elements x and y of E and 
elements g of G (see [12, p. 1311). With respect to this inner product, G is a 
subgroup of the orthogonal group O(E): we thus lose no essential generality 
in always assuming this. 

COROLLARY 2.7 (Stabilizers). If a convex set C is invariant under a 
group G, then any face F of C is relatively invariant. If furthermore G is 
compact and F is nonempty and closed, then there is a point x in ri F 
satisfying G, = G,. 
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Proof The first part follows from the equivalent faces theorem above. 
By the fixed point theorem 2.1 applied to the face F and the (compact) group 
G,, there is a point x in ri F with (G,), = G,, whence G, 3 G,. But the 
equivalent faces theorem shows G, c G,. ??

The next result, an apparently rather innocuous refinement of the ex- 
posed faces definition (2.51, is central. Just as the stabilizers corollary above 
shows that any nonempty closed face contains a point whose stabilizer 
coincides with that of the face, so this result shows that any exposed face can 
be exposed by a vector whose stabilizer coincides with that of the face. 

THEOREM 2.8 (Exposing vectors). If a closed convex subset C of the 
Eucliokan space E is invariant under a closed subgroup G of the orthogonal 
group O(E), then we can write any exposed face F of C in the form 

(2.9) F = (x E C(( x, y) = a;(y)), 

for some vector y E E with the sam stabilizer as F (that is, G, = G,>. 

Proof. Suppose first that F is nonempty. Let K be the (nonempty) set 
of exposing vectors for F: 

K = {y E E((2.9) holds} 

We begin by showing that K is convex. For this, let us assume 0 E int C: the 
general case follows after a translation and restriction to a subspace. 

We claim the set K, = { y E K 1 S,*< y) = 1) is convex. To see this, 
choose elements z) and w in K,, and real (Y in (0, I). If a point x lies in F, 
then (x, v) = 1 = (x,w), and hence 

S,*(av + (1- +> < c&,*(c) + (1 - a)q(w) 

= 1 

=(x, CYC + (1 - a)w) 

< cY;c*((Yv + (1 - cr)w). 

Since F is nonempty, we deduce S,* ((Y v + (I - a)~) = I, and 

F c {x E Cl{ x, crv + (1 - (Y)w) = 1). 
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To see the reverse inclusion, if x belongs to the right hand side, then 

1= a(x,v> + (1- a)(x,w> Q am; + (1- a)tg(w) = 1, 

whence (x, v) = S,*(v), and so r lies in F. Thus LYV + (1 - a>w belongs 
to K,, as required. 

If F = C then K = (0). If F is a nonempty, proper, exposed face of C, 
then K = IJ p > 0 /3&Z,, which is convex. In either case, K is convex. 

We next observe that K is invariant under the stabilizer G,: for a linear 
transformation g in G, and a vector y in K, 

(x E elk gy) = Wgy)] = {x ??cK&, Y> = NY)) 

= & E clh Y> = GYY)} 

= gF = F, 

whence gy E K. By the futed point theorem 2.1 applied to the convex set K 
and the group G,, we can fm an exposing vector y E K with (G,), = G,. 
Thus G, 1 G,. But if g belongs to G,, then 

F= I-Cl(rgy) =8:(Y)} 

= {x E CKgTr> y) = s,*(~)} 

= & E cKz> Y> = a;( Y>} 

= gF, 

and hence g belongs to G,. Thus G, = G,. 
Finally we return to the case where the exposed face F is empty. If the 

convex set C is empty, then we can choose y = 0. Otherwise, C must be 
unbounded, and hence its recession cone (0 + )C is nontrivial [I5, Theorem 
8.41. It is easily checked that (0 + >C is invariant under G. The case C = E is 
easy (again choose y = O), so we can assume C is a proper subset of E, in 
which case so is (0 + >C. By the fixed point theorem, there is a point y in 
ri[(O + >C] with G, = G = G, = G,, and y must be nonzero. Fix any point 
x in C. Since x + cry lies in C for all (Y > 0, we have 

S,*(y) a sup (x + ‘yy, y> = +w, 
a>0 

and so Equation (2.9) holds, as required. ??
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3. PERMUTATIONS AND ORTHOGONAL SIMILARITY 

We concentrate on two particular Euclidean spaces: R”, with the usual 
inner product, and the space 9’(n) of 12 X n, real symmetric matrices, with 
the trace inner product ( X, Y ) = tr XY. The diagonal map Diag : R” + 9(1x) 
gives an isomorphism between R” and the subspace of diagonal matrices. 

On R” we are interested in the group of n X n permutation matrices 
9(n): we consider elements x of R” as column vectors, and permutation 
matrices P as linear transformations, x e Px. 

On 9’(n) we are interested in the group of orthogonal similarity transfor- 
mations. Let a(n) be the group of n X n orthogonal matrices, and define 
the adjoint representation Ad : @(n) -+ 0(9’(n)> by (Ad U)X = UrXU, for 
orthogonal U and symmetric X. Then we are interested in the group 
Ad B(n). 

The results in the previous section depend heavily on properties of 
stabilizers, in the relevant group, of certain elements of the underlying 
Euclidean space. In both of the above cases, these stabilizers are associated 
with equivalence relations on {l, 2, . . . , n}. For such a relation - , let 
y(n)_ denote the subgroup of matrices representing permutations which 
leave the equivalence classes of - invariant. If we reorder the basis so that 
the equivalence classes of - are blocks of consecutive integers, then 9(n) _ 
consists of the permutation matrices having the corresponding block-diagonal 
structure. Now let B(n)_ denote the subgroup of orthogonal matrices with 
the same block-diagonal structure. 

More formally, define a subspace R’L = {x E R” 1 xi = x, if i - j). Then 

For example, if n = 5 and the equivalence classes of - are the blocks {1,2) 
and {3,4,5), then 

The following result is clear. 
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LEMMA 3.1. For two equivalence relations - and W on {l, 2, . . . , n}, 
the following are equivalent: 

(i) - and W are identical; 
(ii) P(n)_ =9(n), ; 
(iii) B(n), = B(n), . 

We can identify the stabilizer in 9’(n) of a vector x in R” through an 
associated equivalence relation mx , defined by i wX j if and only if xi = xj. 
The next result is easy to check. 

PROPOSITION 3.2. The stabilizer of any vector x in R” satisfies 

9(n)X =9(n)-, . 

We can also express stabilizers of elements of fin> in the group Ad B(n) 
easily, with this notation. 

PROPOSITION 3.3. The stabilizer of a diagonal matrix Diag x (for a 
vector x in R”) satisfies 

Proof. By definition, an orthogonal matrix U has Ad U in [Ad B(n)],,,, x 
if and only if UT(Diag x>U = Diag x. Suppose that U lies in @(n>_x. 
Without loss of generality, suppose that the equivalence classes of wX are 
blocks (by reordering the basis, if necessary). Then U and Diag x both have 
the corresponding block-diagonal structure, the diagonal blocks of U being 
orthogonal matrices, and those of Diag x being multiples of identity matrices. 
It follows that UT(Diag x>U = Diag x. 

Conversely, if Ur(Diag x)U = Diag x for some orthogonal matrix U, 
then the ith column of U, denoted ui, is an eigenvector for the matrix 
Diag x, with corresponding eigenvalue xi. But for any j +% i, the standard 
unit vector ej is an eigenvector with distinct corresponding eigenvalue xj. 
The (j, i) entry in U is (ej>ru’, and is hence zero. It follows that U belongs 
to B(n)_x. ??

The stabilizer in Ad 6’(n) of a general symmetric matrix X is now easily 
computed by diagonalizing X. 
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PROPOSITION 3.4. Vectors x and y in R" satisfy 

[Ad @(n)I mg x = [Ad @( n>I Diag y 

if and onEy if pa(n), = pa(n),,. 

Proof. This follows from Lemma 3.1 and Propositions 3.2 and 3.3. 

LEMMA 3.5. Suppose that vectors x, y, and z in R" and an orthogonal 
matrix U satisfy UT(Diag x>V = Diag x and Crr(Diag y)U = Diag Z. Then 
there is a permutation matrix P <satisfying Px = x and Py = z. 

Proof. Reorder the basis so that Diag 1c is the block-diagonal matrix 
@i cri Ii, where th e scalars ai are distinct, and Ii is an ri X ri identity matrix 

for each index i. By Proposition 3.3, there are matrices ui in &ri) with 
U = @i U,. If we decompose the vectors y and .z into the same size blocks, 
y = ei yi and z = ei zi, with yi and zi in R', for each i, then by 
assumption, U,r(Diag y”)U, = Diag zi for each i. By considering eigenvalues, 
it is clear that there are permutation matrices P, with Pi y’ = zi, for each i. 
The required permutation matrix can then be chosen as P = @; Pi. ??

4. A CONVEX CHAIN RULE 

Given a matrix X in fin), let A,( X> > A,(X) > ... > h,(X) denote 
the eigenvalues of X (counted by multiplicity). In this way we define a 
function A : P(n) + R". We say a function f : R" -+ ( -m, + ~1 is pemuta- 
tion-invariant if f( Px) = f(x) f or every point x in R" and every permutation 
matrix P. If such a function is convex, then so is the composite function f 0 A 
[where <f 0 A)(X) = f(A(X)) f or matrices X in fin)], by [ll, Theorem 4.31, 
and, whether or not f is convex, the Fenchel conjugate is given by 

(4.1) (j-0 A)* = f* 0 A 

(see [lo, Theorem 2.31). 
Given a vector x in R", let X denote the vector with the same compo- 

nents arranged in nonincreasing order. 
The following chain rule for subgradients of the function f 0 A is central 

to our development. 
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THEOREM 4.2 (Chain rule). Let the function f : R” -+ ( --oo, +m] be 
permutation-invariant. Then for any vector y in R”; 

J(f O Y)(D% Y) = Ad[e+J Diag Jf(Y). 

Proof. By [ll, Theorem 4.61, J<f 0 hXDiag y) = (Ad @) Diag 6’f(5j), 
where the set d consists of those orthogonal U satisfying Diag y = 
UT(Diag Y)U, and [ll, Corollary 4.81 shows df< y> =Sc+‘f(ij), where the set 

9 consists of those permutations matrices P satisfying y = PJ. Hence 

Diag Jf( g) = (Ad 9) Diag df( y), 

so, by Proposition 3.3, it suffices to prove 

Ad(S’@) = [Ad@(n)]oiagy. 

For matrices U in d and P in 9, 

(Ad PU) Diag y = (PU)‘(Diag y)( PU) = Ur(Diag g)U = Diag y, 

so 

Ad(s@) c [Ad@(n)Ioiagy. 

To see the opposite inclusion, suppose an orthogonal matrix U satisfies 
Ur(Diag y>U = Diag y. Fix a matrix P in 9, so Diag y = P(Diag y)PT. 
Hence PTU E d, so U belongs to S&7’, as required. ??

Our next step is to apply this chain rule to study sets in R” via their 
indicator functions. We say that a subset C of R” is permutation-invariant if 
PC = C for every permutation matrix P. Suppose in addition that C is closed 
and convex. Then the matrix set 

h-l(C) = {X E9(n))h(X) E C) 

is also closed and convex: to see this, note that its indicator function satisfies 
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so we can apply the results in [lo] ( see also [7]). We also see from this 
equation and the conjugacy formula (4.1) that the support functions satisfy 

By assumption, the set C is invariant under the group T(n), and it is easy 
to see that the matrix set A-‘(C) is invariant under the group Ad H(n). Our 
ultimate aim is to characterize the exposed faces of A- ‘(C) in terms of those 
of c. 

First we introduce some important notation. For a nonempty, exposed 
face E of C we know, by the stabilizers corollary 2.7, that there is a point .T 
in ri E with 9( n& = 9(n),. Define an equivalence relation -s on 
{1,2,. . . , n} by -s = mX . This relation is well defined, since if the point y 
satisfies 9(n)s = p(n),, then 

P( n) -j =9”(r~)~ =9(n), =9(n), =9(n)-, 

by Proposition 3.2, and hence -X = wY , by Lemma 3.1. If E is empty, then 
we define -s by u -s v for all points u and 0. 

The equivalence relation -s describes the stabilizer of the face E: 

(4.5) 9(n)s =5@(n)., . 

This is the notation we shall use to characterize the exposed faces of A- ’ (C ). 
The first step is a direct application of the chain rule (Theorem 4.2). 

THEOREM 4.6 (Facial chain rule). Suppose the subset C of R” is closed, 
convex, and permutation-invariant, with an exposed face E. Then the set 
Ad[B(n)_ I Diag E is an exposed face of the mutrix set A-‘(C). 

Proof. When C is empty the result is trivial, so assume C is nonempty. 
By the exposing vectors theorem 2.8, there is a vector y in R” with 
E = &3,*(y) and 9(n), =9(n),,. N ow by the chain rule (Theorem 4.2), 
Equations (4.4) and (4.51, and Lemma 3.1, 

da,*-l(,,(Diag y) = a( S,* 0 A)(Diag y) 

= Ad[@(n)-y] Diag d%( Y> 

so the result follows. 

= Ad[@‘(n)_,] Diag E, 
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In the above result, we see immediately by the equivalent faces theorem 
2.6 that any rotation 

V’(Ad[B(n)-,] Diag E)V (with V orthogonal) 

is also an exposed face. Our main result, proved in the next section, states 
that this construction in fact gives all the exposed faces of h-‘(C). 

5. EXPOSED FACES OF MATRIX SETS 

We are now ready to prove our main result. Given a closed, convex, 
permutation-invariant subset C of R”, we characterize the exposed faces of 
the matrix set h-‘(C) in terms of the exposed faces of C. Just as C is 
invariant under the permutation group 9(n), so A-‘(C) is invariant under 
the group of orthogonal similarity transformations Ad B(n). The idea of our 
proof is to relate the stabilizers of exposed faces of A-‘(C) in Ad @(n) to the 
stabilizers of exposed faces of C in 9(n). 

For a matrix set 9 c Y( n), we define 

Diag-‘F= (r ERn(Diagx EF}. 

THEOREM 5.1 (Exposed faces). Suppose the subset C of R” is closed, 
convex, and permutation-invariant. Then the following properties of a 
nonempty subset Sof A-l(C) are equivalent: 

(i) 9 is an exposed j&e of A _ ’ (C ); 
(ii) F = V r(Ad[d(n) _E ] Diag E)V for some orthogonal V and some 

exposed face E of C; 
(iii) Sr is convex, is relatively Ad &n&invariant, and satisfies 

Diag-l[V(riF)Vr] # 0, 

Diag-‘( VYV r ) = E, 

for some orthogonal V and some exposed face E of C. 

Zf property (ii) ( or equivalently (iii)) holds, then the stablizers of the faces E 
and Fare related by 

(5.2) [Ad8(n)19= Ad[VrB(n),, V]. 



EIGENVALUE-CONSTRAINED FACES 173 

Proof. (ii) * (i): This follows immediately from the facial chain rule 
(Theorem 4.6) and the equivalent faces Theorem 2.6. 

(iii) a (ii): We restrict to the case V = I: the general case is a straightfor- 
ward consequence. Define a matrix set &?‘= Ad[d(n) _F ] Diag E. This set is a 
face of A-‘(C), by the facial chain rule (Theorem 4.6): we wish to show 

k?=si; 
By the stabilizers corollary 2.7, we can choose a point x in ri E with 

9(n), =9(n),. Since Diag-’ ri9 is nonempty, we have Diag- ’ ri F= 
ri Diag- ‘y = ri E. Thus Diag x E 3 n ri F, and since s’ is convex and 2 is 
a face, we deduce 9-c~‘. 

On the other hand, clearly Diag E c z and since F is relatively invari- 
ant, by Proposition 3.3 and Lemma 3.1 we obtain 

[Ad@‘(&-1 [Ad@(n)lo,agr = Ad[@‘(+r] = A@++,]. 

Thus %C 9, whence &%“= K 
(i) * (iii): Clearly 9 is convex and relatively invariant, by the stabilizers 

corollary 2.7. Furthermore, by the stabilizers corollary and the exposing 
vectors theorem (2.8), there are symmetric matrices, X in riF, and Y with 
9= d6,*-1(,,(Y > satisfying 

[Ad@(n)], = [Add(n)], = [Ad@(n)], 

Since X belongs to &a,* 0 ANY ), there is an orthogonal V with 

X=VrDiagh(X)V and Y=VrDiagA(Y)V 

(see [lo, Theorem 3.11). We claim that if we define an exposed face of C by 
E = d$( A(Y )), then property (iii) holds. 

Note first that the set Diag- ’ [V(ri y)V r ] is nonempty, since it contains 
the vector A(X). It remains to show Diag-‘(VSVT) = E. For a vector x in 
R”, we have 

x E Diag-‘(VSVT) ti Vr(Diag x)V E a( S,* 0 h)(Vr Diag A(Y)V) 

e Diag x E a( 8: 0 A)(Diag A(Y)) 

= Diag x E Ad[@‘(n)-,,,I Diag E, 
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by the chain rule (Theorem 4.2). We deduce immediately E c 
Diag-l(VFV T I. Conversely, for a point x in Diag- ’ (V97 ‘1, we see from 
the above that there is a matrix U in B(n)_N(y) with Ur(Diag x>U in Diag E. 

Hence by Lemma 3.5 there is a matrix P in 9( r~)~r) with Px in E. But from 
its definition it is clear that the face E is invariant under 9Zr(r~)~r). Thus x 
lies in E, as required. 

It remains to prove the stabilizer characterization (5.2). The inclusion 

[Ad+)]+ Ad[V%=‘(n)-, V] 

follows immediately from property (ii). To see the reverse inclusion, choose 
the symmetric matrix Y as above. Then 

[Ad@(n)]s= [Ad@'(n)], = [Ad8(n)IVT,Diagh(Y)1", 

so any matrix U in @‘(n> with Ad U in [Ad @(n>ls satisfies 

UTVT Diag h(Y) VU = VrDiag h(Y) V. 

Thus 

whence by Proposition 3.3, 

vwT E @(n)-Nr, C@(n)_, ) 

since E = da,“(A(Y )) (see [lo, Theorem 3.11). ??

In the above result, the matrix set Ki(C> is unbounded (and hence has 
the empty set as an exposed face) if and only if the set C is unbounded. We 
therefore immediately deduce the following corollary. 

COROLLARY 5.3. Suppose the subset C of R” is closed, convex, and 
permutation-invariant. Then a subset 9 of the matrix set A- l(C) is an 
exposed face if and only if 

F= Vr(Ad[ @‘( n) _,] Diag E)V 
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for some orthogonal matrix V and some exposed face E of C. In this case 

[Ad@@&= Ad[VrB(+,V]. 

The statement of property (iii) in the exposed faces theorem 5.1 suggests 
that the equivalence (i> w (iii) is more naturally stated in terms of relative 
interiors of exposed faces. The following example shows the necessity of the 
rather technical phrasing in property (iii). 

EXAMPLE 5.4. In the framework of the exposed faces theorem 5.1, let 
n = 2, C = Rt, and ST= R+A, where 

Clearly C is closed, convex, and permutation-invariant, and 9 is convex. 
Since A has distinct eigenvalues, we can check that the stabilizer [Ad R(2)]. 
consists just of the identity, and hence F is relatively Ad B(2)-invariant. Now 
Diag-’ F consists just of the origin, and is thus an exposed face of C. 
However, .F is certainly not a face of h-‘(C), the cone of 2 X 2 positive 
semidefinite matrices: for example, 

The exposed faces theorem 5.1 does not apply, because Diag-’ ri F is empty. 

Motivated by this, the next result is a less clumsy restatement of the 
equivalence of properties (i> and (iii) in the exposed faces theorem 5.1. We 
say that a convex set is relatively open if it is open with respect to its affine 
span. 

COROLLARY 5.5 (Relative interiors). Suppose the subset C of R” is 
closed, convex, and permutation-invariant. Then the following properties of a 
subset 8 of A-‘(C) are equivalent: 

(i) 8 is the relative interior of a nonempty exposed face of A- ’ (Cl; 
(ii) 8 is convex, relatively open, and relatively Ad B(n)-invariant, and 

for some orthogonal matrix V, the set Diag -i(VZ’V’) is the relative interior 
of a nonempty exposed face of C. 
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Proof. (i) * (ii): If th ere is a nonempty exposed face .9 of h-‘(C) with 
relative interior 8, then 8 is certainly relatively open and convex. Further- 
more, since F is relatively Ad @( >- n invariant by the exposed faces theorem 
4.2, so is 8 (by Proposition 2.3), and we also see that for some orthogonal 
V, the set E = Diag-1(V9VT) is a nonempty exposed face of C with 
Diag - ’ [ V(ri 9)V r ] nonempty. Hence, by [15, Theorem 6.71, noting that the 
linear map X e VXV r is invertible, 

Diag-‘(V8VT) = Diag-’ [V(riY)VT] = Diagg’ ri(VSVT) 

= ri Diag -‘(V9-VT) = ri E, 

as required. 
(ii) * (i): Let 9= cl 8. Then the set Y is convex, with relative interior 

8, and 9- is relatively Ad @( )- n invariant since 8 is, using Corollary 
2.4. Certainly Diag-l[V(ri 9)Vr] is nonempty. Furthermore, since 
Diag-’ ri(V8VT) = Diag-l(V8VT) is nonempty, we deduce 

Diag-‘(VYVT) = Diag-l[V(cl Z)V’] = Diag-’ cl(V8VT) 

= clDiag-‘(V8VT), 

by [15, Theorem 6.71, so Diag-l(VSV*) is an exposed face of C. Now the 
exposed faces theorem 4.2 shows F is an exposed face of h-‘(C). W 

If an exposed face of a convex set consists of just one point, then that 
point is called exposed. The following corollary, although more straightfor- 
ward to obtain directly (see [lo]), is a good illustration of the exposed faces 
theorem. The analogous result for extreme points is also true, without the 
assumption of closure (see [ll]>. In particular this shows that if a subset C of 
R” is convex and permutation-invariant, then Diag C is a diagonal of h-‘(C) 
in the sense of [S]: that is, a point in Diag C lies in ri Diag C if and only if it 
lies in ri A- ‘(Cl, and is an extreme point of Diag C only if it is an extreme 
point of A-l(C). 

COROLLARY 5.6 (Exposed points). Suppose the subset C of R” is closed, 
convex, and permutation-invariant. Then a symmetric matrix X is an exposed 
point of the matrix set A-l(C) $and only ij- A(X) is an exposed point of C. 
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Proof. If X is an exposed point, then, by the exposed faces theorem, 
there is an exposed face E of C and an orthogonal V with 

{X) = VT(Ad[ a( n) _,] Diag E)V. 

Thus E must be a singleton: E = {x) for some exposed point x of E. 
Furthermore we have X = V T(Diag x>V, whence A(X) = Px for some 
permutation matrix P, and since x is exposed, so is A( X). 

Conversely, suppose A(X) . IS exposed in C. Choose an orthogonal V with 
X = Vr[Diag A(X)]V. Since 

{A(X)} = Diag-‘(VI X}VT) = Diag-‘[V(ri{ X))VT], 

and since trivially the set (X} 1s convex and relatively Ad B(n)-invariant, it 
follows by the exposed faces theorem that X is exposed. ??

In the above result, if in addition the set C is a cone, then clearly so is the 
matrix set A-‘(C). In this case, for a nonzero matrix X in fin), the half line 
R+X is an exposed ray of A-‘(C) if and only if R, A(X) is an exposed ray of 
C. The proof is similar. 

6. EXAMPLES 

In this section we illustrate our results on some examples, beginning with 
the positive semidefinite cone. 

COROLLARY 6.1 (Positive semidefinite cone). The exposed faces of the 
positive semidefinite cone, fin)+, are the sets 

(vT( 7 i)ViW t.‘(m),), 
where the matrix V is orthogonal and 0 < m < n, together with the empty 
set. The exposed rays are R,uuT for nonzero column vectors u in R”. 

Proof. We apply Corollary 5.3, with the set C being the positive orthant 
RI. A typical exposed face of R; is 

E = ((x,O)~ E R” Ix E Ry), 
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where 0 Q m < n. The sets PE, where P is a permutation matrix (and the 
empty set) comprise all the exposed faces of RF. 

The equivalence relation -s has equivalence classes {1,2, . . . , m] and 
{m + 1, m + 2,..., n) [the blocks preserved by the stabilizer P(n), I, whence 

B(n)_, = 
ii )I i i PEB(m),QE@(n-m) . 

1 

The result now follows easily. ??

This characterization may be compared with those in [19, 21. For example, 
we may deduce that all the faces of fin)+ are exposed. For a more general 
discussion of cones with this property, see [16]. 

We denote the unit balls for the 1, and Z, norms on R” by 

B,” = {r E R” ] ]xi] < 1 for all i) 

respectively. The corresponding matrix sets are then the unit balls for the 
trace norm and spectral norms respectively: 

A-‘(B;) = XEY(n) k)*i(X))<l 
i I 

, 
1 1 

A-l(B,“) = {XE.Y(n)IIh,(X)I < 1). 

COROLLARY 6.2 (Spectral norm>. The exposed faces of the unit ball of the 
spectral norm on fin> are the sets 

where the mutrix V is orthogonal and the nonnegative integers m, r, and s 
sum to n. The exposed points are the symmetric matrices with all eigenvalues 
having absolute value 1. 
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Proof. We apply Corollary 5.3 with the set C being B,“. A typical 
exposed face of this set is 

E = {(x_er, -es)?‘1 x E R_m}, 

where the nonnegative integers m, r, and s sum to n, and er denotes the 
vector (1, 1, . . . , ljT m R’. The sets PE, where P is a permutation matrix, 
comprise all the exposed faces of B,“. 

The equivalence relation mE has equivalence classes 

{l,%...,m}, {m+ 1,m+2 ,..,, m+r}, and 

{m+r+l,m+r+2 ,..., n}, 

whence 

P 0 0 

8(n)_, = 0 Q 0 
0 0 R 

The result now follows easily. 

I PE@(m),QE@(r),RE@(s) 

The proof of the next result is rather similar in spirit. 

COROLLARY 6.3 (Trace norm). The exposed faces of the unit ball of the 
trace norm on fin> are the whole unit ball and the sets 

zLhere the matrix V is orthogonal, r, s > 0, and r + s < n. The exposed 
points are +uuT for unit column vectors u in R”. 

The remaining 1, norms on R” (for 1 < p < m) have unit balls for which 
every boundary point is exposed. The corresponding matrix norms are the 
Schatten p-norms: by the exposed points corollary 5.6, the same property 
must hold for the unit balls of these norms, 

i I XEY(n) 2 IAi(X)IP G 1 . 
i=l 1 

The case p = 2 is the Frobenius norm. 
We end with a less standard illustration. 
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EXAMPLE 6.4. Consider the closed, convex, permutation-invariant set 

C = 

A particular exposed face is 

E = {x E Clx, +x2 = 0) 

= 
I( ff, -a, P, r)“lP> y Q +A). 

Clearly the equivalence classes of -s are {1,2} and {3,4), and the stabilizer 
of E is the group 

Hence 

and by Theorem 5.1, the matrix set 

F= Ad@(n),, Diag E 

is an exposed face of the matrix set 

A_‘(C) = {x E9(4)Ihr(X) + h,(X) =G o}, 

with stabilizer Ad@‘(n) _E 1. It is easy to express F more directly: 

F= 
ii )I i i Y,ZEP(2),trY =O, h,(Z) Q -A,(Y) . 

1 

For any orthogonal V, the set V*m is also an exposed face. 

I am indebted to an anonymous referee for many helpful comments 
leading to substantial improvements in this paper (in particular, Theorem 
2.6), and to Event Tunsel for bringing [121 to my attention. 
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