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1. 1NTRODUCTlON 

The main purpose of this paper is to observe the equivalence between the following two 
results. The first result is the finite-dimensional case of a new mean value theorem due to 
Clarke and Ledyaev. We use d to denote the Clarke derivative [ll. 

THEOREM 1 [2, corollary 4.11. Let X and Y be nonempty, convex, compact sets in R”, and let 
2 be the convex hull of X U Y. Let f be a real function, Lipschitz on a neighbourhood of Z. 
Then there exists a point z in Z and an element 5 of af(z> with 

(<,y-x)>m$f-m?f for all y E Y and XEX. 

THEOREM 2. Let C be a nonempty, convex, compact set in R”. Let the functions 4, (I, : 
R” + If3 U { + ~1 be closed, proper and convex, with domains contained in C. Let 0 be a real 
function, Lipschitz on a neighborhood of C. If 

4rB2-1/~oonC, 

then there exists a point c in C and an element 5 of JO(c) with 

#J*(e)+ rL*(-[)_<o. (1) 

We begin with a brief discussion highlighting the case where 8 is continuously differen- 
tiable. Theorem 1 is a powerful generalization of the classical mean value theorem, the latter 
following easily when X and Y are singletons. Theorem 2 is a nonlinear variant of the 
fundamental Fenchel duality result. To see this, recall that if 

inf [d(x) + CL(x)1 2 0. 

then, under a regularity condition, Fenchel duality says that there exists a vector u in R” such 
that 

c#l*(u)+ t//*(-u)lo. (2) 

Theorem 2 gives the additional information that this vector u can be chosen in the range of 
B’lc. Some regularity condition (such as the compactness of Cl is clearly needed in general: if 
we allow C = R, the result can fail (see the example after theorem 7). 
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Theorem 2 shows that there is an ‘affine separator’ of $ and - I(, (in other words, an affine 
function lying between the functions 4 and - $) which is parallel to the linear approximant to 
0 at some point c in C. To see this, observe that u is the gradient of an affine separator 
exactly when, for some constant r 

-I/J(X) 5 (u,x> +r 2 4(x), for all x, 
or in other words 

sup{-(u,x) - $(x)1 <rs inf{-(u,x> + +(x)1. 
x x 

Thus the set of gradients of affine separators is exactly 

u=(uEIWml~*(U)+~*(-u)IO}. (3) 
To prove theorem 2 it actually suffices to consider functions r#~ and I/I which are continuous 

on C. This is a consequence of the following simple idea. For a constant k 2 0 we define the 
Lipschitz regularization. C& : R” + [ - =, + QJ] by 

4,Cx)ef i;fIdAy) + kllx -ylIl. 

The following easy result is standard. 

PROPOSITION 3. Suppose that the function $J : [w”l --) R tJ { + W} is proper and convex, with 
bounded domain. Then for any k 2 0, the Lipschitz regularization 4k is an everywhere finite 
convex function with Lipschitz constant k, satisfying & 2 4. Suppose furthermore that the set 
C contains dam+, and that the function 8 : C j R has Lipschitz constant k and satisfies 
0 < 4 on C. Then in fact 8 I #Jo on C. 

Proof The function $J~ is convex since it is an inf-convolution [3, theorem 5.41, and clearly 

&(x) = inf {4(y) + kllx -ylll I 4(x), 

for all x in R”. Since $J is proper, &(x> < + ~3. On the other hand, since there exists a vector 
z in R” with 4(y) 2 (2, y) - /3 for all y in R”, [3, corollary 12.1.21, it follows that for all x in 
IL!” 

4,(.1)2inf{(z,y) -p+kllx-yll ly~cl(dom4)} > --oc). 

Now suppose that two points u and u satisfy &(u) < 4k(~) - kllu - ull. Then for some w  in 
02” we have 

c#dw) + kllu - wll < c&(u) - kllu - 011 I qHw> + kllu - wll- kllu - ~11, 

contradicting the triangle inequality. Finally, if 4,(x) < 0(x) for some x in C then there exists 
a point y in dom4 with 

B(x) > $4~) + kllx -yll 2 B(y) + kllx-yll, 

contradicting the Lipschitz property of 0. n 

Thus with the assumptions of theorem 2, using this result we can find continuous convex 
functions 4k and $I~ with 
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Applying theorem 2 to these new functions gives a point c in C and an element 5 of Jo 
with 

0 2 ((bk)*([) + ($J-O 2 4*(5) + (FI*c-0, 

so the result follows for the original functions. 
The proof of theorem 1 in [2] is not all straightforward, involving control-theoretic ideas 

and a fixed point argument. Theorem 2, unfortunately, does not seem any easier in general. 
However, in the case M = 1 with 0 continuously differentiable there is an easy argument. For 
the purposes of this proof, d will denote the usual convex subdifferential. Given the above 
comments, we can assume that the functions 4 and I(, are continuous on the compact interval 
C, and hence 4* and $* are everywhere finite and continuous. 

Classical Fenchel duality shows that the set U given by (3) is a nonempty closed interval. If 
there is no c in C with (1) holding then without loss of generality, by the intermediate value 
theorem, we may as well assume that 

13’(z) > Sdzf max U < +x, for all z in C. 

Define the continuous convex function 5~ : Iw --j R by ~T(u)~~~+*(u) + 4*(-u). Since 6= 
max{u E lR”Ir(u) 5 0) it follows that T( 6) = 0 and that the right derivative T:(S) L 0. Hence 
for some z in &r(s), we have z 2 0. 

By the subgradient sum formula there exist z, in a+*(s) and z2 in &JJ*(-~) with 
z, - z2 = z r 0. However, then z, and zz lie in C with 

6(z, -z2) = l#J(z,) + 4*(6) + ljdz,) + f+b*(-s) 

= 442,) + ‘+b(Z?) 2 Nz,) - ecz,), 

which contradicts the classical mean value theorem if z, > z2. On the other hand, if z1 = z2 
then we obtain 4(.z,) = Nz,) = - $(z,) from the above. Since 4 2 0 2 - I), it is standard that 
13’(z,) E &$(z,) and - f3’(z,> E J+!J(z~). However, now 

4*(e'(z,))+~**(-e'(=,))= -+(z,>-#(zJ=O, 

contradicting the definition of 6, since e ‘(z, 1 > 6. 

2. THE EQUIVALENCE OF THEOREM 1 AND THEOREM 2 

Proof of theorem 2 from theorem 1. As remarked in the previous section, we can assume that 
the functions 4 and $ are continuous on the set C. Let pdzf sup,+. Then p is finite and we 
can define a convex, compact, nonempty set 

YdZf {(y, s) E R”’ ’ 1$(y) IS I pj. 

Similarly, let crdzf supc I)J, so 

Xd~f((~,r)EWm+‘I-Jl(n)>r~ --a), 

is a convex, compact, nonempty set. 
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Now let f(w,t) dzf - 8(w) + t for w  near C and t in R. Then 

inff=inf(-B(w)+tl~(w)It<p,wEC) 
Y 

= inf { - 19(w) + 4(w)lw E Cl 2 0, 

and 

supf=sup{-0(w)+tl-~(w)2t2 -a,wEC} 
X 

= sup{ -e(w) - $(w)lw E Cl 5 0. 

Hence inf, f - supx f2 0. 
By theorem 1 there exist (c, t) in C x R and 5 in a@(c) such that 

((-~,l>,(y,s)-(x,r))20, 
for all x, y E C with 4(y) 2 s 2 /3, 1/4x) 2 --r I LY. Thus 

[( - 5,y) + 4(y)l+ [( 5. x> + $(x)1 2 0, VX,Y E c, 
and hence -+*(,$I - I)*(-..$) 2 0, as required. n 

def 
Proof of theorem 1 from theorem 2. Let X, Y, Z and f be as in theorem 1. Let 4 = 
supx f + S,, where 6x is the indicator function of X. So 4 2 f on Z, + is convex, closed and 
proper. Likewise, r+Gdzf - inf y f + 6, is a convex, closed and proper function, with f 2 - Cc, on 
Z. 

By theorem 2, there exists z in Z and i in df(z) with 

+*(<)+lp-()10. 
Now we have 

04 

4*(i)= supI(i,x)-4J(x)) =(sup (5,x))- "",Pf' 
x XEX 

and similarly, 

~*c-ii=(:~~(-i;Y,)+i~ff. 

Substituting these into (3a) yields 

i~ff-supf~-Sup(-i,y)-sup(i,x)=.e~~cy(i,Y-x). 
x YEY XEX 

Theorem 1 follows. n 

3. AN EXTENSION 

The requirement in our nonlinear Fenchel result, theorem 2, that the functions 4 and I) 
have domains contained in a compact set appears rather artificial. In this section we consider 
a version of the result which relies instead on growth conditions on 4 and $. The idea is 
simple: under reasonable conditions, to find an affine separator for r$ and 4 it should suffice 
to separate 4 and 4 restricted to a large compact set. 
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We begin by recalling some easy facts about the Lipschitz regularization of a convex 
function p: R” j R U ( - m, + m) defined by 

p,(u)zf inf {p(u) + kllu - ull}. 
” 

We denote the closed unit ball in R” by B, and 6,, denotes the indicator function of the 
closed ball with radius k. 

LEMMA 4. (pk)* =p* + $LS. 

Proof. We have 

(p,)*bv) = sup I(w,u> -P,(U)) 
u 

= sup {(w,u> -p(u) - kllu -4) 
u .L’ 

= sup {(w,u +z> -p(u) -kllzll~ 
;,u 

as required. n 

=p*tM:j + 6,,(w), 

LEMMA 5. If the function p is finite with Lipschitz constant k near the point u then 
p,(u) =p(u). 

Proof. The convex function ~(u)~z~fp(u) + kllu - uII satisfies T(U) up for u close to U, 
and I-(U) =p(u). Hence r is minimized at U. n 

LEMMA 6. Suppose that the convex function p is everywhere finite on R”, and has bounded 
level sets. Let a be a real number. Then for all k sufficiently large, pk(u) I cz implies that 
p,(u) =pb). 

Proof. For p in R, define the level set L, %f {ulp(u) 5 p}, and let (Y’ Ef max tcr,p(O)J. By 
[3, theorem 10.41, p is Lipschitz on the bounded level set L,. +*, say with Lipschitz constant 
k,. Now fix any k 2 k,, and note that pk =p on L,., , by lemma 5. We will show that if 
pk(u) I LY, then pk(u) =p(u). 

Suppose this fails for some U. Then clearly u does not lie in Las+,, and SO p(u) > a’ + 1. 
On the other hand, p(O) I a ‘, so 0 does lie in L,, + ,, and hence p,(O) = p(O). Furthermore, 
since p is continuous we can choose A in (0,l) with (Y’ <p(h)‘< a’ + 1. Since Au lies in 
L a, + , we deduce that p,(h) =p( Au), whence 

a’ <p( Au) =p,(Au) I (1 - A)p,(O) + Ap,(u) I (1 - Ala’ + Acu I LY’, 

which is a contradiction. n 

We can now give a proof of a variant of theorem 2 involving growth conditions on C$ and +. 
A convex function 4 is said to be cofinite if it is closed and proper, with recession function 
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(fO’Xy> = +m for all nonzero y, where 

(fo+)(y)d’f *l$ A-‘f(x + Ay), 

for an arbitrary choice of x in the domain of f. Cofinite convex functions can be characterized 
as conjugates of everywhere finite convex functions [3, corollary 13.3.11. They are those proper, 
closed convex functions which grow faster than linearly. In the following variant of theorem 2 
we relax the restriction that the underlying set C be bounded (in particular, we allow 
C = R”‘), at the expense of introducing a constraint qualification and growth conditions. 

THEOREM 7. Let C be a nonempty, closed, convex set in R”. Let the functions 4, II, : 
R” + lR U { + =) be convex and cofinite, with domains contained in C, and satisfying 

int (dam 4) n int (dam I) 1 + 0. (4) 

Let 8 be a real function, locally Lipschitz on a neighbourhood of C. If 

4202 -$onC, 

then there exists a point c in C and an element 6 of &3(c) with 

c#J*(() + I)*(-5) 10. 

Proof. By translation we can assume that 0 lies in int (dom 4) and int (dam 9), using (4). 
Hence 4* and $* have bounded level sets, and are everywhere finite by cofiniteness. If we 
apply theorem 2 with C replaced by C n kB, for k = 1,2,. . . , then for each k we obtain a 
point ck in C n kB and an element 5 k of JO(ck> with 

(&+ &&)*([k) t ($+ 6,,)*(-gkk0. (5) 

Now by lemma 4, for all large k we have ($+ akB)* = (+*)k and ($+ 6,,)* = (I)*)~, and 
furthermore (5) implies that 

b$*)k(tk) 5 -t$+ &j)*( -& 5 (++ a,,)(o) = $((o). 

Hence for all k sufficiently large 

(4+ 6,,)*(ck) = (4*)k(tk) = $*(tk), 

by lemma 6 with p dzf 4* and (Y dzf I,G(O). Similarly, 

($b+ s,J-tk)= +*G‘$“), 

for all k sufficiently large, and the result follows by (5). w  

The following example shows that we cannot drop the assumption of cofiniteness in the 
above result. 

Example. Define convex functions 4 and (lr : R+lRlJ{+m) by &)zf x+S,+(x) and 
+(xJdzf 2 +x2/2 + 6,+(x), and define a continuously differentiable function 0 : IR+Rby 
O(xJdzf x - exp( --x1. Then, taking Cdzf R, all the assumptions of the theorem are satisfied 
except that 4 is not cofinite. Since 4*(y) = + m unless y I 1, and 0’(c) = 1 + exp( -c) > 1 for 
all c, it follows that 
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$*(0’(C)) + $*( - O’(c)> = +m, 

for all c. 

One of the curious features of theorem 2 is that the usual constraint qualification for 
Fenchel duality is not required: the existence of the Lipschitz separator 0 replaces it. By 
contrast, our proof of theorem 7 requires the constraint qualification (4). It is unclear to us if 
this assumption is really required for the result. The following theorem is a partial result in 
this direction: we can drop the constraint qualification if we assume that the separator 0 is 
glob&y Lipschitz. Comparing theorem 2 and the following result, boundedness of C in the 
former has been replaced by cofiniteness of 4 and 1+5 in the latter. 

THEOREM 8. Let C be a nonempty, closed, convex set in R”. Let the functions 4, (I/ : 
R” --f 08 U { + a) be convex and cofinite with domains contained in C. Let 0 be a real function, 
Lipschitz (globally) on a neighbourhood of C. If 

t$rOr -*onC, 

then there exists a point c in C and an element [ of aO(c> with 

Proof. Choose any points X, in dom I) and x2 in dom 4. Let k be the Lipschitz constant 
for 0, and choose any r > /Ix, -x211. Define a function 

4,,(x) Ef inf t+(y) + kllx -yllI, 
lly-rllsr 

and note that & I 4. For any point x close enough to x,, we have that llxZ --x/l <r, and it 
follows that 

so X, lies in the interior of dom &. Now for any point y in C we have that 

4(y) + kllx -yll2 O(y) + kllx -yll2 0(x>, 

so 4” 2 0. 
Notice that if we define a function g(x)%’ kllxll + 6,,(x), then clearly g* is everywhere 

finite, and since 4 is cofinite we also know that 4* is everywhere finite. Since #Jo is the 
infimal convolution of 4 and g, it is a closed, convex function with r#$ = 4* +g* 13, theorem 
16.41, so in fact & is also cofinite. 

Similarly, if I,!+, is the infimal convolution of Cc, and g, then it is a closed, convex, cofinite 
function such that - I/J-C - I/J,, I 0 on C. As X, + rB c dom I&, the intersection of int (dom&) 
and int (domt,$,> is nonempty. Thus we can apply theorem 7 (with 4 and II, respectively 
replaced by & and I&) to deduce the existence of a point c in C and an element 5 of JO(c) 
with 

as required. n 
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COROLLARY 9. Suppose that the function 8 : R”’ + R is continuously differentiable and that 
for some constants k 2 0, K > 0 and 1 <p < + a, the growth condition 

Id( I k + Kllnll;/p 

holds for all X. Then there exists a point X satisfying 

llW(X)ll, I KUq/K)“’ 

(where l/p + l/q = 1). 

l’roof. Let c$(x,zf k + KII~ll,p/p~~ e(x), so that 4*(y) = -k +KIIK-‘yllg/q = q*(y). By 
theorem 7 there exists a point X with Ilf?‘(?)ll~ 5 kqK¶- ‘. w 

For example, if the real function 0 is continuously differentiable with 10(x)1 I 1 + 11~11~ for 
all x, then there exists a point X with Il0’(X)ll I 2. 
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