0362-546X(94)00262-2

A NONLINEAR DUALITY RESULT EQUIVALENT TO THE CLARKE-LEDYAEV MEAN VALUE INEQUALITY

A. S. LEWIS and D. RALPH
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada; and
Department of Mathematics, University of Melbourne, Parkville, Vic. 3052, Australia

(Received 18 February 1994; received for publication 13 September 1994)
Key words and phrases: Mean value theorem, Fenchel duality.

1. INTRODUCTION

The main purpose of this paper is to observe the equivalence between the following two results. The first result is the finite-dimensional case of a new mean value theorem due to Clarke and Ledyaev. We use a to denote the Clarke derivative [1].

Theorem 1 [2, corollary 4.1]. Let X and Y be nonempty, convex, compact sets in \mathbb{R}^{m}, and let Z be the convex hull of $X \cup Y$. Let f be a real function, Lipschitz on a neighbourhood of Z. Then there exists a point z in Z and an element ζ of $\partial f(z)$ with

$$
\langle\zeta, y-x\rangle \geq \min _{Y} f-\max _{X} f \quad \text { for all } y \in Y \quad \text { and } \quad x \in X .
$$

Theorem 2. Let C be a nonempty, convex, compact set in \mathbb{R}^{m}. Let the functions ϕ, ψ : $\mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{+\infty\}$ be closed, proper and convex, with domains contained in C. Let θ be a real function, Lipschitz on a neighborhood of C. If

$$
\phi \geq \theta \geq-\psi \text { on } C \text {, }
$$

then there exists a point c in C and an element ξ of $\partial \theta(c)$ with

$$
\begin{equation*}
\phi^{*}(\xi)+\psi^{*}(-\xi) \leq 0 . \tag{1}
\end{equation*}
$$

We begin with a brief discussion highlighting the case where θ is continuously differentiable. Theorem 1 is a powerful generalization of the classical mean value theorem, the latter following easily when X and Y are singletons. Theorem 2 is a nonlinear variant of the fundamental Fenchel duality result. To see this, recall that if

$$
\inf _{x}[\phi(x)+\psi(x)] \geq 0,
$$

then, under a regularity condition, Fenchel duality says that there exists a vector u in \mathbb{R}^{m} such that

$$
\begin{equation*}
\phi^{*}(u)+\psi^{*}(-u) \leq 0 . \tag{2}
\end{equation*}
$$

Theorem 2 gives the additional information that this vector u can be chosen in the range of $\left.\theta^{\prime}\right|_{C}$. Some regularity condition (such as the compactness of C) is clearly needed in general: if we allow $C=\mathbb{R}$, the result can fail (see the example after theorem 7).

Theorem 2 shows that there is an 'affine separator' of ϕ and $-\psi$ (in other words, an affine function lying between the functions ϕ and $-\psi$) which is parallel to the linear approximant to θ at some point c in C. To see this, observe that u is the gradient of an affine separator exactly when, for some constant r

$$
-\psi(x) \leq\langle u, x\rangle+r \leq \phi(x), \quad \text { for all } x
$$

or in other words

$$
\sup _{x}\{-\langle u, x\rangle-\psi(x)\} \leq r \leq \inf _{x}\{-\langle u, x\rangle+\phi(x)\} .
$$

Thus the set of gradients of affine separators is exacily

$$
\begin{equation*}
U=\left\{u \in \mathbb{R}^{m} \mid \phi^{*}(u)+\psi^{*}(-u) \leq 0\right\} \tag{3}
\end{equation*}
$$

To prove theorem 2 it actually suffices to consider functions ϕ and ψ which are continuous on C. This is a consequence of the following simple idea. For a constant $k \geq 0$ we define the Lipschitz regularization, $\phi_{k}: \mathbb{R}^{m} \rightarrow[-\infty,+\infty]$ by

$$
\phi_{k}(x) \stackrel{\text { def }}{=} \inf _{y}\{\phi(y)+k\|x-y\|\} .
$$

The following easy result is standard.
Proposition 3. Suppose that the function $\phi: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{+\infty\}$ is proper and convex, with bounded domain. Then for any $k \geq 0$, the Lipschitz regularization ϕ_{k} is an everywhere finite convex function with Lipschitz constant k, satisfying $\phi_{k} \leq \phi$. Suppose furthermore that the set C contains dom ϕ, and that the function $\theta: C \rightarrow \mathbb{R}$ has Lipschitz constant k and satisfies $\theta \leq \phi$ on C. Then in fact $\theta \leq \phi_{k}$ on C.

Proof. The function ϕ_{k} is convex since it is an inf-convolution [3, theorem 5.4], and clearly

$$
\phi_{k}(x)=\inf _{y}\{\phi(y)+k\|x-y\|\} \leq \phi(x)
$$

for all x in \mathbb{R}^{m}. Since ϕ is proper, $\phi_{k}(x)<+\infty$. On the other hand, since there exists a vector z in \mathbb{R}^{m} with $\phi(y) \geq\langle z, y\rangle-\beta$ for all y in $\mathbb{R}^{m},[3$, corollary 12.1.2], it follows that for all x in \mathbb{R}^{m}

$$
\phi_{k}(x) \geq \inf \{\langle z, y\rangle-\beta+k\|x-y\| \| y \in \operatorname{cl}(\operatorname{dom} \phi)\}>-\infty .
$$

Now suppose that two points u and v satisfy $\phi_{k}(\nu)<\phi_{k}(u)-k\|u-v\|$. Then for some w in \mathbb{R}^{m} we have

$$
\phi(w)+k\|v-w\|<\phi_{k}(u)-k\|u-v\| \leq \phi(w)+k\|u-w\|-k\|u-v\|
$$

contradicting the triangle inequality. Finally, if $\phi_{k}(x)<\theta(x)$ for some x in C then there exists a point y in $\operatorname{dom} \phi$ with

$$
\theta(x)>\phi(y)+k\|x-y\| \geq \theta(y)+k\|x-y\|
$$

contradicting the Lipschitz property of θ.
Thus with the assumptions of theorem 2 , using this result we can find continuous convex functions ϕ_{k} and ψ_{k} with

$$
\phi \geq \phi_{k} \geq \theta \geq-\psi_{k} \geq-\psi \text { on } C
$$

Applying theorem 2 to these new functions gives a point c in C and an element ξ of $\partial \theta(c)$ with

$$
0 \geq\left(\phi_{k}\right)^{*}(\xi)+\left(\psi_{k}\right)^{*}(-\xi) \geq \phi^{*}(\xi)+\psi^{*}(-\xi),
$$

so the result follows for the original functions.
The proof of theorem 1 in [2] is not all straightforward, involving control-theoretic ideas and a fixed point argument. Theorem 2, unfortunately, does not seem any easier in general. However, in the case $m=1$ with θ continuously differentiable there is an casy argument. For the purposes of this proof, ∂ will denote the usual convex subdifferential. Given the above comments, we can assume that the functions ϕ and ψ are continuous on the compact interval C, and hence ϕ^{*} and ψ^{*} are everywhere finite and continuous.

Classical Fenchel duality shows that the set U given by (3) is a nonempty closed interval. If there is no c in C with (1) holding then without loss of generality, by the intermediate value theorem, we may as well assume that

$$
\theta^{\prime}(z)>\delta \stackrel{\text { def }}{=} \max U<+\infty, \quad \text { for all } z \text { in } C .
$$

Define the continuous convex function $\pi: \mathbb{R} \rightarrow \mathbb{R}$ by $\pi(u) \stackrel{\text { def }}{=} \phi^{*}(u)+\psi^{*}(-u)$. Since $\delta=$ $\max \left\{u \in \mathbb{R}^{m} \mid \pi(u) \leq 0\right\}$ it follows that $\pi(\delta)=0$ and that the right derivative $\pi_{+}^{\prime}(\delta) \geq 0$. Hence for some z in $\partial \pi(\delta)$, we have $z \geq 0$.

By the subgradient sum formula there exist z_{1} in $\partial \phi^{*}(\delta)$ and z_{2} in $\partial \psi^{*}(-\delta)$ with $z_{1}-z_{2}=z \geq 0$. However, then z_{1} and z_{2} lie in C with

$$
\begin{aligned}
\delta\left(z_{1}-z_{2}\right) & =\phi\left(z_{1}\right)+\phi^{*}(\delta)+\psi\left(z_{2}\right)+\psi^{*}(-\delta) \\
& =\phi\left(z_{1}\right)+\psi\left(z_{2}\right) \geq \theta\left(z_{1}\right)-\theta\left(z_{2}\right),
\end{aligned}
$$

which contradicts the classical mean value theorem if $z_{1}>z_{2}$. On the other hand, if $z_{1}=z_{2}$ then we obtain $\phi\left(z_{1}\right)=\theta\left(z_{1}\right)=-\psi\left(z_{1}\right)$ from the above. Since $\phi \geq \theta \geq-\psi$, it is standard that $\theta^{\prime}\left(z_{1}\right) \in \partial \phi\left(z_{1}\right)$ and $-\theta^{\prime}\left(z_{1}\right) \in \partial \psi\left(z_{1}\right)$. However, now

$$
\phi^{*}\left(\theta^{\prime}\left(z_{1}\right)\right)+\psi^{*}\left(\theta^{\prime}\left(z_{1}\right)\right)=-\phi\left(z_{1}\right)-\psi\left(z_{1}\right)=0,
$$

contradicting the definition of δ, since $\theta^{\prime}\left(z_{1}\right)>\delta$.

2. THE EQUIVALENCE OF THEOREM 1 AND THEOREM 2

Proof of theorem 2 from theorem 1. As remarked in the previous section, we can assume that the functions ϕ and ψ are continuous on the set C. Let $\beta \stackrel{\text { def }}{=} \sup _{C} \phi$. Then β is finite and we can define a convex, compact, nonempty set

$$
Y \stackrel{\text { def }}{=}\left\{(y, s) \in \mathbb{R}^{m-1} \mid \phi(y) \leq s \leq \beta\right\} .
$$

Similarly, let $\alpha \stackrel{\text { def }}{=} \sup _{C} \psi$, so

$$
X \stackrel{\text { def }}{=}\left\{(x, r) \in \mathbb{R}^{m+1} \mid-\psi(x) \geq r \geq-\alpha\right\},
$$

is a convex, compact, nonempty set.

Now let $f(w, t) \stackrel{\text { def }}{=}-\theta(w)+t$ for w near C and t in \mathbb{R}. Then

$$
\begin{aligned}
\inf _{Y} f & =\inf \{-\theta(w)+t \mid \phi(w) \leq t \leq \beta, w \in C\} \\
& =\inf \{-\theta(w)+\phi(w) \mid w \in C\} \geq 0,
\end{aligned}
$$

and

$$
\begin{aligned}
\sup _{X} f & =\sup \{-\theta(w)+t \mid-\psi(w) \geq t \geq-\alpha, w \in C\} \\
& =\sup \{-\theta(w)-\psi(w) \mid w \in C\} \leq 0 .
\end{aligned}
$$

Hence $\inf _{Y} f-\sup _{X} f \geq 0$.
By theorem 1 there exist (c, t) in $C \times \mathbb{R}$ and ξ in $\partial \theta(c)$ such that

$$
\langle(-\xi, 1),(y, s)-(x, r)\rangle \geq 0,
$$

for all $x, y \in \mathbb{C}$ with $\phi(y) \leq s \leq \beta, \psi(x) \leq-r \leq \alpha$. Thus

$$
[\langle-\xi, y\rangle+\phi(y)]+[\langle\xi, x\rangle+\psi(x)] \geqslant 0, \quad \forall x, y \in C,
$$

and hence $-\phi^{*}(\xi)-\psi^{*}(-\xi) \geq 0$, as required.
Proof of theorem 1 from theorem 2. Let X, Y, Z and f be as in theorem 1. Let $\phi \stackrel{\text { def }}{=}$ $\sup _{X} f+\delta_{X}$, where δ_{X} is the indicator function of X. So $\phi \geq f$ on Z, ϕ is convex, closed and proper. Likewise, $\psi \stackrel{\text { def }}{=}-\inf _{Y} f+\delta_{Y}$ is a convex, closed and proper function, with $f \geq-\psi$ on Z.

By theorem 2, there exists z in Z and ζ in $\partial f(z)$ with

$$
\begin{equation*}
\phi^{*}(\zeta)+\psi^{*}(-\zeta) \leq 0 . \tag{3a}
\end{equation*}
$$

Now we have

$$
\phi^{*}(\zeta)=\sup _{x}\{\langle\zeta, x\rangle-\phi(x)\}=\left(\sup _{x \in X}\langle\zeta, x\rangle\right)-\sup _{X} f,
$$

and similarly,

$$
\psi^{*}(-\zeta)=\left(\sup _{y \in Y}\langle-\zeta, y\rangle\right)+\inf _{Y} f .
$$

Substituting these into (3a) yields

$$
\inf _{Y} f-\sup _{X} f \leq-\sup _{y \in Y}\langle-\zeta, y\rangle-\sup _{x \in X}\langle\zeta, x\rangle=\inf _{x \in X, y \in Y}\langle\zeta, y-x\rangle .
$$

Theorem 1 follows

3. An extension

The requirement in our nonlinear Fenchel result, theorem 2, that the functions ϕ and ψ have domains contained in a compact set appears rather artificial. In this section we consider a version of the result which relies instead on growth conditions on ϕ and ψ. The idea is simple: under reasonable conditions, to find an affine separator for ϕ and ψ it should suffice to separate ϕ and ψ restricted to a large compact set.

We begin by recalling some easy facts about the Lipschitz regularization of a convex function $p: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ defined by

$$
p_{k}(u) \stackrel{\text { def }}{=} \inf _{v}\{p(v)+k\|u-v\|\} .
$$

We denote the closed unit ball in \mathbb{R}^{m} by B, and $\delta_{k B}$ denotes the indicator function of the closed ball with radius k.

Lemma 4. $\left(p_{k}\right)^{*}=p^{*}+\delta_{k B}$.
Proof. We have

$$
\begin{aligned}
\left(p_{k}\right)^{*}(w) & =\sup _{u}\left\{\langle w, u\rangle-p_{k}(u)\right\} \\
& =\sup _{u, v}\{\langle w, u\rangle-p(v)-k\|u-v\|\} \\
& =\sup _{z, v}\{\langle w, v+z\rangle-p(v)-k\|z\|\} \\
& =p^{*}(w)+\delta_{k B}(w),
\end{aligned}
$$

as required.
Lemma 5. If the function p is finite with Lipschitz constant k near the point u then $p_{k}(u)=p(u)$.

Proof. The convex function $r(v) \stackrel{\text { def }}{=} p(v)+k\|u-v\|$ satisfies $r(v) \geq p(u)$ for v close to u, and $r(u)=p(u)$. Hence r is minimized at u.

Lemma 6. Suppose that the convex function p is everywhere finite on \mathbb{R}^{m}, and has bounded level sets. Let α be a real number. Then for all k sufficiently large, $p_{k}(u) \leq \alpha$ implies that $p_{k}(u)=p(u)$.

Proof. For β in \mathbb{R}, define the level set $L_{\beta} \stackrel{\text { def }}{=}\{u \mid p(u) \leq \beta\}$, and let $\alpha^{\prime} \stackrel{\text { def }}{=} \max \{\alpha, p(0)\}$. By [3, theorem 10.4], p is Lipschitz on the bounded level set $L_{\alpha^{\prime}+2}$, say with Lipschitz constant k_{1}. Now fix any $k \geq k_{1}$, and note that $p_{k}=p$ on $L_{\alpha^{\prime}+1}$ by lemma 5 . We will show that if $p_{k}(u) \leq \alpha$, then $p_{k}(u)=p(u)$.

Suppose this fails for some u. Then clearly u does not lie in $L_{\alpha^{\prime}+1}$, and so $p(u)>\alpha^{\prime}+1$. On the other hand, $p(0) \leq \alpha^{\prime}$, so 0 does lie in $L_{\alpha^{\prime}+1}$, and hence $p_{k}(0)=p(0)$. Furthermore, since p is continuous we can choose λ in $(0,1)$ with $\alpha^{\prime}<p(\lambda u) \leq \alpha^{\prime}+1$. Since λu lies in $L_{\alpha^{\prime}+1}$ we deduce that $p_{k}(\lambda u)=p(\lambda u)$, whence

$$
\alpha^{\prime}<p(\lambda u)=p_{k}(\lambda u) \leq(1-\lambda) p_{k}(0)+\lambda p_{k}(u) \leq(1-\lambda) \alpha^{\prime}+\lambda \alpha \leq \alpha^{\prime},
$$

which is a contradiction.
We can now give a proof of a variant of theorem 2 involving growth conditions on ϕ and ψ. A convex function ϕ is said to be cofinite if it is closed and proper, with recession function
$\left(f 0^{+}\right)(y)=+\infty$ for all nonzero y, where

$$
\left(f 0^{+}\right)(y) \stackrel{\text { def }}{=} \lim _{\lambda \rightarrow+\infty} \lambda^{-1} f(x+\lambda y)
$$

for an arbitrary choice of x in the domain of f. Cofinite convex functions can be characterized as conjugates of everywhere finite convex functions [3, corollary 13.3.1]. They are those proper, closed convex functions which grow faster than linearly. In the following variant of theorem 2 we relax the restriction that the underlying set C be bounded (in particular, we allow $C=\mathbb{R}^{m}$), at the expense of introducing a constraint qualification and growth conditions.

Theorem 7. Let C be a nonempty, closed, convex set in \mathbb{R}^{m}. Let the functions ϕ, ψ : $\mathbb{R}^{m} \rightarrow \mathbb{R} U\{+\infty\}$ be convex and cofinite, with domains contained in C, and satisfying

$$
\begin{equation*}
\text { int }(\operatorname{dom} \phi) \cap \operatorname{int}(\operatorname{dom} \psi) \neq \emptyset \tag{4}
\end{equation*}
$$

Let θ be a real function, locally Lipschitz on a neighbourhood of C. If

$$
\phi \geq \theta \geq-\psi \text { on } C,
$$

then there exists a point c in C and an element ξ of $\partial \theta(c)$ with

$$
\phi^{*}(\xi)+\psi^{*}(-\xi) \leq 0 .
$$

Proof. By translation we can assume that 0 lies in int (dom ϕ) and int (dom ψ), using (4). Hence ϕ^{*} and ψ^{*} have bounded level sets, and are everywhere finite by cofiniteness. If we apply theorem 2 with C replaced by $C \cap k B$, for $k=1,2, \ldots$, then for each k we obtain a point c^{k} in $C \cap k B$ and an element ξ^{k} of $\partial \theta\left(c^{k}\right)$ with

$$
\begin{equation*}
\left(\phi+\delta_{k B}\right)^{*}\left(\xi^{k}\right)+\left(\psi+\delta_{k B}\right)^{*}\left(-\xi^{k}\right) \leq 0 . \tag{5}
\end{equation*}
$$

Now by lemma 4, for all large k we have $\left(\phi+\delta_{k B}\right)^{*}=\left(\phi^{*}\right)_{k}$ and $\left(\psi+\delta_{k B}\right)^{*}=\left(\psi^{*}\right)_{k}$, and furthermore (5) implies that

$$
\left(\phi^{*}\right)_{k}\left(\xi^{k}\right) \leq-\left(\psi+\delta_{k B}\right)^{*}\left(-\xi^{k}\right) \leq\left(\psi+\delta_{k B}\right)(0)=\psi(0) .
$$

Hence for all k sufficiently large

$$
\left(\phi+\delta_{k B}\right)^{*}\left(\xi^{k}\right)=\left(\phi^{*}\right)_{k}\left(\xi^{k}\right)=\phi^{*}\left(\xi^{k}\right)
$$

by lemma 6 with $p \stackrel{\text { def }}{=} \phi^{*}$ and $\alpha \stackrel{\text { def }}{=} \psi(0)$. Similarly,

$$
\left(\psi+\delta_{k B}\right)^{*}\left(-\xi^{k}\right)=\psi^{*}\left(-\xi^{k}\right),
$$

for all k sufficiently large, and the result follows by (5).
The following example shows that we cannot drop the assumption of cofiniteness in the above result.

Example. Define convex functions ϕ and $\psi: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ by $\phi(x) \stackrel{\text { der }}{=} x+\delta_{\mathbb{R}_{+}}(x)$ and $\psi(x) \stackrel{\text { def }}{=} 2+x^{2} / 2+\delta_{\mathbb{R}_{+}}(x)$, and define a continuously differentiable function $\theta: \mathbb{R} \rightarrow \mathbb{R}$ by $\theta(x) \stackrel{\text { def }}{=} x-\exp (-x)$. Then, taking $C \stackrel{\text { def }}{=} \mathbb{R}$, all the assumptions of the theorem are satisfied except that ϕ is not cofinite. Since $\phi^{*}(y)=+\infty$ unless $y \leq 1$, and $\theta^{\prime}(c)=1+\exp (-c)>1$ for all c, it follows that

$$
\phi^{*}\left(\theta^{\prime}(c)\right)+\psi^{*}\left(-\theta^{\prime}(c)\right)=+\infty,
$$

for all c.
One of the curious features of theorem 2 is that the usual constraint qualification for Fenchel duality is not required: the existence of the Lipschitz separator θ replaces it. By contrast, our proof of theorem 7 requires the constraint qualification (4). It is unclear to us if this assumption is really required for the result. The following theorem is a partial result in this direction: we can drop the constraint qualification if we assume that the separator θ is globally Lipschitz. Comparing theorem 2 and the following result, boundedness of C in the former has been replaced by cofiniteness of ϕ and ψ in the latter.

TheOrem 8 . Let C be a nonempty, closed, convex set in \mathbb{R}^{m}. Let the functions $\phi, \psi:$ $\mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex and cofinite with domains contained in C. Let θ be a real function, Lipschitz (globally) on a neighbourhood of C. If

$$
\phi \geq \theta \geq-\psi \text { on } C
$$

then there exists a point c in C and an element ξ of $\partial \theta(c)$ with

$$
\phi^{*}(\xi)+\psi^{*}(-\xi) \leq 0 .
$$

Proof. Choose any points x_{1} in dom ψ and x_{2} in dom ϕ. Let k be the Lipschitz constant for θ, and choose any $r>\left\|x_{1}-x_{2}\right\|$. Define a function

$$
\phi_{0}(x) \stackrel{\operatorname{def}}{=} \inf _{\|y-x\| \leq r}\{\phi(y)+k\|x-y\|\}
$$

and note that $\phi_{0} \leq \phi$. For any point x close enough to x_{1}, we have that $\left\|x_{2}-x\right\|<r$, and it follows that

$$
\phi_{0}(x) \leq \phi\left(x_{2}\right)+k\left\|x-x_{2}\right\|<+\infty
$$

so x_{1} lies in the interior of dom ϕ_{0}. Now for any point y in C we have that

$$
\phi(y)+k\|x-y\| \geq \theta(y)+k\|x-y\| \geq \theta(x)
$$

so $\phi_{0} \geq \theta$.
Notice that if we define a function $g(x) \stackrel{\text { def }}{=} k\|x\|+\delta_{r B}(x)$, then clearly g^{*} is everywhere finite, and since ϕ is cofinite we also know that ϕ^{*} is everywhere finite. Since ϕ_{0} is the infimal convolution of ϕ and g, it is a closed, convex function with $\phi_{0}^{*}=\phi^{*}+g^{*}[3$, theorem 16.4], so in fact ϕ_{0} is also cofinite.

Similarly, if ψ_{0} is the infimal convolution of ψ and g, then it is a closed, convex, cofinite function such that $-\psi \leq-\psi_{0} \leq \theta$ on C. As $x_{1}+r B \subset \operatorname{dom} \psi_{0}$, the intersection of int (dom ϕ_{0}) and int $\left(\operatorname{dom} \psi_{0}\right)$ is nonempty. Thus we can apply theorem 7 (with ϕ and ψ respectively replaced by ϕ_{0} and ψ_{0}) to deduce the existence of a point c in C and an element ξ of $\partial \theta(c)$ with

$$
\phi^{*}(\xi)+\psi^{*}(-\xi) \leq \phi_{0}^{*}(\xi)+\psi_{0}^{*}(-\xi) \leq 0
$$

as required.

Corollary 9. Suppose that the function $\theta: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is continuously differentiable and that for some constants $k \geq 0, K>0$ and $1<p<+\infty$, the growth condition

$$
|\theta(x)| \leq k+K\|x\|_{p}^{p} / p
$$

holds for all x. Then there exists a point \bar{x} satisfying

$$
\left\|\theta^{\prime}(\bar{x})\right\|_{q} \leq K(k q / K)^{1 / q}
$$

(where $1 / p+1 / q=1$).
Proof. Let $\phi(x) \stackrel{\text { def }}{=} k+K\|x\|_{p}^{p} / p \stackrel{\text { def }}{=} \psi(x)$, so that $\phi^{*}(y)=-k+K\left\|K^{-1} y\right\|_{q}^{q} / q=\psi^{*}(y)$. By theorem 7 there exists a point \bar{x} with $\left\|\theta^{\prime}(\bar{x})\right\|_{q}^{q} \leq k q K^{q-1}$.

For example, if the real function θ is continuously differentiable with $|\theta(x)| \leq 1+\|x\|^{2}$ for all x, then there exists a point \bar{x} with $\left\|\theta^{\prime}(\bar{x})\right\| \leq 2$.

REFERENCES

1. CLARKE F. H., Optimization and Nonsmooth Analysis. John Wiley and Sons, New York (1983).
2. CLARKE F. H. \& LEDYAEV YU. S., Mean value inequalities, Proc. Am. math. Soc. 122, 10751083 (1994).
3. ROCKAFELLAR R. T., Convex Analysis. Princeton University Press, Princeton, NJ (1972).
