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Given the first n moments of an unknown function x on the unit interval, a
common estimate of X is ¢ (m,), where m, is a polynomial of degree n taking values
in a prescribed interval, ¢ is a given monotone function, and =, is chosen so that
the moments of y(m,) equal those of X. This moment-matching procedure is
closely related to best entropy estimation of ¥: two classical cases arise when 1 is
the exponential function (corresponding to the Boltzmann-Shannon entropy} and
the reciprocal function (corresponding to the Burg entropy). General conditions
ensuring the existence and uniqueness of , are given using convex programming
duality techniques, and it is shown that the estimate (w,) converges uniformly to
x providing X is sufficiently smooth.  © 1994 Academic Press, Inc.

I. INTRODUCTION

Suppose x is an unknown function on [0, 1] taking values in some
prescribed interval [a, 8] (possibly infinite). We wish to estimate x on the
basis of its first » moments, f(', six(s) ds, for i = 0, ..., n. Such problems
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and their trigonometric and multidimensional analogues serve as a model
for a wide variety of physical measurement problems. One extremely
popular approach may be termed best entropy estimation: the estimate is
selected to be that function which minimizes a certain measure of en-
tropy, | s #(x(s)) ds, subject to the given moment constraints. The two
classical choices have been the Boltzmann-Shannon and Burg entropies
(see [13] and [14]), the choice between them being very controversial. For
surveys, see [12] and [16] (containing in total almost 700 references).
More recently, other entropy measures have been suggested, including
the L, entropy [10], [11], and general families of entropies proposed in
[20], [19], and by an elegant probabilistic discussion in [5].

One important criterion for comparing the various choices of entropy is
the convergence of the estimates of x as the number of given moments
grows (see for example [24]). Convergence in various senses of the Boltz-
mann-Shannon estimates is studied in [18], [9], {71, [3], and [1]. For more
general entropies, convergence questions are discussed in [15] and [5],
and a convergence result for the Burg entropy appears in [8] based on
earlier work of [23].

The aim of this paper is to give general conditions which ensure uniform
convergence of the best entropy estimates to the unknown function x. The
approach (see Section 2) is to apply a simple approximation-theoretic
argument to the moment-matching procedure described in the abstract to
deduce uniform convergence from interpolation properties of the esti-
mates. This makes it clear, for example, that the uniform convergence of
the Burg entropy estimates to a sufficiently smooth strictly positive func-
tion x is not ‘‘merely a fortunate accident,’’ as claimed in the conclusions
of [24].

The equivalence of the moment-matching procedure to best entropy
estimation has been observed widely for special cases in the applied liter-
ature, the (loose) justification generally being via Lagrange multipliers
attached to the moment constraints. However, the existence question for
the polynomials m, is quite delicate. Section 3 is devoted to a rigorous
explanation based on convex programming duality.

2. MOMENT-MATCHING
Throughout this paper we shall assume —x < p < g =< +x, ~x =a < f
=< +o, and §: (p, g) — («, B) is a continuously invertible, strictly increas-
ing function satisfying

limTinf(q — g(r) >0, if g < +o, and )
rtg

limlsup (r—pWir)<0,ifp > —x, 2)
rip
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598 BORWEIN AND LEWIS

(In particular, 8 = +x if g < +=, and « = —o if p > —=.) Two cases of
particular interest are
p=-x,g=+xa=0,8=+o and y(r) = ¢, (3)
p=-2,g=0,a=0,8=+w, and y(r) = —1/r. 4)

We consider a function x in L,[0, 1] satisfying

a < x(s) < B, almost everywhere, and (5)
x(s) € (a, B), on a set of positive measure. (6)
We wish to match the moments of x by the image of a polynomial under

Y. The result below, which we prove in the following section, shows that
under the above conditions this problem has a unique solution.

THEOREM 2.1 There exists a unique polynomial m, of degree n which
satisfies

p < mus) < gq, forall sin(0, 1], and )]

L‘ U(m,(s))s' ds = L] x(s) sids, fori =0,..., n. 8)

LEMMA 2.2 Suppose x is piecewise continuous and w, is the polyno-
mial of Theorem 2.1. Then w, — ¢~ '(x) has at least (n + 1) sign-changes,
or is identically zero.

Proof. (We interpret Yy (a) := p and ¢~ '(B) := q.) If m, — ¥~ '(x) has
at most n changes of sign, so does yi(7r,) — X, so we can choose a nonzero
polynomial ¢ of degree n, with the same sign. However, (8) implies

Ll W (ma(s)) — X(5)) &(s) ds = 0,

whence the result. |

For any d = 0, let R; C C denote those complex numbers whose
distance from [0, 1] is no larger than d.

THEOREM 2.3  Suppose y is an analytic function on Ry for some d > 1,
and satisfies

p < y(s) < gq, for all s in [0, 1]. 9

Then if x = (), the polynomials mw, of Theorem 2.1 converge uniformly
toy.
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Proof. Lemma 2.2 shows that 7, interpolates y at (n + 1) points, and if
y is analytic on R,, any such interpolation scheme converges uniformly
(see [6], Section 4.3, Example 1). (Clearly (9) implies that x satisfies

6).) |

Under the above conditions we thus see that the reconstructions y(m,)
in Theorem 2.1 converge uniformly to x. Case (3) above therefore shows
that if we match the moments of ¢¥ with ™, these estimates converge
uniformly if y is analytic on R, with d > 1, while case (4) shows the same
result if we match the moments of 1/y with 1/m, (assuming y is strictly
positive on [0, 1]).

In fact, as we shall see in the next section, if we drop the uniqueness
requirement on 7, , we can weaken the assumptions on s in Theorem 2.1,
simply requiring that it be continuous and increasing (not necessarily
strictly). An interesting case is

p=-—%g=+x, a=0,8=+x, and Y(r) = rt, (10)

where r* denotes the positive part of r. Theorem 2.1 then shows that if X is
non-negative and not identically zero then there is a polynomial 7, of
degree n whose positive part matches the first n moments of x (c.f. [10]).
The argument of Lemma 2.2 then shows that w, — X changes sign at
(n + 1) points if x is continuous, so in fact m, interpolates X at (n + 1)
points. Thus if x is actually analytic on R, for some 4 > 1 and non-
negative, then , (and therefore ) converges uniformly to x. The same
argument works with §(r) = (r*)?, for any y > 0.

One way to see that a uniform convergence result like Theorem 2.3 is
not surprising is to consider the case where ¢ is the identity map on R =
(a, B). In this case the polynomials 7, are simply the partial sums of the
expansion of x in appropriate orthogonal polynomials on [0, 1]: these are
well-known to converge uniformly to sufficiently smooth x (see for exam-

ple [6)).

3. BEST ENTROPY ESTIMATION

In this section we derive the connection between best entropy estima-
tion and the moment-matching problems of the previous section. We will
use the convex analysis notation of [22]. We suppose ¢p: R — (—x, +x]is
a closed convex function whose domain has non-empty interior («, 8).
The conjugate function ¢* is defined by

¢*(v) := sup {uv — ()},



600 BORWEIN AND LEWIS

and is continuously differentiable on the interior of its domain (p, q)
(which is non-empty). We assume

lim inf (¢ = r}&*)'(") >0, if ¢ < +=, and (11)
rty
limlsup (r = plo®)'(n <0,if p > —x, (12)

which are simply (1) and (2) with ¢ : = (¢*)’. The special cases (3), (4), and
(10) correspond to the Boltzmann—Shannon entropy,

ulogu —u, ifu>0,
du) =10, if u =0, (13)
+OC, lf U < Os
the Burg entropy,
—log u, ifu>0,
du) 1= . (14)
+x, ifu=0,
and the L, entropy,
w2, ifu=0,
Blu) = | as)
+x, ifu<0,

respectively.

Best entropy estimation seeks to estimate the L, function x, which we
suppose satisfies (5) and (6), by that L, function x which matches the first
n moments of X and minimizes the entropy functional [} ¢(x(s)) ds (well-
defined as a ‘‘normal convex integral’” [21]). The optimization problem
we therefore consider is

inf Jb d(x(s)) ds
(BE,) {subjectto  [lx(s)sids = [\X(s)sids,i=0, ..., n,
X € L|[0, 1]

As usual in convex optimization there is a natural dual problem:

sup  [§ G(s)m(s) — d*(m(s))ds

with 7 a polynomial of degree < n.

(BEY) {
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THEOREM 3.1. (Strong Duality) The problems (BE,) and (BEY) have
equal, finite value, which is attained in both problems. If m, is any optimal
solution of (BEY) then p < m,(s) < q for all s in [0, 1] and the unique
optimal solution of (BE,) is x,(s) := (¢*) (mw,(s)). If d* is strictly convex on
(p, q) then m, is also unique.

Proof. The case @ = 0 and 8 = +x is a special case of results in [2].
The argument for this case is analogous: a general result may be found in
[4]. The necessary constraint qualification is ensured by (5) and (6). 1

The special cases of the above result when ¢ is given by (13), (14), and
(15) are well-known. The Boltzmann-Shannon and L, cases are covered
in [3] (see also [10]). For the Burg case see for example [14], [13], and [17].

Using this strong duality theorem we can now prove Theorem 2.1:

Proof of Theorem 2.1. Choose any r; in (p, q) and define a function
v:R— (-, +x] by y(v) := f‘,’ﬂ Y (r)dr. Then v is strictly convex on (p, q)
withy' = s, s0 y is also essentially smooth in the sense of [22]. If we now
define ¢ := y* then ¢ is strictly convex with ¢* = y [22]. Theorem 3.1
now shows the existence of , satisfying (7) and (8).

Finally, any m, satisfying (7) and (8) is optimal for (BE)) as may be seen
by differentiating with respect to each coefficient of #,. The uniqueness
follows. This could also be proved more directly by the argument of
Lemma 2.2. |

Suppose, in addition to our previous assumptions, that ¢ is essentially
smooth (which is equivalent to ¢* being strictly convex on (p, gq)), as is
the case for the Boltzmann—-Shannon and Burg entropies. Theorems 2.3
and 3.1 then show that the optimal solution x, of the best entropy estima-
tion problem (BE,) converges uniformly to x providing ((¢*)')~'(x) is ana-
lytic on R, for some d > 1. The argument at the end of the previous
section shows the same for the L, entropy providing x is analytic on R, for
some d > 1 and non-negative.

4. THE TRIGONOMETRIC CASE

Theorem 3.1 is a special case of a much more general result (see [4]).
For example, all of the results in this paper will remain true if we replace
Lebesgue measure throughout by any positive regular Borel measure on
[0, 1], providing it dominates a positive multiple of Lebesque measure.
Furthermore there is nothing special about the functions with respect to
which we take the moments: we could replace 1, s, ..., s” with other
Lipschitz functions in Theorem 3.1 (see [4]).
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Probably the most important special case in practice is the trigonomet-
ric moment problem, as [12] and [16] will testify, The moment constraints
are then Fourier coefficiants—moments with respect to cost if and sin i@
on [—m, w]. In this case, due to the periodicity, we can weaken the
conditions on ¢ required for attainment ((11) and (12)) to

lim1 inf (g — NY$*)'(r) > 0, if g < +%, and (16)
rtg
limlsup r — p)P*)'(r) <0, if p > —x. a7n
rip

The same type of convergence we have seen for algebraic moment
problems will occur for trigonometric problems. To illustrate, let us as-
sume for simplicity that the function x we seek to estimate is even on
[—a, 7] (and still satisfies (5) and {(6)), so our problem becomes

inf ™. &(x(8)) do
(TE.) subject to f’i,, x(6) cos (i0) d8 = f’l,,}(a) cos (i8) do,
" fori =0,..., n,
0=x€Ll-m, 7,
with dual
(TEH sup I (X(8)w(cos 8) — ¢p*(w(cos 0))) db
"7 | with w a polynomial of degree < n.

(Note that any linear combination of 1, cos 6,..., cos nf is a polynomial of
degree n in cos 6, and vice versa.)

THEOREM 4.1 Assuming (16) and (17) hold (in place of (11) and (12)),
the problems (TE,) and (TEY) have equal, finite value, which is attained in
both problems. If w, is any optimal solution of (TE)) then p < w, (cos 8) <
q for all 0 in [—m, m) and the unique optimal solution of (TE,) is x,(8) :=
(%) (w,(cos 8)). If ¢* is strictly convex on (p, q) then w, is also unique.

Proof. See[4]. |

In an exactly analogous fashion to the previous sections, w, will be the
unique solution of the moment-matching problem

p < w(cos 8) < g, for all 8 in [—m, 7], and

|7 ww(cos 6)) cos(it) d6 = [* X(6) cos(i) b, for i = 0,..., n,
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¥ = (¢*)' and ¢* is strictly convex. The same argument as Lemma 2.2

shows that w,(cos 8) — ¢~ 1(x(#)) has at least (n + 1) sign changes in (0, 7)

(u

sing polynomials in cos @ rather than s). Thus, using the change of

variables ¢ := cos 6, w,(-) interpolates ¢ '(x(cos™!(*))) (n + 1) times in
(=1, 1), and hence converges uniformly to it providing ¥~ '(x(cos™!(:))} is
analytic on R, the set of complex numbers whose distance fom [—1, 1] is
no larger than d, for some d > 2.

18.
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