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Abstract 

We consider the problem of minimizing an extended-valued convex function on a locally convex 
space subject to a finite number of linear (in)equalities. When the standard constraint qualification 
fails a reduction technique is needed to derive necessary optimality conditions. Facial reduction is 
usually applied in the range of the constraints. In this paper it is applied in the domain space, thus 
maintaining any structure (and in particular lattice properties) of the underlying domain. Applications 
include constrained approximation and best entropy estimation. 

AMS 1991 Subject Classification: Primary 49K27, 90C48; secondary 90C34, 52A41 

Keywords: Partially finite convex program; Necessary conditions; Facial reduction; Quasi relative interior; 
Constrained approximation; Maximum entropy; Vector lattice 

1. Introducfion 

Suppose X is a locally convex topological  vector space , f :X  ~ ( - oo, + ~ ]  is convex and 

A :X--+ R n is continuous and linear. Consider the following problem: 

f i n f  f ( x )  
(PFP)  [ s u b j e c t  to A x = b .  

This 'partially-finite convex program'  can be used to model  a wide variety of  interesting 

optimization problems, including constrained approximation, interpolation and smoothing 
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problems, semi-infinite linear programming, best entropy estimation and semi-infinite trans- 
portation problems. Surveys of duality and existence theory may be found in [ 2-5 ]. 

The domain o f f i s  denoted dom f =  {xlf(x) < +oo}. When d o m f i s  a cone, the image 
cone A domf i s  often called the 'moment cone'. The constraint qualification that b lies in 
the relative interior ofA domfensures that there is a Lagrange multiplier vector A in ~n for 
(PFP), or equivalently that the dual problem has an optimal solution with value equal to 
the primal value. Under reasonable conditions we can then reconstruct the primal optimal 
solution as Xo = Vf *(A *A), the (Gäteaux) derivative of the Fenchel conjugate evaluated 
at the image of A under the adjoint map A *. 

When the constraint qualification fails it is still possible to derive more restricted opti- 
mality conditions (and hence characterizations of optimal solutions): [ 1] for example is 
an interesting survey. One approach is to restrict the variable x to lie in some subset E of X, 
chosen to include the feasible region. One interpretation of the 'facial reduction' technique 
used in [7] is that E is chosen to make A ( d o m f n  E) the smallest face ofA domfwhich 
contains b: the constraint qualification is then satisfied. A similar technique is applied in 
[11]. 

A disadvantage with this technique, and with the constraint qualification, is the necessity 
of working in the range space of the constraints, using the setA domf. This is particularly 
the case when domfhas  a simple structure such as a lattice cone, as occurs frequently in 
constrained approximation, or an order interval, which is of interest for example in best 
entropy estimation (see for example [ 12] ). Rewriting the constraint qualification to exploit 
this structure is described in [3] and [4]. The idea of this paper is to use similar techniques 
to apply facial reduction in the domain space of the constraints, directly on the set domf. 

A particularly striking example in support of this approach is the following constrained 
approximation problem: 

ff i n f  (l/p) Ilxll; 
/- 

(CAP) ,~ subject to ] aix=bi, ( i=  1 . . . . .  n) 

L S 

O ~< x~ L,,( S) , 

where Lp(S) is separable and ai~Lq(S) (i= 1 ... . .  n). An elegant result in [ 15] shows, 
assuming only that (CAP) is consistent, that there is a largest measurable subset So on 
which every feasible x vanishes almost everywhere, and that the optimal solution of (CAP) 
has the form 

[ n ~q-- 1 

I [  ~ Aiai(s)) , (s~So) 
Xo(S) = i ÷ 

I .  O, ( s ~ S o )  

where the subscript + denotes the positive part (see also [8] and [ 10, 11 ] ). We shall see 
how this result appears naturally as a consequence of the facial structure of the positive 
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cone in Lp(S), using the well-known structure of  the closed ideals. These ideas extend to 

estimation problems having entropy-type integral functionals as objectives (c.f. [2] ), and 

to problems involving order intervals. 

2. Faees 

We shall begin by surveying some of  the properties of  faces that we require in our analysis 

of  convex programs (see Section 1.5 in [ 9 ] for comparison). Suppose initially that X is an 

arbitrary (real) vector space and C c X  is convex. 

Definition 2.1 [19] .  A convex set E c C  is a face of  C if x, y ~ C ,  0 < A < I  and 

Ax+ (1 - A ) y ~ E i m p l i e s x ,  y ~ E .  

It is immediate that the intersection of any collection of  faces is a face. For an arbitrary 

subset D « C we can therefore consider the intersection of  all faces of  C containing D, and 

this will be the unique smallestface of  C containing D, denoted F(C, D). It is also clear 

that any face of  a convex cone must be a convex cone. 

Proposi t ion 2.2. Suppose E is a face of  C, and H is a hyperplane (possibly dense) which 

supports E. Then H O E is a face. 

Proof.  For some linear functional ~b, and a in N, H =  {x~XI  ~b(x) = a} and ~b(x) ~< a for 

all x in E (see [ 13 ] ). Suppose then that x, y ~ C, 0 < A < 1 and Ax + ( 1 - A)y ~ H n E. Since 
E is a face, x, y ~ E. Thus tp(x) <~ c¢, th(y) <~ te, and ~b(Ax + ( 1 - A)y) = te, whence we obtain 

x, y ~ H, so the result follows. []  

Lattice ideas will be useful in what follows. We refer the reader to [ 19] for definitions 

and notation. I f  X is a vector lattice with x<~y in X then we denote the order interval 

{ z ~ X I x < z < y }  by [x, y].  A subset C of  X is saturated i f x < y  in C implies [x, y] c C ,  

and is solid if x ~ C and l Y I < I x I implies y E C. An ideal is a solid subspace. 
A particularly significant type of  convex set for what follows is the positive cone X+ in 

ä vector lattice X. The faces of  such a cone are easily identified. 

Proposition 2.3. I f  X is a vector lattice then the faces of X ÷ are precisely the sets I O X ÷ , 

where I is an ideal. Moreover, if E is a face of X + then the set I = E -  E is an ideal, and we 

have E = I n X + .  

Proof. Suppose x, y ~ X +  h G  (0, I ) and Ax+ (1 - A ) y ~ I n X + ,  w h e r e / i s  an ideal. Then 

0 ~< x ~< ( 1/A) (Ax + ( 1 - A)y) ~ L so x ~ I O X+. Similarly y ~ I N X+, so I n  X+ is a face. 

Conversely, suppose E is a face of  X+, and define I : =  E -  E. Suppose x ~ I and [y I ~< I xl. 
We wish to show y ~ L Since x ~ L x = xl - x2 with x~, x2 ~ E c X + ,  so 
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0~<Y + , y -  ~< lY[ <~ Ixl = x  + + x -  <~xl+x~~E 

(because E must be a cone). But now 

x, +xz=½y+ +½(2xl + 2 x 2 - y + )  , 

and since y+, 2x l+2xz -y+~X+ and E is a face, y+~E.  Similarly y - G E ,  so 

I Y I = Y + + Y - ~ E c I  as required. Thus I is an ideal. 
Finally we need to show that E=InX+.  Clearly EcInX+,  so suppose x~INX+,  so 

there exist x» xz~E with xl -x2=x>~O. But now ½x+ ½x2 = ½xl GE, so since E is a face, 
x ~ E. Thus I n X+ c E as required. [] 

Thus i fX is a vector lattice the smallest face of the positive cone containing an arbitrary 
set D is just the intersection of the positive cone with the ideal generated by D: 

F(X+, D) = I ( D )  n X +  = U {n[0, x] [x ~D} 
n = l  

(see [ 19] ). 
Let us now suppose that X is a locaUy convex topological vector space, with topological 

dual space X*. The normal cone to C at Xo is 

Nc(xo) = {x* e X *  l x * ( x -  xo) <~ 0 for a l l x e C }  . 

The following idea is from [3]. 

Definition 2.4. The element Xo of C lies in the quasi relative interior of C (denoted by 

qri C) if Nc(xo) is a subspace. 

The set qri C shares many of the important properties of the relative interior in finite 
dimensions: in particular, qri C =  ri C for finite-dimensional sets. If  Yis a separable normed 
space then nonempty closed convex subsets of Yhave nonempty quasi relative interior, and 
nonempty weak*-closed convex subsets of Y* have nonempty weak* quasi relative interior. 

Geometrically, Xo ~ qri C if there is no proper closed supporting hyperplane to C at Xo. 

Theorem 2.5. For convex sets D c C ¢X, we have qri D c qri F( C, D). 

Proofo Suppose Xo E qri D \q r i  F(C, D).  Then there exists 

x* ~NF~c.o)(Xo) \ ( -Nmca~»(Xo) ) , 

so for some Xx in F(C, D), x*(x l -xo)  <0.  Since DcF(C,  D), x*~N»(xo), and thus 

x* ~ - No(xo), or in other words x * (x - Xo) = 0 for all x in D. 
Let us consider the hyperplane H'.= {x[x* (x - Xo) = 0} which supports F( C, D).  Then 

by Proposition 2.2, HNF(C, D) is a face, and the above remarks show it contains D and 
is properly contained in F(C, D),  contradicting the minimality of F(C, D).  [] 
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In finite dimensions faces are particularly well-behaved. 

Theorem 2.6. For convex sets D c C c ff~ n, the smallest face of C containing D is the largest 
convex subset of C whose relative interior intersects D. 

Proof. We can assume D is nonempty. In this case Theorem 2.5 shows that ~v~ri D c r i  
F(C, D), so certainly ri F(C, D) intersects D. Suppose on the other hand that E is a convex 
subset of C with D A ri E nonempty. Then F(C, D) O ri E is nonempty, so by Theorem 18.1 
in [ 17], E c F ( C ,  D). The result follows. [] 

In general the closed faces of a closed convex set C will have more tractable structure 
than arbitrary faces. In finite dimensions any face ofa closed convex set is closed (Corollary 
18.1.1 in [ 17] ). However, this may fail in infinite dimensions. For example, L~ [0, 1 ] + is 
clearly a face in L1 [0, 1 ] ÷ which is not closed. We therefore define the smallest closedface 
of C containing D, denoted CF(C, D), to be the intersection of all the closed faces of C 
containing D. We then obtain the following result, parallel to Theorem 2.5. The proof is 
identical, simply replacing F(C, D) with CF(C, D) and observing that the hyperplane H 

is closed. 

Theorem 2.7. Suppose C c X  is closed and convex with convex D c C .  Then qri D c  
qri CF(C, D). [] 

Tbis result shows that a maximal convex subset of C whose quasi relative interior 
intersects D must be a closed face. Unfortunately though, except in finite dimensions 
(Theorem 2.6), in general it may be strictly larger than the smallest closed face of C 
containing D as the following example shows. The same pbenomenon may be found for 
instance in Example 5.3 in [ 14]. 

Example. Consider the set C in 13 defined by C:= {x ~/31 IIxll2 < 1 }. Since Ilxllr ~< Ilxllp for 
all x provided 1 <p  ~< r~< + 0% we have 13/zCl2Cl3, and the identity map embedding lz in 
13 is continuous. The unit ball in/2 is weakly compact, so C is weakly compact in/3. 

Pick any Y with Ilxl12 = 1 but g e  13/» for example, 

( oo ,~-- 1/2 
.~n:= E m -4/3) n -2/3 

m~l 

Since Il" 112 is a strictly convex norm, $ is an extreme point of C, so 

CF(C, {as}) =F(C, {as)) = {aS}. 

On the other hand, suppose x * ~ N c ( ~ ) ,  so x*~13/2 and x*(x -Y)<~0  whenever 

IIxll2-« 1. Thus 
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IIx*U2=sup{x*(x) l Ilxl12~< 1] ~<x*(x--) ~< IIx*l1211~ll» 

by Cauchy-Schwarz, so we have equality throughout. Hence x* -- ~ for some/x ~ ~, and 

since x*  ~ 13/2 whereas X ~ 13/2 we deduce that x*  = 0. Thus Nc(R) = { 0 } so • ~ qri C. Thus 
the largest convex subset of C whose quasi relative interior intersects {:~} is simply C. 

The case of a lattice cone is more straightforward. 

Proposition 2.8. I f  X is a normed lattice then the closed faces of X+ are precisely the sets 
7 n X+, where i is a closed ideal. 

Proof. Any such set is clearly a closed face by Proposition 2.3. On the other hand, any face 
has the form I n X÷ for some ideal I. If  I is not closed then for some sequence xù ~ x with 
xn in/ ,  x ~ L so either x ÷ or x - ~ L Without loss of generality suppose x + ~ I. Since the 
lattice operations are continuous, x~ ---> x +, so I n X÷ is not closed. [] 

When X is a normed lattice the closure of an ideal is an ideal, so the closed ideal generated 
by D is cl I (D),  and thus for any D c X + ,  

CF(X+, D) = (cl I (D))  n X +  =c l  U {n[0, x] I x ~ D } .  (2.1) 
n ~ l  

To see this, observe that (cl I (D))  n X +  is a closed face by Proposition 2.3. On the other 
hand, by Proposition 2.8, CF(X+, D) -- i n  X+ for some closed ideal L Since D c i i t  follows 
that cl I(D) c L  and hence that 

(cl I (D))  n X ÷  C I N X +  = C F ( X ÷ ,  D) c c l  I(D) n x + .  

Recall that for a convex cone K in X, the polar cone K ° is defined by 

K °=  {x* ~ X *  Ix*(x)  ~<0 for all x ~ K}. 

L e m m a  2.9. Suppose X is a normed lattice and J is a closed ideal in X. Then Xo ~ qri (J  n X+ ) 
i fandonly i f JOX÷ = (cl l({xo})) nX÷ .  

Proof. Suppose Xo ~ qri(J n x +  ). The containment in one direction is clear. In the opposite 
direction, by the Bipolar Theorem [ 13] we need to show 

o 

(J  n X + ) ° D  cl U n[0, xo] , 
r ~ = l  
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so suppose x * ~  (cl U~=~n[0,  Xo]) °, so x*(x)<~0 for all x in [0, Xo]. It follows that 
x*(xo)  <~0 (Propositions I1.4.2 and II.5.5 in [19] ) ,  so x * ( x - x o )  >10 for all x>~0, and 

thus in particular x*  ~N~nx+(Xo). Then since xo~qri (JAX+),  - x *  ~N«nx+(Xo), or 
x* (x - xo  ) = 0 for all x in J D X÷. Setting x = 0 implies x *  (Xo) = 0 and x *  (x) = 0 for all 
x in J A  X÷,  so x *  (x) ~< 0 for all x in J A  X+, or x *  ~ ( J A  X+ ) ° as required. 

Conversely, suppose JAX+ = (c l I ({xo}) )  DX+,  and x*~N«nx+ (Xo), so 
x*  (x - Xo) -g< 0 for all x in J D X÷. Setting x.'= ½Xo and 2Xo shows x*  (Xo) = 0 and x *  (x) ~ 0 
for all x in J D X+ and in particular in [ 0, Xo ]. Thus x *  (Xo) <~ 0, so in fact x *  (Xo) = 0, and 
hence x*_ (Xo) = 0. This says that - x*  (x) ~< 0 for all x in [ 0, Xo] and thus in J D X+. Thus 

- x*~N«nx+ (Xo), SOXo~qri(JDX+). [] 

We can now deduce the analogue of  Theorem 2.6 in the case of  a lattice cone. 

Theorem 2.10. Suppose X is a normed lattice with convex D c X +  having qri D 4= O. Then 
the largest convex subset of X÷ whose quasi relative interior intersects D is cl I ( D ) NX+.  

Proof. We have 

¢ 4~qri D c D n q r i  CF(X÷,  D)  = D  (3qri((cl  I (D))  N X + ) ,  

by Theorem 2.7 and (2.1).  On the other hand, i f E  c X +  is convex with Xo ~ D n qri E, then 

xo~qr i  CF(X+,  E) = q r i ( ( c l  I (E))  n x ÷ ) ,  

by Theorem 2.7 and (2.1).  Then by Lemma 2.9, 

E c ( c l  I (E))  n X +  = (cl I ({xo}))  n X +  c ( c l  1(0) )  n X + ,  

so c l I ( D )  NX+ is largest. []  

3. Faeial reduction 

Throughout this section we shall suppose X is a locally convex topological vector space, 
f : X  ~ ( - oo, + oo] is a closed, convex function, A :X ~ R n is continuous and linear, K is a 
polyhedral cone in ~n and b ~ R ~. We consider the partially-finite convex program 

[ i n f  f (x )  
(P) ~subject  to A x - b ~ K ,  

l x ~ X  . 

Let us define D =  {x~dom f l A x - b ~ K  }, the feasible region. Thus x is feasible if x ~ D .  
The following are the classical conditions for a Lagrange multiplier vector A ~ ~n at a 
proposed optimal solution Xo for (P):  

( A ) Dual feasibility: A ~ K °. 
(B) Xo minimizes the Lagrangian, f (x )  + A rAx. 
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(C) Complementary slackness: AT(AXo - -  b) = 0. 

Proposition 3.1 (Sufficient conditions). I f  xo is feasible and there exists A in R n satisfying 

conditions (A), (B) and (C) then Xo is optimal. 

Proof. For any feasible x, 

f ( x )  >/f(x) + AT(Ax- b) >~f(xo) + AT(Axo - b) =f(xo) , 

by applying (A), (B) and (C) in turn. [] 

To ensure the existence of a Lagrange multiplier we need a constraint qualification: 

(CQ) (ri(A dom f ) )  N ( b + K )  ~ 0 .  

Theorem 3.2 (Necessary conditions). I f  xo is optimal and (CQ) holds then there exists 
AG R n satisfying conditions (A), (B) and (C). 

When qri(domf) is nonempty we can rewrite the constraint qualification (CQ) equiv- 
alently as: 

(QCQ) There exists feasible ~ in qri(domf) . 

The general theory behind these results appears in [ 3 ]. 
An important feature of the Necessary Conditions is that they give information as to the 

form of any optimal solution. If the constraint qualification (CQ) fails then there may exist 
no Lagrange multiplier A and we lose this information. We resolve this by weakening 
condition (B) to: 

(Be) Xo minimizesf(x) + ATAx over x in E ,  

for some convex subset E of X. Providing E contains the feasible region the conditions 
remain sufficient. 

Proposition 3.3. I f  xo is feasible, E » D and there exists A ~ ~n satisfying (A), (Be) and 
(C) then Xo is optimal. [] 

The proof is essentially the same as for Proposition 3. I. The conditions are also necessary, 
under a suitable constraint qualification, 

(CQe) ( r i (A(En dom f ) ) )  O ( b + K )  -~0. 

Theorem 3.4, I f  xo is optimal, the convex set E contains D, and (CQe) holds then there 

exists A satisfying (A), (Be) and (C). 

Proof. Since EDD, Xo is optimal for 
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~inf (Je+ ~s) (x) 
(Ps) [subject to A x - b ~ K ,  

(where 8s is the indicator function for E, taking the value 0 on E and + ~ off E). Applying 
Theorem 3.2 now gives the result. [] 

Clearly the larger the set E, the more information is imparted by the optimality condition 
(Bs). We may as well assume E is a subset of d o m f  and it is then natural to identify the 
largest convex subset E of domfcontaining D and satisfying (CQs). We can answer this 
using the results of the last section. 

In order to satisfy (CQe), the set A(ENdomf)  =AE must be a convex subset of A 
dom fwhose relative interior intersects (b + K) N A domf  The largest convex set achieving 
this is F(A dom f, (b + K) AA dom f) ,  by Theorem 2.6. Thus we must have E c A  -1F(A 

dom f, (b + K) AA dom f) ,  so the largest possible set E will be given by 

E = d o m f n A  -1F(A dom f, ( b+K)  AA  dom f)  . (3.1) 

The difficulty in using (3.1), just as with the original constraint qualification (CQ), is 
the need to work with A d o m f  In practice domfmay  have a simple structure (such as a 
lattice cone) whereas A dom f does not. This is the motivation for replacing (CQ) by 
(QCQ). We therefore seek a set E which may be easily computed using domfrather than 
A d o m f  One other point is worth emphasizing. In many of the examples that we wish to 
consider, the domain off is  not closed. In order to capitalize on underlying lattice structure, 
we need instead to work with the closure of the domain o f f  

Theorem 3.5. Ler E = CF(cl dom f, D). I f  
(i) qri D 4:~b, and 

(ii) c l ( E N d o m f ) = E ,  
then (CQs) holds, and so (A), (Bs) and (C) are necessary and sufficientfor a feasible 
Xo to be optimal for (P). 

Proof. By (i) we can choose x in qri D, and Theorem 2.7 shows x~qr i  E. Since x ~ E n  
dom f, (ii) shows that x ~ q r i ( E N d o m f ) ,  so it follows that A x ~ r i ( A ( E n d o m f ) ) ,  by 
Proposition 2.10 in [3]. It follows that (CQs) holds, and Proposition 3.3 and Theorem 3.4 
give the result. [] 

Coroilary 3.6. Suppose that X is either a separable normed space, or the dual of a separable 
normed space with the weak* topology, and dom f is closed. Let E= CF(domf, D). Then 
provided that the problem (P) is consistent, (CQe) holds. Thus conditions (A), (Be) and 

(C) are necessary and sufficient for a feasible Xo to be optimal for (P). 

Proof. In either case the feasible region D has nonempty quasi relative interior, by Theorem 
2.19 in [ 3 ], while part (ii) of Theorem 3.5 is obviously satisfied. [] 
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Condition (i) in Theorem 3.5 holds more generally. 

Lemma 3.7. Suppose that X is either a separable normed space, or the dual of a separable 

normed space with the weak* topology, and g : X ~  ( -oo, + ~ ]  is closed, convex and 

proper. Then qri(dom g) is nonernpty, 

Proof. Choose a in (inf g, + ~)  and define the level set 

L« = { x ~ X I g ( x )  <~ « } .  

Since L« is closed, convex and nonempty, as before qri L« is nonempty. Furthermore it is 
easy to verify that L« and dom g have the same affine span (Lemma 4. I in [6] ). It follows 
that 0 ~ qri L« cqr i (dom g). [] 

We can use this result to check (i) in Theorem 3.5. Assuming the conditions of the above 
lemma, and that (P) is consistent, we simply define 

f f ( x )  i f A x - b ~ K ,  
g(x)  = - ~ + ~  (3.2) 

otherwise. 

Then 0 ~: qri(dom g) = qri D as required. 
As we shall see, many of the objective functions in which we are interested do not have 

closed domain. To validate condition (ii) for these objectives we return to the lattice setting. 

Lemma 3.8. Suppose X is a separable, order complete Banach lattice. Suppose G is a 

dense, saturated subset of  X containing O, and J is a closed ideal in X. Then J A  G is dense 

i nJNX+.  

Proof. We use some results from [ 19]. The closed ideal J is a band, by Theorem II.5.14 
and its corollary, and therefore a projection band by Theorem II.2.10. Let P :X--* J be the 
associated band projection, which is positive by Proposition 11.2.7 and continuous by 
Proposition I1.5.2. Suppose x ~ J n X + .  Since G is dense in X÷ there is a sequence (xù)~ 
in G with xn--* x, so Pxn--* Px = x. Since the projection onto J J- is also positive, Pxn ~ [0, 
xn], and since G is saturated, Pxn ~ J n G for each n, which proves the result. [] 

Theorem 3.9. Suppose X is a separable, order complete Banach lattice and dom f is a 

dense, saturated subset of  X+ containing O. Let E = X + Ocl I ( D ) . Then provided that (P) 
is consistent, (CQ«) holds. Thus (A), (Be) and (C) are necessary and sufficient for  a 
feasible Xo to be optimal for (P). 

Proof. Defining g by (3.2) and applying Lemma 3.7 shows condition (i) in Theorem 3.5 
holds. By (2.1), E = C F ( c l  dom f, D). Applying Lemma 3.8 with G = d o m f  and J =  
cl I (D)  gives 
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c l ( E n  dom f)  = c l ( J n X ÷  o dom j0 = c l ( JA G) = J n x +  = E, 

so condition (ii) in Theorem 3.5 holds and the result follows. [] 

Notice that Theorem 2.10 shows that this result is the best possible in the sense that the 
chosen set E is the largest convex subset of X÷ whose quasi relative interior contains a 
feasible point. 

Notice also that (CQe) is computationally significant. When it is satisfied we can compute 

a Lagrange multiplier A satisfying conditions (A),  (BFh) and (C) by solving the dual of the 

problem (Pc) : 

fsup - b T A -  ( f +  6Æ) *( - A  *A) 
(Pc*,) l sub jec t  to A ~ K  °. 

Notice that this problem is finite-dimensional, and a primal optimal solution may offen be 
recaptured from a dual optimal solution (see [3] and [4]) .  

4. Examples in Lp 

In this section we shall examine the consequences of the previous results in the specific 
case of Lp spaces. We shall suppose throughout that (S, /z)  is a totally o--finite measure 

space, with no atoms of infinite measure, and l ~<p < + o~. The closed ideals of Lp(S, tz) 

are then precisely the sets {x l x ( s  ) = 0 a.e. on So} for measurable subsets So of S (see p. 
157 in [ 19] ). Note furthermore that ifLp(S,/x) is separable (as is the case for example if 
S is a Lebesgue measurable subset of •m with/z Lebesgue measure) then i fD is nonempty, 
closed and convex we know qri D v~ 0, so we can apply Theorem 2.10. 

Theorem 4.1. Suppose D is an arbitrary subset o f  Lp( S, /z ), and for  some u in Lp( S, /x ), 

x >1 u for  all x in D. Then there exists a largest measurable subset S~ on which x (s )  = u (s)  

a.e. for  all x in D. Furthermore, 

cl I ( D - u )  = {x[x(s  ) = 0  a.e. on Sü}  , 

D c and if  D is convex with Xo in qri D then Xo( S ) > u( s ) a.e. on ( Sù ) . 

Proof. Suppose without loss of generality u = 0. From the structure of the closed ideals we 
know cl I (D)  = {x]x(s)  = 0  a.e. on So}, for some measurable subset So of S. Clearly So is 
the largest measurable subset of S on which x(s )  = 0 a.e. for all x in D: if S~ is any other 
such set, D c {x[x(s  ) = 0 a.e. on $1 }, which is a closed ideal, so contains cl I (D) ,  and thus 

tz(s,\So) =o. 
The last assertion follows from the fact that 

qri D c q r i  CF((Lp) ÷, D) = qri((Lp) ÷ N cl I (D)  ), 
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by Theorem 2.7 and (2.1). Thus by Lemma 2.9 we have 

{x>~O]x(s) = 0  a.e. on So} = (Lp) ÷ n c l  I(D) 

= (Lp) + N cl  I (  {Xo } ) 

= {x>~O[x(s) = 0  a.e. on $2},  

where Sz = { s ~ S I xo (s) = 0 }. Thu s xo ( s ) > 0 a.e. on ( So ) c as required. [] 

Example.  Suppose that Lp(S, i~) is separable and that D is a nonempty closed convex 

subset of  the order interval [u, v]. We know from Theorem 4.1 that there is a largest 

measurable subset Sü on which every x in D satisfies x(s)=u(s)  a.e., and a largest 

measurable subset S~ on which every x in D satisfies x(s) = v(s) a.e.: we identify these 
sets via the closed ideals generated by D - u and v - D respectively. We now claim that 

( x  ] f u ( s )  a.e. onSü'~ 
CF([u ,  v], D) = ~ [u, v] x(s) = l  tl(s) a.e. on S ~ J "  (4.1) 

This is clearly a closed face containing D. 

We know by the separability assumption that we can choose an xo in qri D. By Theorem 

4.1, Xo(S) ~ (u(s), v(s)) a.e. on Sw = (SOù US~°) c. Denote the right hand side of  (4.1) by 

F, and suppose G is a closed face of  [u, v] containing D. We claim that FcG. 
Suppose then that x ~ F. For each n define 

Sù = {s~S[ (Xo +n- l (Xo-X)  )(s) q~ [u(s ) ,  v(s) ]  } , 

and 

x s ) - ( x ~ ( S )  i f s~Sù ,  
"( - (s) otherwise. 

Thus xn~ [u, v] and also x o + n  -1 (Xo-Xn) ~ [u, v], and since 

(~) (n) 
Xo = xù+ ~ (xo+n-l(Xo-Xù)), 

and G is a face, xù E G. It remains to show xù ~ x as n ~ ~. 

By assumption, SùCSw for all n. But 0 ~  (u(s)-Xo(S), v(s)-Xo(S)) a.e. on Sw, so 

n - ~(Xo-X) (s) ~ ( (U-Xo)  (s) ,  (V-Xo) (s ) )  for n sufficiently large. Thus 

B( N ~= 1Sù) = 0. But now we have 

IIxù - x l l ~  =rsù Ixù - x l  p dt~<~fs,,(v-u) p dtv, 

and since ( v -  u)PXs,, $ 0 a.e. in L~, the monotone convergence theorem implies xn--*x. 
Thus, as we claimed, F c  G. []  

We shall be particularly interested in objective functions f which are normal convex 

integrals in the sense of  [ 16]. Let us assume then that the integrand ~b: ~ ~ ( - c¢, + oQ] is 
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a closed, proper, convex function satisfying th(O) = 0, and suppose that for some y in Lq(S, 
/z) (where p -1 + q -1 = 1 ), th* ( y ( . ) )  is summable (this holds automatically if (S,/z) is 
finite). Then 14, :Lp(S,/z) ~ ( - 0% - oo] defined by I~(x) = fsth(x(s) ) d/x is well-defined 
and closed. 

Lemma 4 .2 . / fdom th= [0, + ~ )  then dom 14, is a dense, saturated subset of  Lp( S, tz) + 
containing O. 

Proof. Clearly 0 ~ dom I,b. Any nonnegative, simple function x with tz{slx(s ) > 0} < + 
is clearly in dom I~, and these functions are dense in Lp(S, t z) +, by Theorem 3.13 in [ 18]. 
Finally. suppose u, v ~dom I,~ and u ~<z~< v in Lp(S,/z). Then we have 

y(s)z(s)  - th *(y(s) ) <~ th(z(s) ) -..<max{ th(u(s) ), th(v(s)} a.e. 

and both the right and left hand sides lie in LI(S, tz). Hence so does th(z(")),  so z ~  
dom 16. Thus dom I,~ is saturated. [] 

Example. Suppose L~,(S, tz) is separable, dom th = [0, ~) and al . . . . .  aù~L«(S, tz). 
Consider the problem 

i i n f  ( f f th(x(s) )  d/.~ ) S n 

(MEM) subject to ai(s)x(s) dl~ - b ~ K ,  
S i = 1  

x~Lp(S,  IX) , 

which we assume is consistent. 
(i) There is a largest measurable subset So of S on which every feasible x is 0 a.e. 

(ii) A feasible Xo is optimal for (MEM) if and only if there exists a Lagrange multiplier 
vector A satisfying 

(A') Dual feasibility: A ~ K °. 
(B')  Xo minimizes the Lagrangian 

S i = 1  

subject to x(s) = 0 a.e. on So. 
(C')  Complementary slackness: 

E n= 1Ai ( f sXo(S)a i ( s )  d t z - bi) = O. 

(iii) A Lagrange multiplier may be found by solving the dual problem: 

I(;~ ) t 
'sup - b T A  - t h * -  Aiai(s) dtz 

(MEM*) (So)o 
subject to A ~ K ° .  
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Proof. We apply Lemma 4.2, Theorem 3.9 and Theorem 4.1. The Banach lattice Le(S, ~) 
is order complete by Propositions II.8.3 and 11.5.5 in [ 19]. The dual problem (MEM*) is 
derived as remarked in the previous section, using the fact that (I~)* = lo .  [ 16]. [] 

Notice that in the case p = 1 for example, (MEM) has an optimal solution providing 
limu ~ +~ th(u)/u = + ~. If th is strictly convex on [0, + ~),  the unique optimal solution Xo 
of (MEM) is given by 

{,o«,t ~~a,~,l ifs~~o 
X o ( S )  = ~= 

if s ~ So, 

where A is a solution of (MEM*). This is easily checked using the ideas in [2] and [5], 
for example. 

The case where 

t h ( u ) = I  lup ifu~>0, 

I + ~  i f u < 0 ,  

and K =  {0} now gives the result in [ 15]. 
In general, identifying the set So may not be straightforward. In some instances however 

it is easy to compute. For example, in the convex interpolation problem considered in [ 15 ] 
we could choose S to be the interval [0, 1 ] with Lebesgue measure, and define the constraint 
functions ag to be B-splines: 

f ~ if s~<Si_l o r  s ~ s i + l  , 

ai( s ) = if s = si , 
linear on [si-1, sc] and [s/, si+l] , 

for given nodes 0 =So < s l < " "  < sn +1 = 1. Now for K=  { 0} it is straightforward to check 
that 

So= •{[si_l, si+d Ibi=O} , 

again giving results conciding with those in [ 15]. 

Example. To conclude we consider the following upper-bounded version of (MEM): 

f inf 

(UMEM) ~ subject to 

f th(x(s) ) dtz 

~f  ai(s)x(s) d/x)~=l - b ~ K ,  
s 

x~LI(S,  tx) , 
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where we now assume (S,/z) is finite and dom qS= [c, dl,  a compact interval. As before, 
we assume (UMEM) is consistent. Applying Corollary 3.6 and the example following 
Theorem 4.1 we obtain 

(i) There are largest measurable subsets Sc and Sd of S with every feasible x equal to c 
a.e. on Sc and d a.e. on Sd. 

(ii) A feasible Xo is optimal for ( UMEM ) if and only if there exists a Lagrange multiplier 
A satisfying conditions (A')  and (C')  of the previous example and such that Xo minimizes 
the Lagrangian (4.2) subject to x(s )  = c a.e. on Sc and x(s )  = d a.e. on Sd. 

(iii) A Lagrange multiplier may be found by solving the appropriate dual problem, as 
remarked in the previous section. 
A typical example of a measure of entropy with bounded domain of interest in practice is 
the Fermi-Dirac entropy: 

I0 1 o g u + ( 1 - u )  l o g ( 1 - u )  i f 0 < u < l ,  
OS(u) = if u=0 ,  1, 

I. + ~ otherwise. 

See for instance [ 12] for other examples. 
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