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TECHNICAL NOTE 

Contours of Liapunov Functions 1 

M .  C H A M B E R L A N D  2 AND A. S. LEWIS 3 

Communicated by T. L. Vincent 

Abstract. As is well known, the stability of a dynamical system in two 
dimensions may be demonstrated in a very intuitive fashion from the 
existence of a suitable positive-definite Liapunov function, providing 
the contours of this function in a neighborhood of the stable point are 
Jordan curves. It is shown that the Liapunov function will certainly 
have this property if the stable point is an isolated stationary point in 
the sense of the Clarke calculus, but a counterexample is given if this 
assumption is weakened to the stable point being an isolated local 
extremum. 
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1. Introduction 

The differential equation 

2(t) = f ( x ) ,  (1) 

where the dot denotes derivative with respect to t and f :  W-+ R ~, W c R n, 
is used to represent various physical phenomena. For  example, x(t) may 
denote the position and velocity of  a particle in R n/2 at a time t, and (1) 
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may represent Newton's equation coupled with some constitutive equa- 
tions. If  for some ~ e R n, we have f(~)  = 0, and f ( .  ) is Lipschitz at 0, then 
with the boundary condition x(0) = s we have ~(t) = 0 for all t. We call 
an equilibrium point, since the differential equation implies x(t) = $ for all 
t. Physically, this means, if the particle is located at $, it has always been 
there, and it will remain there. 

The standard technique for testing the stability of equilibrium points is 
via Liapunov functions. Loosely speaking, an equilibrium point is stable if 
all nearby solutions stay nearby; for a formal mathematical definition, see 
Ref. 1. If  in addition all nearby points tend toward the equilibrium point 
as time progresses, the point is said to be asymptotically stable. Almost 100 
years ago, Liapunov discovered some conditions which guarantee the 
stability of an equilibrium point. Liapunov's stability theorem may be 
stated as follows. 

Theorem 1.1. (Liapunov). Let $~  W be an equilibrium point of  (1). 
Suppose that, for some neighborhood U of 2, there exists a continuous 
function V: U ~ R  which is continuously differentiable on U\{s and 
satisfies the following conditions: 

(i) V(~) = 0, 
(ii) V(x) >0 ,  for all x~U\{~},  
(iii) f , '=VV(x) . f (x)  <0, in U\{~}. 

Then, ~ is stable. If the last condition is strengthened to 

(iv) I7 < 0, in U\{~}, 

then ~ is asymptotically stable. 

A function V(. ) which satisfies conditions (i)-(iii) is called a Lia- 
punov function. If  condition (iv) is also satisfied, it is a strict Liapunov 
function. When Eq. (1) is motivated physically, and ff is suspected to be a 
stable equilibrium point, usually the energy of the system is a good 
candidate for a Liapunov function. Condition (iii) implies that no energy is 
added to the system. 

An analytic proof for Liapunov's result may be found in Ref. 1 or Ref. 
2. In looking at these proofs, one discovers that the differentiability of 
V(- ) is never used, except in conditions (iii) and (iv). The proof still goes 
through if we relax our conditions so that V(. ) is continuous and replace 
condition (iii) with 

(iii') V(x(s)) < V(x(t)), whenever s > t, x(s), x(t)~ U, and x( .  ) 
satisfies (1), 
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and condition (iv) with 

(iv') V(x(s)) < V(x(t)), whenever s > t, x(s), x(t) ~ U, and x(" ) 
satisfies (1). 

The reader is referred to Ref. 3, p. 89. If a Liapunov function in question 
is only assumed to be continuous, we shall assume that it satisfies the 
appropriate primed equation. 

The analytic proof, however, gives no intuitive insight into how the 
Liapunov function gives stability. In the case n = 2, Hirsch and Smale 
(Ref. 1) suggest looking at the contours of V(. ), 

vd-- {x e v l V(x):  d}, 

and note that, if V d is a Jordan curve (simple closed curve) surrounding 2 
for all sufficiently small d > 0, then condition (3) implies that particles stay 
inside these level sets. As we shall see, conditions (i), (ii), and (iv) imply 
that the curves Vd are indeed Jordan curves nested around 2, and it is this 
fact which gives the intuitive basis to a geometric proof. Some authors 
(Refs. 4-5)  present their stability proofs informally by asserting that this 
contour property is automatically true from conditions (i) and (ii). Some 
care is needed here: consider the function 

~yE + xE +4x3sin(1/x),  x 50 ,  
V(x, y) = (y2, x = O. 

This function is continuously differentiable and has a strict local minimum 
at the origin. It can be verified that this function has a sequence of strict 
local extrcma approaching the origin along the positive x-axis, so that 
there does not exist an e > 0 such that the contours I'd are Jordan curves 
for all de(0,  e). 

This motivates us to study the geometry of positive-definite functions 
and their level sets. It is interesting to compare our results with the 
techniques used in the classical approach. For example, Theorem 3.1 in 
Chapter 1 of Rcf. 6 shows that, if V satisfies conditions (1) and (2) in our 
Theorem 1.1, then the local level sets are closed surfaces with respect to 2. 
That is to say, any continuous path from 2 to the boundary of U must pass 
through each local level set. By contrast, our concern is in identifying 
conditions in the two-dimensional case ensuring that these level sets 
conform to our geometric intuition that they should be Jordan curves 
surrounding 2. This is of course not necessary for the approach adopted in 
Ref. 6, but we believe that our results help toward a better understanding 
of the method of Liapunov functions and in diverse other areas concerned 
with local minima of functions (cf. Ref. 7). 
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There has been a huge amount of recent interest in generalizations of 
dynamical systems and control theory to such areas as differential inclusions 
and nonsmooth control (see Refs. 7-8  for examples). It therefore is natural 
to ask the above geometric questions in cases where Liapunov functions are 
not known to be smooth (see Chapter 6 of Ref. 8 for examples). 

For the majority of this study, we shall divorce our attention from the 
connection to the differential equation (1). We will require some results from 
planar topology, so we shall make references to Ref. 9. 

2. Main Results 

The first result presented gives a very general fact about the connected- 
ness of  level sets for a positive-definite function. A related result is found 
in Ref. 10. We denote the open ball in R 2 with center 2 and radius r as 
B(.f; r). 

Theorem 2.1. Suppose that V: U ~ ~ is continuous, U c R z is open, 
and 2 e U. Suppose also that V(~) = 0 and V(x) > 0 for x e U\{~}. Then, if 
V(. ) has no local minima in U\{~}, there exists r > 0 and 6 > 0 such that, 
for all de(0 ,  6), the lower level set 

_v~ = {xeS(x; r) [ V(x) <a} 

is connected. I f  in addition V(. ) contains no local maxima in U\{~}, then 
.__Va is simply connected, the contour 

v. = {xeB(~; r) [ V(x) =a} 

is connected and is exactly the boundary of Vd, cl(Va)/Vd, and the upper 
level set 

~ = {x es (~;  r) I V(x) > a} 

is connected. 

Proof. Since xEU, and U is open, we can choose r > 0  so that 
B(2; r) c U. Define 6 by 

6 =min{V(x) lllx-~ll =r}. 
By compactness, 6 > 0. Choose any de(0,  6) and suppose _V u is not 
connected. Then 

Y~ = SI u S2, 

where $1 and $2 are open, disjoint, and nonempty. Suppose without loss of 
generality that ff eSl.  Since c1($2) is compact, there exists a y ecl(S2) which 
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minimizes V(.)  on d(S2), hence V ( y ) < d .  If yed(S2)\S2,  this would 
imply by continuity that V{y)>_ d, which is a contradiction, so y~S2. 
Then, y is a local minimum of V(.),  since $2 is open, and y # x, 
contradicting our hypothesis. Thus, Ed is connected. 

If V(-) also has no local maxima on U\{2}, suppose that ~d is not 
simply connected. Then, for some Jordan curve J contained in Ed, which 
bounds a nonempty, open, simply connected set $3, there is some zeS3  
such that V(z) >_ d (see Ref. 11, p. 104). This implies that the maximum of 
1I(. ) on S3uJ ,  denoted by ~, satisfies V(i) > d. Since g~J, V( ' )  attains a 
local maximum at s a contradiction, so Vd is simply connected. If u ~ Ira, 
but uCd(Kd), then in some neighborhood of u, V(x) >_d, so u is a local 
minimum, a contradiction. Thus, Vd c cl(K__d)\Vd, and the reverse inclu- 
sion holds by continuity. Finally, the fact that lid and 17 d are connected 
follows from Ref. 9, pp. 143-144. [] 

This gives us a lot of information regarding the contours and leads to 
a natural question: if S is a bounded, open, simply connected set, is cl(S) \ S  
a Jordan curve? Unfortunately, as is well known, it may not be. Consider 
the following set: 

s = {(x,y) e•= I - 1  < x < 1, - 3  < y  <f(x)},  

where 
~'sin( 1/x), x # O, 

f ( x )  = [ . -  1, x = O. 

This set is clearly bounded, open, and simply connected, but its boundary 
cl(S)\S is not a Jordan curve. Pictorially, the problem lies with the points 
on the y-axis, with y ~( - 1, 1]. These points belong to cl(S)\S, but they are 
not accessible from S. A point p is accessible from a set S if there exists a 
Jordan arc with one endpoint at p lying entirely in {p } u S. A property of 
Jordan curves is that each point p on the curve is accessible from both its 
interior and exterior. Sch6nflies used this result to obtain a converse of the 
Jordan curve theorem (see Ref. 9). 

Theorem 2.2. (Sch6nflies). Suppose that the sets A, G~, G 2 c ~2 sat- 
isfy the following properties: 

(i) A is compact, 
(ii) G~ and G2 are both open, nonempty, and connected, 
(iii) [~2\A = G1 u G2, 
(iv) GlnG2=~5 ,  
(v) each p ~A is accessible from both G~ and G2. 

Then, A is a Jordan curve. 
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Clearly, we could replace R 2 with any open ball B which contains A. 
Using this theorem, we can give conditions which imply that the contours 
near the minimum of  a Liapunov function are Jordan curves. Notice that, 
since the Schtnflies theorem does not extend simply to higher dimensions, 
this fairly simple approach will not go through immediately in higher 
dimensions. For  example, every point on the torus in three dimensions is 
dearly accessible from its interior and exterior, yet it is not homeomorphic 
to the sphere. Despite this, generalizations of the following result to n > 2, 
n # 5 ,  are possible using much more advanced techniques (see Refs. 
12-13). For  n = 5, the question is in fact equivalent to the Poincar6 
conjecture (see Ref. 12). 

Theorem 2.3. Suppose that, for some open neighborhood U c g~: of  
~, there exists a continuous function V: U ~  ~ which is continuously 
differentiable on U\{X} and satisfies the following conditions: 

(i) V($) =0, 
(ii) V(x) > 0 ,  for all x ~ U \ { ~ } ,  
(iii) for all xeV\{Yc}, VV(x) ~0 .  

Then, there exists some neighborhood W c U of  ~ and an E > 0 such that 
the contours 

v .  = {x w l V(x) = a} 

are Jordan curves for each de(O, E), each of  which surrounds ft. 

Proof. The conditions imply that Theorem 2.1 is applicable. We 
choose W = B(~, r) as in Theorem 2.1, and then identifying A with Va, G, 
with Vd, and G2 with 17d, all the conditions of  the Schfnflies theorem are 
satisfied, with the exception of  accessibility. To show that any p e Vd is 
accessible from both Vd and Vd, we just need to construct ascent and 
descent directions at any x ~ ~. The technique is standard: consider the arc, 
parametrized by t, 

x(t) =p  + tVV(p). 

Using Taylor's theorem about  t = 0, we obtain 

V(x(t)) = V(p + tVV(p)) 

= d + tVV(p) .  VV(p + i-VV(p)), 

where Y~(0, t). As t --,0, F ~ 0 ,  hence condition (iii) and the continuity of 
VV imply that there is some t * > 0  such that {x(t) ltG[O, t*]} is an arc 
giving the accessibility of  p from 17a, and {x( t )[ t~[- t* ,O]}  is an arc 
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giving the accessibility ofp  from Va. We then apply the Sch6nflies theorem 
to deduce that Vd is a Jordan curve. This holds for each de(0, E). [] 

If Ix(" ) is a strict Liapunov function for an equilibrium point of Eq. 
(1), the conditions for Theorem 2.3 are satisfied, so its contours actually 
match intuition. We can weaken this condition by noting that, if the 
Liapunov function is only continuous [i.e., we replace condition (iv) with 
(iv')], the points of Vd are still accessible from 17 d and Vd by considering the 
arc x(. ) from Eq. (1). 

Upon consideriing what we have done so far, we see that, though 
Theorem 2.1 requires V(. ) to be only continuous, Theorem 2.3 assumes 
V(. ) to be C ~ to obtain accessibility. To weaken the amount of regularity 
required to achieve accessibility, we would have to modify condition (iii) of 
Theorem 2.3. We do this by appealing to the Clarke calculus. 

In generalizing calculus to nondifferentiable functions, Clarke (Refs. 7 
and 14) introduced the notion of generalized gradients and directional 
derivatives. For the class of locally Lipschitz functions, the theory extends 
effectively. This generalized derivative of a function V(' ), which we denote 
by O V(.) ,  is a set-valued function. When the function is continuously 
differentiable, this set contains one element which is the derivative. If the 
function is convex, the set matches the subderivative which is obtained in 
convex analysis (see Ref. 15). 

Using this more general theory, we may now extend our results. 

Lennna 2.1. Suppose V(. ) is a locally Lipschitz function and 
V(x) = ~. Then, if 0 ~ ~ V(x), x is accessible from V~ and 17. 

Proof. Again, we simply need to construct ascent and descent direc- 
tions at x; cf. Ref. 7, Section 6.2. Since Oq~V(x), there exists d such that 
the generalized directional derivative V~ d ) <  0; see Ref. 7, Theorem 
2.1.5. Then, we must have x + h/~V~ for all 2 sufficiently small. If not, 
then there exists a positive sequence )~m ~ 0, with V(x + 2rod) > ~, so that 
for all m, 

[ V ( x  "Jr ~rnd) - V(x)][~  m ~__ O. 

This leads to the contradiction 

0 > V~ d) = lim sup [V(y + td) - V(y)]/t >_ O. 
fi,[0 0 < t ~ f i  

[[y - xll < 6 

We thus have accessibility from __V~. Accessibility from 17 is proved 
similarly. [] 
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The proof above relies only on the construction of a descent direction. 
This is possible using a variety of generalized derivatives in place of 
Clarke's; see for example Ref. 16 for a survey. 

If  O~OV(x), we say that x is a stationary point. The following result 
gives a substantial generalization of Theorem 2.3. 

Theorem 2.4. Suppose that U ~ R z is open and V: U ~ R is locally 
Lipschitz with a strict local extremum ff which is an isolated stationary 
point. Then, the contours of  V( . )  in a neighborhood of ~ are Jordan 
curves surrounding ~. 

Proof. The proof is the same as that of  Theorem 2.3, except for the 
accessibility part, which is proved by Lemma 2.1. [] 

A somewhat different, more topological approach to this problem 
appeals to a deformation-invariant definition of a critical point; see Ref. 17. 
Suppose that V: U ~ R is a continuous function, where U ~ R n is open. A 
point ~ e U is an essentially regular point of V(. ) if there exist open 
neighborhoods D and [3 of ~ in U and an $-preserving homeomorphism 
q~:/3 ~ D such that k = V o q~ is a nonconstant affine function on /3 .  All 
other points of  U are called essentially critical points. 

Notice that any local extremum is an essentially critical point. On the 
other hand, the origin is not an essentially critical point of  the function 
y = x 3, although it is a critical point. 

Theorem 2.5. Suppose that U c R 2 is open and V: U--} R is continu- 
ous with a strict local extremum ~ which is an isolated essentially critical 
point. Then, the contours of  V(. ) in a neighborhood of ~ are Jordan 
curves surrounding ft. 

Proof. As observed above, ~ is an isolated local extremum, so 
Theorem 2.1 applies. It remains to show that, if x0 is an essentially regular 
point, then Xo is accessible from Vd and 17d, where d = V(xo). By essential 
regularity, there are neighborhoods D and D of x0 and a homeomorphism 
~b: B ~ D  preserving Xo so that, for any xe/3,  

V(c#(x)) - V(c#(Xo) ) = a .  (x - Xo), 

for some nonzero a ~ R  2. Thus, if we define x(t) -'=x0 + ta, then x(t) ~/3 for 
all small t, so 4~(x(t))~D and V(c#(x(t))) = d +tl]a II =. So for some t * >  0, 
{4~(x(0) I t~[0, t*]} is a Jordan arc giving accessibility from x 0 to 17a, and 
similarly for Va. [] 
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In an attempt to weaken the conditions further, we now outline the 
construction of  a function F which satisfies all the conditions of Theorem 
2.4 or Theorem 2.5, with the exception that ~ is simply an isolated local 
extremum, rather than the stronger condition of  being an isolated station- 
ary point or isolated essentially critical point. This function will not have 
contours near 2 which are all Jordan curves. 

3. Counterexample 

Define an even function g: [ - 1 ,  1] ~ R by g ( 2 - ' ) =  ( - 1 ) "  + 2 ,  for 
n e7/+, g linear on each interval [2-", 21 -n], and g(0) = 1. Then, define a set 
T c R 2 as the union of  the graph of g with the line segments [(0, 1), (0, 3)], 
[(1, 3), ( 1 , - 1 ) ] ,  [ ( 1 , - 1 ) , ( - 1 , - 1 ) ] ,  and [ ( - 1 , - 1 ) , ( - 1 , 3 ) ] .  Let TI be 
the set bounded by T, 

T,,= {(x, y)eR21 --1 < x  < 1, --1 < y  <g(x)};  

define the distance function f :  R2 ~ R by f(x, y) = dist((x, y); T), and 
define F: R 2 ~  ~ initially by 

( 1 - f ,  on T1, 

F(x, y) = ~1, on T, 
/ 

L 1 + f ,  otherwise. 

The function F ( - )  clearly has a unique global extremum (minimum) at 
(0, 0) with value 0. It also has a global Lipschitz constant of  one. To show 
that (0, 0) is the only local extrema, one may interpret the function through 
the radius of  the largest ball which just touches T. For any point 
(x, y)r  0 ) u  T}, it is not difficult to see that the ball corresponding to 
such a point may be expanded or contracted continuously by moving the 
center in a particular direction. This also gives accessibility, which implies 
that Fd is a Jordan curve for d e ( -  1, 0) u (0 ,  oo). Since the contour Fo = T, 
this is clearly not a Jordan curve. 

Upon  examining this function more closely, it is also not hard to see 
that, for d sufficiently close to - 1 or d sufficiently large, the contours of  F 
corresponding to these values are star-shaped about (0, 0). The contours 
consist of  line segments and arcs of  circles of  constant radius. Even 
stronger, we can actually parametrize any one of these contours in polar 
coordinates by a Lipschitz function of an angular variable 0 about  the 
center (0, 0). Let gl ( ' ) be the function corresponding to such a contour F1 
close to (0, 0), and let g2(" ) be the function corresponding to such a 
contour F2 outside T. 
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We are now going to redefine F inside F1, so cut out the region 
enclosed by F1. Make a copy of the region enclosed by F2, and scale it by 
a factor ~ < 1 with origin (0, 0), so that it fits strictly into the cut-out 
region. The boundary of this shrunken region (F3, say) is parametrized by 
ctg2(. ); see Fig. 1. 

Call 01 the value of F on the contour F1; call v2 the value of F on F2; 
and let us redefine F = v3 on F3, where v3 < vl. Redefine F on the annular 
region between F3 and F1 using polar coordinates by 

.F r--o~g2(O) 7 
F(r, O)=v3 + ( v , -  v,)Lg,  - 

This function is Lipschitz, since gl and g2 are Lipschitz; and providing v3 is 
sufficiently close to vl, the Lipschitz constant 1 will be maintained. Notice 
that F is strictly increasing in r for constant 0. 

_ J 

Fig. I. 

Y 

r2 

T 

~ r=g~(s) 

r=c~g2 (e) 

Level sets of counterexample. 

x 

r,.,cJ2(e ) 
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We have that F i s  Lipschitz 1 between and o n  0~F2 and F2, with F -- v2 
on F2 and F- -v3  on ~F2, where v3 < v2 and 0 < ~ < 1. Suppose that F h a s  
been defined between and on ~P+ 1F2 and ~PF2, p = 0, 1 . . . . .  m. Define F 
between and o n  atm+2F 2 and ~m+lF 2 by 

F(x, y).'= ~r(( 1/00(x, y)) + v3 - ~v2. 

Allowing m to increase, we can define F on the entire region enclosed by F2 
except the origin. We define 

F(0, 0) = (v3 - ~v2)/(1 - ~). 

To see this, first note that we may inductively prove that 

1 
F -  (v3 - ~v2 + (v2 - V3)~m), on ~"Fz. 

1--0~ 

Secondly, F is well defined, since the previous result shows that 

F(ot m+ IY'2) ----- ~F(ctmF2) + v3 - ~v2, m = 0, 1 . . . . .  

as required. Lastly, F is Lipschitz 1 on the region enclosed by F2. If  F ( .  ) 
is Lipschitz 1 on and between ~m+lF 2 and ~"F2, then otF(1/~) is Lipsehitz 
1 on and between am+2F 2 and ~m+lF2, so induction shows F is Lipschitz 
1 on the region without the origin. Since F is defined by continuity at the 
origin, the result follows. 

Now each region between a m + I F  2 and ~mF 2 has a scaled, shifted copy 
of F between F2 and ~F2. Thus, we do not introduce any local extrema, 
(0, 0) remains a strict minimizer, and yet each of the regions (which shrink 
to the origin) contains a contour of F which is not a Jordan curve. 
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