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Abstract. We consider nested sequences of linear or convex closed sets of the form arising in 
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1. Introduction 

this note, principally we give some examples showing the limitations of the 
slice topology and other set topologies on convex (linear) subsets of a nonreflex- 
ive Banach space. In many applied optimization or estimation problems (inverse 
problems), the constraint sets take the form of a nested sequence of closed con- 
vex or affine sets. In the reflexive setting, these problems may be addressed using 
Mosco convergence and related ideas (see [4, 7]). It is well known [4] that Mosco 
convergence has many defects outside of reflexive spaces and this stimulated the 
study of other convergences, especially slice-convergence ([1, 2, 3] among many 
references). 

Suppose that X is a Banach space. We recall that a sequence of closed convex 
sets {C~} is slice convergent to Coo if, for each closed bounded convex set W, the 
distance, 

dist(Cn, W) ~ dist(Co~, W) as n ~ e c .  

Here, the distance is given by 
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dist(C, W )  :=  inf lie - wll : e c ,  w c w } .  

Less arduously, {Cn} is Wijsman convergent to Coo if, for each point x, the distance, 
do(z) :=  dist(C, z) satisfies 

dist(Cm z) -+ dist(Coo, z)  as n 

We also recall that {Cn} is Mosco convergent to Coo, if 

weak-lim sup Cn = strong-lira inf Cn = Coo 

and less arduously { Cn } is Painlevd-Kuratowski convergence to Coo if 

strong-lira sup Cn = strong-lim inf Cn = Coo, 

and refer to [ 1, 2, 3, 4] for further details. 

2. Results 

Unhappily, as we proceed to illustrate, outside of reflexive spaces these conver- 
gences are largely incompatible with the study of nested (linear) sequences - 
although clearly monotone decreasing sequences do converge Mosco. We are, how- 
ever, able to provide a partial redress in Theorem 4 below. For nested sequences of 
closed convex sets, this incompatibility was already observed in [2] (in the proof 
of Theorem 3.8 (3) ~ (1)). 

THEOREM 1. Suppose that X is a Banach space in which every decreasing 
sequence of closed linear (so convex)sets" { Cn } with intersection Coo converges 
in the slice topology to Coo. Then X is reflexive. 

We begin with the following Lemma: 

LEMMA 2. In every nonreflexive separable Banach space X there exists a w*- 
dense sequence {a*} in X* is not norm-dense. 

Proof Let F E X**\X so that 

N(F) := {x* e X *  : (F,x*) =O} 

is w*-dense in X* and norm-closed but not w*-closed. Since X is separable B (X*) 
is w*-metrizable and separable. Thus, so is B(X*) N N(F). If {a*} is chosen w*- 
dense in N(F), then it is necessarily w*-dense in X* but it has norm-closure lying 
i n N ( F ) .  [] 

Proof of Theorem 1. It suffices to assume that X is separable and to build our 
example therein. Using Lemma 2, let us suppose that 

span{a*, n = 1, 2 , . . . }  (*) 
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is w*-dense in X* but not norm-dense. Set Y := s--~fi{a~, n = 1 , 2 , . . . }  ¢ X*. 
Let 

a* C n : = { x E X  " ( k , x ) = 0  for l < _ k < n } .  

Then MC~ = {0} = Coo and so Cn ~ Coo Mosco. 
We next show that Cn does not converge in slice topology to Coo. Let a* E 

S ( X * ) \ Y  and p i c k 7  such that 0 < 7 < dy(a*). Let S := {x • ]lxII < 
1, (a*,x) > 7}. 

We claim that Cn M S 7~ 0 [while clearly dist({O}, S) > 7 > 0]. Otherwise, the 
value of 

p := sup{(a*,x)  " (a~,x) = 0  for 1 < k < n ,  Ilxll <_ 1} _< 7 .  

By standard arguments (or by the quasi-interior (CQ) [6]), there is a Lagrange 
multiplier (A1, . . . ,  Am) such that 

a* ~ n 
- Aka~ = sup ( a * - ~  Aka*k,x ) = p  

k=l , Ilxll- <1 k=l 

and so 7 < d r  (a*) <_ p <_ 7. This contradiction shows that the gap between S and 
Cn is zero. Hence slice convergence does not occur. [] 

We are particularly interested in moment problems of the form studied in [5] 
and [6]. These give rise to constraints of the form (a~, x) = (a~, ~) for 1 < k < n; 
especially in L1 ([a, b], dA) where {a~ } are Hausdorff or Fourier coefficients [a~ = 
•k-1 or a~ = eikt]. 

COROLLARY 3. If  X* is not separable and {a~} is w*-densely spanning in X*, 
se t  

C n : = { x E X  • ( a ~ , x ) = ( a ~ , ~ )  for l _ < k _ < n } .  

Then n C ,  = {~} = C a  and Cn $ Coo Mosco, while C,  does not converge in 
slice topology to Ca.  In particular, this ho lds / fX  = Ll([a, b], dA) and {a*} are 
Hausdorff or Fourier coefficients'. Similarly, this is the case for multi-dimensional 
Hausdorff or Fourier coefficients in LI(T, dA) (T infinite compact in R" and 
# ~ dA Lebesgue) or in C(T). 

As a positive result we have the following where epi-slice convergence denotes 
slice-convergence of epigraphs: 

THEOREM 4. Suppose that {Cn} is a sequence of closed convex sets in a Banach 
space X such that 

O 0  o o  

( d - M )  ~.J N C n D C a D w - l i m n s u p C n  
r n , ~  l n ~ z n  
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as holds if the sequence is monotone decreasing. Suppose also that f : X --+ 
] - oo, oo] is convex with an everywhere Mackey continuous Fenchel conjugate 
(equivalently every linear perturbation o f f  is weakly inf-compact [7]). Then f n :=  
f + 5c.  ---+ f ~  := f + 6c~ in the epi-slice topology. 

Proof From [2] (as improved by Attouch-Beer in the Sem. Anal. Convex Mont- 
pelier, 1991), we must show (i) and (ii) below. 

(i) Given any xo~ in X there exists xn ~ x ~  so that fn(Xn) --+ fo~(x~).  
(ii) Given any y ~  in X*, there exists yn -+ yoo so that fr~(Yn) --~ f ~ ( Y ~ ) .  

(i) We set Xn := zoo for all n. If x ~  E d o m ( f ~ )  = C~ ,  we have x ~  E Cn for 
large n by the discrete liminf inclusion, and so )~(xoo) = f ~ ( x ~ )  for large n. If 
x ~  ¢f dom( f~ ) ,  then x ~  ~ C ~  and so zoo E X \ C ~  for large n as otherwise we 
violate the weak-limsup inclusion. Thus again, f ~ ( x ~ )  = fo~(xo~) = (=  oc). 

(ii) We set Yn := Y~ for all n. Let g :• x --~ f ( x )  - (y~,  x). Then f * ( y~ )  = 
- infxEc, 9(x) for n = 1 . . .  c~ and 9 has weakly compact lower-level sets. By 
[6, Thm 2.9(ii)] fr~(Y~) --+ f ~ ( Y ~ )  as required. [] 

3. E x a m p l e s  and  R e m a r k s  

Remarks 5. (a) The condition on f is satisfied if X = LI (T ,# )  with # a finite 

measure and 

f ~p(x(t)) #(dt) where ~ • R -+] - ec, c~] y(z) 
. j  

T 

is closed convex with p* everywhere finite [6]. 
(b) By contrast, if f := 0 and C~ are as in Theorem 1 or Corollary 3, then 

f~ := f + 5c~ does not converge to fo~ := f + 6co~ in the epi-slice topology. 
This follows either directly on observing that slice convergence of Cn to C ~  
coincides with epi-slice convergence of 6c,~ to 6c~ or by checking that (ii) fails in 
the previous argument for any y ~  ¢~ s-p--~(a*, n = t, 2 , . . .} .  Indeed f ~ ( y ~ )  = 
5" (y~)  = 0, while if Yn --+ Yo~ then eventually Yn f[ s--p-~(a~, n = 1, 2, } 

C o o  * ' '  

• c,, (Y~) = ~ for n large. and so f*(y~) = 5" 
(c) In fact, we have established conditions so that f~ ---+ f and f* --+ f* 

pointwise and, a fortiori, in the epi-slice topology. 
(d) Even in ZR n, simple examples show that we may not replace (d - M)  

by Mosco convergence in the hypotheses of Theorem 4 without a more stringent 
constraint qualification [7]. 

(e) The construction of Theorem 1 gives another proof that slice and Mosco 
convergence coincide for all decreasing sequences of convex (indeed linear) sets 
if and only if X is reflexive. (See also [21.) 

(f) Similarly, Mosco and Painlevd-Kuratowski convergence coincide for all 
decreasing convex sequences if and only if X is a (possibly finite-dimensional) 
Schur space (i.e. weak and norm sequential convergence coincide). Indeed, if X 
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is not Schur, we construct a sequence {On} with nonzero weak limit coo such that 
infn IIc~ - cooll > 0. Then set C,~ := co{0, cn} and we check that Cn converges 
Painlev6-Kuratowski to {0} but is not Mosco convergent. 

(g) We observe that in any nonreflexive space we may easily construct nested 
convex (nonlinear) closed bounded subsets { Cn } with nonempty intersection C ~  
which do not converge in the sense of Wisjman (point-wise convergence of the 
respective distance functions in the original norm) and so, afortiori, do not converge 
in the slice topology. (Another construction is given in [2], Theorem 3.8.) To see 
this, let • be of norm one and consider D := {x " IIx - Y~[I <- ½}. As D 
contains a ball in a nonreflexive space, James theorem assures that we may find 
a decreasing sequence of closed convex sets {Dn} in D with void intersection. 
If Cn := co{0, Dn} and Coo := {0} then Cn decreases to {0}, and converges 
Mosco, but fails to converge in the sense of Wijsman. 

Indeed, dc,~(Y~) <_ dD,~(Y~) <_ ½, but dco~(2) = 1. Afortiori, we again have an 
example of nested sets which fail to converge in the slice topology. [] 

We recall that {Cn} slice converges to Coo if and only if {C,~} Wijsman 
converges to Coo for every equivalent norm on X ([ 1], and private communication). 
In light of Theorem 1 and Remark 5(g) it is reasonable to ask when the linear sets 

C n : = { x • X  • (a~,x) = 0  for l _ < k < n }  

converge Wijsman (with respect to a given norm on X) to Coo. Here, as before, 
we suppose {a* } to be w*-densely spanning in X* but not norm-dense. 

Let (X, 1[ []) and Y~ • X be given and observe that 

on := ½dc,~(2) 2 = infx {½11xll 2 • (a*k,x) = (a~,2), 1 < k < n} 

which has Fenchel dual 
n n 

o-n = max { ~ ~ k { a ~ , 2 ) -  ½H ~ Aka~]]2}, 
k = l  k = l  

= max{(p,Y:) - ½ Ilpjl2, • p e span{a~ , . . . , a~}} ,  

so that, with Y as before 

sup O'n~- lim Crn = sup{(y ,Y ' ) -  ½ ][yl lZ.ye Y} .  
?'/,----+ O C  n ---+ ¢x:} 

Since 

=~[ [x l l  = s u p { < y , ~ > - ½ H y l l  2 yeX*}, 

it is apparent that Wijsman convergence fails in H ]] (at ~) precisely if 

sup{<y,z~> - ½ Ilyll2, • v • Y} 

< 1 i1~112 = s u p { ( y , : ~ ) -  ½ Ilyll 2 • y • x * )  
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or, equivalently, f l Y  = s-p-tiff{a,, n = 1 , 2 , . . . }  

sup{(y,  2) : []y[[. < 1 ,  y E Y }  

< I1~11 = s u p T ( y , ~ )  : Ilyll, - 1, y e x * } .  (**) 

Thus, it remains to determine when (**) holds for {a*} as in (.): that is to say, 
an example exists precisely unless is Y (1-) norming for X. We recast this as: 

THEOREM 6. Let (X, II II) be a given normed space. As before suppose {a,}  to 
be w*-densely spanning in X*  with 

Y := span{a*, n = 1 ,2 , . . . }  • X* . 

The linear sv~s 

C n : = { x C X  : ( a ~ , x ) = O  for l < k < n }  

converge Wijsman (with respect to the given norm on X )  to Coc - {0} i f  and only 
~ is a norming subspace o f  X*. 

EXAMPLES 7. (a) Consider, the case of LI([0, 1]) and the w*-dense subspace 
Y := C([0, 1]), arising from Hausdorff or Fourier moments. We will show Y is 
norming in It I1~ and so the corresponding sequences which fail to converge in slice 
topology are always Wijsman convergent. 

Fix • in L 1 and e > 0. We select 0 ¢ m in L ~ with H~ - raN1 < e/3.  Now we 
construct a continuous function g with IIg - sign(re)Ill < ~/(311mll~) and with 
Ilgll~ -< 1, Then 

1 

f g(t)~(t)dt 
0 

1 1 

f e > J s i g n ( m ) ( t ) m ( t ) d t - 2 e  >_ g ( t ) m ( t ) d t -  -~ _ -~- 

0 0 

2e 
= llmll~ - T -> I}2111 - ~.  

Since Ilgll~ -< 1, c([0,1]) is norming as claimed. 
(b) Suppose Y is a nonreflexive separable normed space and X := Y* while 

the functionals {a ,}  have norm-dense span in Y. Then Y is norming and so the 
corresponding sets {Cn} will be Wijsman convergent but will fail to be slice 
convergent. In particular, such is the case for X := 11 and Y := co. 

(c) Suppose X is a separable space with a nonseparable dual (i.e. X is a 
separable non-Asplund space). We may always construct a separable norming 
subspace Y in X* by fixing a countable dense subset {xn : n = 1, 2 , . . . }  in X 
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and taking sequences of norm-one linear functionals {f& : n, m = 1 ,2 , . . . }  with 
s u p , ~  (f~,x~) = IlXnll. T h e n Y  := s-p-a~{f~ : n , m =  1,2 , . . . }  is a separable 
norming subspace in X*. 

(d) More precisely, if we fix • E X with 1t~11 = 1 and select F E X** \X  so 
that l t F  - ~11 < ,~ < 1, as we always may arrange, then Y := N(F)  = {x* E 
X* : ( f ,  x*) = O} satisfies 

sup{(y ,~)  : Ilyll ~ 1, y e Y} ~ c~ < ll~ll = sup{(y,:~) : Ilyll ~ 1, y e x * } .  

If, as in Theorem 1, {a*} is chosen w*-dense in N(F) ,  then we see that in any 
nonreflexive space (separable or not) we may construct nested linear sets {C~} 
such that {Cn } is not Wijsman convergent in direction :~. 

(e) Consider X := co and take {a*} to be {e*}, the coordinate functionals. 
Then the corresponding {C~} do slice-converge. This illustrates that in Theorem 1 
and Theorem 6, it is essential that Y not equal X*. Moreover, we observe that, in 
the uniform norm, co admits no nontrivial (1-)norming subspaces. [] 

EXAMPLE 8. (a) Suppose that X is a separable nonreflexive Banach lattice with 
positive cone X+. Many of the most interesting concrete sequences arising in 
estimation theory are realizable as 

C + : = { x E X +  : ( a ~ , x - g ' ) = 0  for l < k < n }  

where :~ E X+,  and as before {an} is w*-densely spanning in X* with Y := 
s)--fi-g(an, n = 1 ,2 , . . . }  ¢ X*. Assume in addition that Y is a sub-lattice. 

Much as in the argument of Theorem 6 

a n : = ½ d c + ( 0 )  2=infx{½HxH 2 " (a~,x) = (a*k,~), 1 < k < n, x E X+} 

which has Fenchel dual 

o - ~ = m a x  { Ak(aM,:~)-½ Aka~ " Ak>_0, l < k < n }  
k = l  k = t  

= max {(p,:~) - ½ Ilp+ll2, : p e span{a~,...,a*~} } .  

This requires an easily satisfied constraint qualification: 

3~: E q i X +  with (a~,~) = (a~,2~) for 1 < k < n .  

Here'qi'  denotes the quasi-interior. In specific cases, this is easy to validate. 
Thus 

a : =  sup c ry=  lim c r ~ = s u p { ( y , ~ ) - ½ l l y + [ I  2 . y E V } ,  
n ' - ' ~  t O  n ---+ ( X )  

since the lattice operations are norm-continuous. However as 2 E X+ 

(CQ +) 
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o" = s u p { ( y , ~ ) -  I ily+ltZ, : y ~ y }  

s u p { < y + , ~ >  - ½ Ily+t12, • y e Y }  

s u p { ( y , ~ >  - ½ Ilylt 2 • y e Y }  (as Y +  C Y)  

s u p { ( y , ~ )  - 1 ily+ll 2 . y e Y }  = ~ ,  

where the last inequality follows since II II is a lattice norm. Hence, as before, 
= s u p { ( y , ~ )  - ½ Ilylt. 2 : y c g }  and it is again apparent that Wijsman 

convergence of {C + } fails in II II (at 0) precisely when Y is not 1-norming in 
direction :~. 

(b) As in Example 7(a), consider the case of La([0, 1]). Let 2 _> 0 and Y := 
N(F) be as in Example 7(d) and consider the corresponding {C+}. 

Whenever Y is a sub-lattice of X*, the argument of part (a) applies to show 
that Wijsman convergence fails at zero: l i m n ~  dc+(O ) ¢ I1~It. This requires 
checking that (CQ +) holds for all n as is the case when Y: > 0 a.e.; but in the case 
of Hausdorff moments,  or other real analytic moments, it suffices that the system 
of equations have a nonzero, nonnegative solution ([51). 

(c) Equivalently, such nonnorrning functions ~c give rise to sequences of moment- 
matching L 1-optimization problems 

1 

p,~ := ra in  {llxlll  " f [x( t ) -2( t )]ak( t )dt=O for 1 <_ k <_ n, x >_ 0a .e .}  

0 

so that the optimal values {Pn } do not converge back to the correct limit value 112 II. 
Notice, by contrast, that for Hausdorff moments (ak(t) := t k - l )  we must have 
pn - I1~11. Of course, now Y is 1-norming in all directions. [] 

The attentive reader will notice that we have not actually constructed a densely 
spanning non(1-)norming sublattice in either (a) or (b) of the previous example. 
We finish by showing how to do so with a construction suggested by Mr Xiaopeng 
Gao of the University of Western Ontario. 

EXAMPLE 9. (a) (An example of a sublattice of C[0, 1] that is total but not norming 
for L 1[0, 1].) 

Let F C [0, ½] and G C [3, 1] be (closed) Cantor sets with # ( F )  > 0 and 
#(G)  = 0. Here # is Lebesgue measure. Let ¢ : [0, 1] ~ [0, 1] be continuous, 
one-to-one and onto, and have ~ ( F )  = G. Fix q' > 0 and define 

Y ' ~ : = { f E C [ 0 , 1 ]  : f ( t ) = T f ( ~ ( t ) ) ,  V t E F } .  

Then 
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(i) y ' r  is a closed subspace of C[O, 1] and lY[ C y7  whenever !/C y-r. Thus, Y'/ 
is a Banach sublattice of C[O, 1], and so (a.e.) of L¢~[O, 1]. 

(ii) Define 

tlxll  : =  sup ( f ,x )  : 11/11~ --- 1 and f E Y'~}. 

Then 

[[XFI[7 = sup { / f • ][fl[oo _< 1 and f C yT} < 7 # ( F  ) = 7]IXFIII 
F 

since f ( ~ ( z ) )  _< 7 for a in F.  Hence y 7  is not better than 7-norming. 
(iii) Let f E C[0, 1] and ½ > e > 0 be given. Let f~ be defined by 

f ( t ) ,  if de(t) >_ e, 
f c ( t ) : =  7 - 1 f ( ¢ - l ( t ) ) ,  if t E G ,  

where, by the Tietze-Katetov extension theorem, fe is extended continuously 
with Ilfelloo = 7-1l]flloo • Then f~ is in y 7  by construction. 

Suppose that ~ in L 1 is annihilated by Y'~. Then f f j :  d# = 0 for all e > 0. 
Hence 

If fYcd#l=tf (f -fz)Ycd#l<-27 -1 / Ixld# - - ' 0  
d~(t)<~ 

since #{t  : do(t)  < e} ---+ O, with e, because G is closed and null, and as :~ is in 
L 1. Thus ~ is annihilated by C[O, 1] and so is zero. Hence, y ' r  is a total sublattice 
of L °° but as desired is not 1-norming. 

(b) Somewhat more elaborately, we can (essentially) set Y := NT>0 Y'~ on 
choosing appropriate disjoint Cantor sets, and arrange that the sublattice is total 
but not 7-norming for any 7 > 0. [] 
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