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In Part I of this work we derived a duality theorem for partially finite convex programs, problems for 
which the standard Slater condition fails almost invariably. Our result depended on a constraint 
qualification involving the notion of quasi relative interior. The derivation of the primal solution from a 
dual solution depended on the differentiability of the dual objective function: the differentiability of 
various convex functions in lattices was considered at the end of Part I. In Part II we shall apply our 
results to a number of more concrete problems, including variants of semi-infinite linear programming, 
L a approximation, constrained approximation and interpolation, spectral estimation, semi-infinite trans- 
portation problems and the generalized market area problem of Lowe and Hurter (1976). As in Part I, 
we shall use lattice notation extensively, but, as we illustrated there, in concrete examples lattice-theoretic 
ideas can be avoided, if preferred, by direct calculation. 
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Introduction to Part II 

T h e  m a i n  resu l t  o f  Par t  I o f  this w o r k  (Quas i  R e l a t i v e  In t e r io r s  and  D u a l i t y  T h e o r y )  

was  a dua l i ty  t h e o r e m  for  a class o f  p r o b l e m s  we  h a v e  ca l l ed  ' pa r t i a l l y  f ini te  c o n v e x  

p r o g r a m s ' .  W e  d e v e l o p e d  the  f o l l o w i n g  n o t i o n  o f  ' q u a s i  r e la t ive  in t e r io r '  w h i c h  

a p p e a r s  in t he  c o n s t r a i n t  qua l i f i c a t i on  fo r  this  resul t .  S u p p o s e  X is a t o p o l o g i c a l  

v e c t o r  space .  

Definition. F o r  c o n v e x  C c X, the  quasi  relative interior of  C (qri  C )  is the  set  o f  

t h o s e  x ~  C for  w h i c h  cl c o n e ( C - x )  is a l i n e a r  subspace .  

T h e  m a i n  dua l i t y  resu l t  is t h e n  the  fo l l owing .  F o r  P c R n, t he  dua l  c o n e  is d e n o t e d  

by  P+  := { y c ~"  l yVA >! O, VA ~ P}. T h e  i n d i c a t o r  f u n c t i o n  o f  C is d e n o t e d  by  6 ( .  I C ) .  
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of Waterloo, Waterloo, Ont., Canada N2L 3G1. 
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Theorem (Corollary 4.8 in Part I). Let X be locally convex, f :  X ~ ] - ~ ,  ~]  convex, 
C c d o m f  convex, A : X ~ ~ continuous and linear, b c ff~n and P c A n a polyhedral 

cone. Consider the following dual pair of problems: 

(CM) inf f ( x )  

subject to A x c  b + P, 

x c C ,  

(DCM) max - ( f + 6 ( . I C ) ) * ( A T A ) + b T A  

subject to A~P+.  

I f  the following constraint qualification is satisfied, 

(CQ) there exists an ~ ~ qri C which is feasible for (CM), 

then the values of  (CM) and (DCM) are equal (with attainment in (DCM)). 
Suppose further that f +  6(. [ C) is closed. I f  A is optimal for the dual, and ( f  + 

6(.  ] C))* is differentiable at AvA with Gateaux derivative ~ ~ X, then ~ is optimal for 
(CM), and is furthermore the unique optimal solution. 

Numerous properties and examples of quasi relative interior were discussed in 
Part l (Sections 2, 3). As may be seen from the above theorem, the derivation of 
primal solutions depends on the differentiability of ( f +  6(.  ] C))*. In Section 5 of 
Part 1 we therefore studied the differentiability of various convex functions in lattices. 

In Part II of this work we shall concentrate on applying these ideas to more 
concrete models. The first special case of the problem (CM) we consider is when 
the set C is a cone. If  C is the positive cone of a partially ordered vector space, 
writing down the dual problem involves computing the monotone conjugate of the 
convex function f As an example we derive duality results for semi-infinite linear 
programming. We also consider the semi-infinite linear program with an additional 
norm constraint; the dual problem involves one of the standard penalty functions 
used in the solution of semi-infinite linear programs. As another example we consider 
certain quadratic programs in the Hilbert space of square-integrable functions 
L2(T,/~). 

The next section (7) deals with another important example, constrained approxi- 
mation problems. These arise when the function f is a norm; our model includes 
the constrained interpolation problems considered in Irvine, Marin and Smith 
(1986), and spectral estimation (see Ben-Tal, Borwein and Teboulle, 1988 and 1989). 
We consider briefly the numerical treatment of such problems. 

The second important special case of  the problem (CM) that we consider is when 
the set C is of  the form 
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where e i>0 is some fixed element of the partially ordered vector space E, and 
X = Em. When the function f is linear our theory gives an interesting analogue of 
classical linear programming (including a simple characterization of extreme points), 
and when E is actually a vector lattice the dual problem has a particularly straightfor- 
ward structure. As an example we consider semi-infinite linear programming with 
an additional upper-bound constraint; again it is interesting to observe how a 
well-known penalty function arises naturally in the dual of  this problem. A further 
example is furnished by Ll-approximation.  The final section (9) deals with two 
more practical examples: the semi-infinite transportation problem considered in 
Kortanek and Yamasaki (1982), and the generalized market  area problem (see Lowe 
and Hurter, 1976). 

As in Part I, we shall frequently use ideas and terminology from the theory of 
vector lattices, which provides a unifying framework for much of this work. However,  
as we observed in Part I, the reader will find that calculations we perform in lattice 

notation may be easily followed through in concrete spaces, with no knowledge of 
vector lattices. 

6. The conical case 

We are now ready to consider more concrete examples of  the convex model (CM) 
of the introduction. In this section and the next we shall consider the case where 
the set C c X is a cone, partially ordering X. In this case the function ( f +  6(.  I C))* 
appearing in the dual problem (DCM) is the 'monotone  conjugate'  of the convex 
function f We will therefore begin by identifying some circumstances under which 
this is easy to evaluate, and give some examples. We will then apply our results to 
certain semi-infinite linear and quadratic programs. 

Throughout this section X will be a topological vector space (which we always 
understand to be Hausdortt) partially ordered by a convex cone K, the topological 
dual X* partially ordered by the dual cone, 

K+ := {ch c X*14)(x)>~O for all x c K} ,  

and f : X ~ ] - o e ,  ec], convex. As always, f *  denotes the convex conjugate of  

f : f* (4~)  = sup{qS(x ) - f (x ) ]x  ~ X } ,  for 4~ ~ X*.  The domain o f f  domf ,  is the set 
on which f is finite, and we denote the set where f is continuous by c o n t f  We say 
f is closed if the epigraph of f, 

e p i f : =  {(x, r) lx c domf ,  r ~ R, r >~f(x)} 

is a closed set. The core of a set C c X is its algebraic interior: x c C lies in the 
core if for all y ~ X there exist 6 > 0 with x + ty ~ C for all t[0, 6]. 

The following Fenchel duality result has appeared in various contexts (see for 
example Rockafellar, 1974; Borwein, 1981b; and Ekeland and Temam, 1976). For 

completeness we provide a direct proof. A locally convex space X is Fr~chet if it 
is complete metrizable. In particular, Banach spaces are Fr~chet. 
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Theorem 6.1. Suppose g, h : X ~ ]oo, oo] are convex, and any of the following three 
conditions holds: 

(i) cont g c~ dom h ¢ 0, 

(ii) dora g ca cont  h ¢ 0, 

(iii) X Frdchet, g and h closed and Oe core (dom g - d o r a  h). 

Then inf{g(x) + h(x ) l x  • X} = max{-g*(qS)  - h*(-~b) 14~ • X*},  (when the left-hand 
side is finite). 

Proof. Define convex relations F : X x lI~ -~ N, and H : X x R -~ X, by 

F(x, r):---{scNls>~r}, 

H(x,  r):-- { y c X ] g ( x ) + h ( x + y ) < < -  r}. 

F is lower semi-cont inuous (Borwein, 1981a, Lemma 4). We wish to show H is 

open at 0. Suppose first that (ii) holds ((i) will follow by symmetry).  Let xo e dom g ca 

cont  h, and set ro: = g(xo)+h(xo), so 0 e  H(xo, ro). Since H is convex it suffices to 
show H is open at ((Xo, to), 0) (Borwein,  1981a, Proposi t ion 2), in other  words, given 

any ne ighbourhood  U~ of  0 in X and U2 o f  0 in R there exists a ne ighbourhood  V 

of  0 i n X w i t h  

V c  { y c  X ] g ( x ) +  h(x + y)<~ r, some x ¢ Xo+ U~, re  ro+ U2}. 

But for any # > 0, 0 • int{ y c X ) g(Xo) + h (Xo + y)  <~ ro + #}, by the continuity of  h at 
Xo, and the desired conclusion follows. 

Suppose on the other  hand  that (iii) holds. Since g and h are closed, H has a 

closed graph, and also range H =  dom h - d o r a  g, so 0 e  core(range H).  It then 
follows f rom the closed graph  theorem (Borwein, 1981a, Theorem 8) that H is open  

at 0. 

Now consider  the problem 

/x := inf{g(x) + h(x)]x  c X }  

=inf{r[g(x) + h(x) <~ r, x e X, reN}  

= inf{F(x,  r) 10 • H(x, r), (x, r) • X x R}. 

Applying the Lagrange multiplier theorem in Borwein (1981b, 3.1), we deduce the 
existence o f  a 0 • X *  for which 

F(x, r) + O(H(x, r)) >1 ix for  all (x, r) c X x R. 

We can rewrite this as s+O(y )~ l x ,  for  all x, y e X ,  r, s e ~ ,  for which s ~ r ,  and 
g ( x ) + h ( x  + y)<~r, so 

i x - O ( y ) < ~ g ( x ) + h ( x + y )  forallx,  y e X .  

Thus we have 

I ~ < ~ g ( x ) - O ( x ) + h ( x + y ) + O ( x + y )  forallx,  y e X .  
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Taking infs over x and y we deduce/x ~< - g* (O)  - h* ( -O) .  But for all x E X, 4' c X*, 

g(x) + g*(4') + h(x)  + h * ( -4 '  ) >1 O, 

so /, = - g * ( O ) - h * ( - O )  as required. [] 

We say f is (K-) monotonically regular if, for all 0 c X*, 

( f +  8( .  I K))*(O)  = min{f*(0)  [ 0 ~ 0, 0 c X*}. 

Corollary 6.2. Under any o f  the following three conditions, f is K-monotonieally regular: 

(i) domfc~ int K # 0, 
(ii) contfc~ K # 0, 

(iii) X Frdchet, l a n d  K closed, and 0 c c o r e ( d o m f -  K )  (which holds in particular 

when K is generating and K c dora f ) .  In particular, i f  ( X ,  K )  is a Banach lattice 

and f is closed with K c domf,  then f is K-monotonically regular. 

Proof. In Theorem 6.1, set g : = f -  0 and h :- 6(. [K). Then g*(4,) =f*(4,  + 0) and 
h * ( - 4 , )  = 6(4,1K+),  so the result follows immediately. [] 

When f is monotonically regular we can use the above result to rewrite the dual 
pair of problems (CM) and (DCM) in the following way. The primal conical convex 
model becomes 

(CCM) inf f ( x )  

subject to A x c  b + P, 

and the dual is 

(DCCM) max 

subject to 

x ~ K ,  x ~ X ,  

ba-h - f * ( q j )  

0 -  ATA- 6 K +, 

3, c P  +, A c ~ ' ,  q~cX* .  

Theorem 6.3. Let X be locally convex, partially ordered by a convex cone K, X *  

partially ordered by K +, f :  X -~ ]-0% oo] a convex, K-monotonically regular function 
with K c dora f,, A : X ~ ~" continuous, linear, b c ~" and P c ~" a polyhedral cone. 

Suppose there exists ~ c qri K with A ~ - b  c P. Then the values o f  (CCM) and 

(DCCM) are equal, with attainment in (DCCM). Furthermore, a primal feasible ~ is 

optimal if  and only i f  there exist )t c P+, d~ c of(X),  with d~ - A Z h ~ K +, ( t~ - A TJt ) (2) = 0 
and XT(Ax -- b) = O. 



54 J.M. Borwein, A.S. Lewis/Partiallyfinite convex programming H 

Proof. The duality result follows immediately from Corollary 4.8 and Corollary 6.2. 
It follows that a primal feasible 2 is optimal if and only if there exists dual feasible 
()t, f )  with bWA-f*(47) =f(Y). But 

brA -f*(47) ~< bTX -- t~(X) + f ( 2 )  

~< bTA - ( A T A ) ( . ~ )  +f(2) 

= f ( 2 )  - (A2 - b)WA 

<f(x). 

Thus 2 is optimal if and only if we have equality throughout, which gives the result, 
since f (2)  + f * ( ~ )  = f(X) if and only if f c of(2). [] 

In some instances the monotone conjugate of f can be computed with no extra 
effort than the conjugate: 

Special cases 6.4. Suppose f is K-monotonically regular. 
(i) If  f *  is K+-isotone (0, >1 02 implies f * ( G )  >~f*(02)) then ( f +  6(. ] K))*(¢)  = 

f* (¢ ) .  
(ii) If (X, K)  is a normed lattice and f *  is absolute (f*([0 I) =f*(0) ,  for all 

0 c X*), and isotone on K +, then ( f +  ~(. I K))*(¢)  = f* (¢+) .  

Examples 6.5. 
(i) X normed, f(x)=(1/p)[[x][ p, 1 < p < ~ .  

f*(O)=sup{ O(x)-l  llxll p} 
P 

=sup sup lO(x) - l  ,,x,, "} 
t~-o Ilxll=t L 

Differentiating implies the maximum occurs at t=l]O[[,/(p-I~, giving f * ( 0 ) =  
(1/q)llOIl~. 

If  X is a normed lattice then 6.4(ii) applies so 

( f +  6(" IX+))*(0) = __1 II 0 + II ~. 
q 

(ii) X normed, f(x)= M I]xl[, for some M > 0. As above, 

f*( O) = sup{([[ 011. - M)t} = ~( O]MBx.), 
t~O 

where Bx. is the unit ball in X*. 
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Again, if X is a n'ormed lattice then (6.4)(ii) applies: 

( f +  a(.  [ x+))*(o)  = a(O+lMBx.). 

(iii) X normed, f ( x )  = 8(x I MBx) ,  M > 0. 

f*(O) = sup{O(x)]x c MBx}  = M II 0]],. 

Again, i f  X is a normed lattice then 6.4(ii) applies: 

( f +  t~(. I X+))*(0) = MII o + II,. 

(iv) X = L2(T, tx) , f (x)  =½llx-x011~. 

f * ( y )  = sup {(x, y)-½ilx - xoll2L 
x 

Differentiating implies the maximum occurs at x = xo+y, giving 

f * ( y )  = (Xo+y, y)-½(y, y) = ½ IlY + xoll 2-½ Ilxoll 2. 

By Corollary 6.2, 

( f +  a( .  ] X+))*(y) = min{f*(z)lz >1 y} 

= min{½ II z + xol121 z >/y}  -½ Ilxoll 2 

= min{½ II" 1121 u 1> y + xo} - Ill xoll 2 

-- ½ II ( y  + xo)~11 ~ - ½  {L xoll 2. 

(v) X = L P ( T , t , ) ,  l<~p<oo, 

=IST-- Iogx( t )  d/~(t), x ( t )>0a . e . ,  
f ( x )  I °°, otherwise. 

The integrand above is a normal convex integrand in the sense of Rockafellar 
(1968), and s o f * : L q ( T , p . ) ~ ] - o o ,  oe] is given by 

/S T ( - 1 - 1 o g ( - y ( t ) ) )  d/z(t), y(t)  <0  a.e., 
f*(Y) = [oo, otherwise. 

In this case 6.4(i) holds, so ( f +  6(. IX+))* = f * .  
(vi) X = L P ( T , ~ ) ,  l~<p<ce,  

~ r  x(t)(log x ( t ) -  1) d/x(t), x(t)  > 0 a.e., 
f ( x )  I 

t ~ ,  otherwise. 

Again we have a normal convex integrand, so f *  : L q ( T,/~) ~ ] - ~ ,  co] is given by 
f * ( Y )  = ~r eY°) d~(t) .  Again 6.4(i) holds so ( f +  6(. [ X+))* = f * .  

More generally than (v) and (vi), we can consider entropic objectives (see Ben-Tal, 
Borwein and Teboulle, 1992; and Borwein and Lewis, 1991). 
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Semi-infinite linear programming 

The first special case of (CCM) we shall consider will be the case when f is just a 
continuous linear functional. In this case (CCM) becomes a semi-infinite linear 
program: 

(SILP) inf 

subject to 

o(x) 

A x c b + P ,  

x>~O, x c X ,  

(DSILP) max bTh 

subjectto AVh <~ 0, 

A e P + ,  A ~ ' .  

Corollary 6.6. Let X be locally convex, partially ordered by a convex cone K, X *  

partially ordered by K +, 0 c X* ,  A : X --) ~" continuous, linear, b c ~" and P ~ R" a 

polyhedral cone. 
Suppose there exists ~ ~ qri K with A ~ - b  c P. Then the values of  (SILP) and 

(DSILP) are equal, with attainment in (DSILP). Furthermore, a primal feasible 

is optimal i f  and only i f  there exists ~c  P+ with AT~<~ O, (O-AVX) ( f f )=0  and 
7tT(Ax -- b) = O. 

Proof. This follows directly from Theorem 6.3, using the fact that 0*(~b) = 6(6  ]{0})) 
and 0 is clearly monotonically regular. [] 

The cone A K  ~ R" is known as the "moment cone" in the semi-infinite linear 
programming literature (see for example Glashoff and Gustafson, 1983). When 
qri K #0 ,  by Proposition 2.10, A qri K =ri  AK. If K is generating and A is onto it 
follows that our constraint qualification is equivalent to (b + P) c~ int(AK) ~ 0, which 
is the classical 'superconsistency' constraint qualification (see Karlin and Studden, 
1966). 

Norm constrained semi-infinite linear programming 

The next program we consider does not strictly speaking fit the model (CCM), but 
behaves in a very similar fashion. We consider the previous problem (SILP), but 
with an additional norm constraint, ]]xll ~< M for some M >  0. 

(NLP) inf O(x) 

subject to A x c  b + P, 

x~o,  [Ixll~M, x~X. 

We shall now assume X is a normed lattice. The dual problem then becomes 

(DNLP) max bTx -- MII(ATA - 0)+l]. 

subject to AaP+ ,  X c ~ ' .  
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Notice that (DNLP) is a penalty-function version of the problem (DSILP).  The 
larger the constant M, the more we penalize violations of  the constraint ATA ~< 0. 

Theorem 6.7. Let X be a normed lattice, 0 ~ X* ,  A : X --> •" continuous, linear, b ~ ~" 

and P c R n a polyhedral cone. Suppose there exists ~ c qri X+ with ]]~11 < M and 

A~ c b+ P. Then the values of  (NLP) and (DNLP) are equal, with attainment in 

(DNLP).  Furthermore, a primal feasible 2 is optimal i f  and only i f  there exists A c P+ 

satisfying the following four conditions: 
(i) XT(A2 -- b) = 0, 

(ii) (ATA-- 0)- (2)  = 0, 

(ii i)  II(A~N- 0)+11,11211 = ( A T ~  - 0 ) + ( . ~ ) ,  

(iv) 11211 = M  if AT] - -O~O.  
I f  in fact X = Y* for a normed lattice Y, 0 c Y, and A is ~r( X, Y)-N" continuous, 

then the value of  (NLP) will also be attained. 

Proof .  Apply Corollary 4.8 with f : =  0, C := X+ ~ MBx .  Then 

( f +  6(" I C))*(q~) = sup{d~(x) - O(x) lx >~ O, Ilxll ~< M} 

= sup{(¢ - O)(x) - a(x I MBx) I  x ~> 0} 

= M I I ( ~ -  0)+11, ,  

by 6.5(iii). The form of the dual problem then follows. 
The form of the constraint qualification follows from the fact that qri C = qri X .  n 

i n t (MBx) ,  by Theorem 2.13. A primal feasible 2 is optimal if and only if there 
exists • c P+ with 

bTX -- MII(ATA - 0)+ll, -- 0(2). 

But  

0(2) ~> 0(2) - XT(A2 -- b) 

= b~X - (ATX - O ) ( 2 )  

/> bTX _ (ATX -- 0)+(2) 

~> bTX--II(ATX- 0)*11,11211 

/> bTX _ M I I ( A T X  - 0)+11, ,  

so we must have equality throughout; in other words 2 is optimal if and only if 
conditions (i), (ii), (iii) and (iv) hold. 

The final set of conditions is sufficient to ensure that the feasible region of (NLP) 
is a o-(X, Y)-closed subset of  M B x ,  and so is o-iX, Y)-compact  by the Alaoglu- 
Bourbaki Theorem. Since 0 is or(X, Y)-continuous,  the infimum will be attained. [] 
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The question of when the dual objective function is differentiable can now be 
addressed, using the results of Section 5. In particular, if ATA ~ 0 and ]]. II. is 
differentiable at (ATA- 0) + (with V][(ATA- 0)+]], c X) ,  then the derivative of the 
dual objective function at A is b - M A V I ] ( A T A -  o)+ll., by Proposition 5.6. 

Suppose X is dual optimal with ATA ~ 0, and H" ]], differentiable at (ATA-0)  +, 
with VII (ATA -- 0)+]]. e X. Set 2~ := MV[[(AVA - 0)+11. By Corollary 4.8, ~ is the unique 
optimal solution of the primal problem (NLP). 

Example 6.8. X =  L P ( T , t ~ ) ,  l < p < ~ .  Suppose A is optimal for (DNLP) with 
ATA ~ 0. Then by the above and Examples 5.7(i), the optimal solution of (NLP) is 
given by 

= MII(ATX_ o)+ll~, q((AT~ _ O)+)q 1. 

Semi-infinite quadratic programming in L 2 

The last example in this section will be the following quadratic program. 

(QP) inf ½]]X-Xo[[ 2 

subject to A x c  b + P, 

x>~O, x~L2(T,  kt). 

Here, ( T,/~) is a o--finite measure space, Xo ~ L 2, and as usual A : L 2 ~ ~" is continuous 
and linear, b c ~" and P c R ~ is a polyhedral cone. 

Using Examples 6.5(iv) we obtain the dual problem (from Corollary 4.8): 

(DQP) max bTA_I]](ATA + 2 l 2 +x0) II +=f[xol]= 

subject to A c P + ,  Ac•".  

More general constraints of the form x ~> 0 on 7"1 c T, x ~< 0 on T2 c T, can be 
easily handled using the remarks on separable problems at the end of Section 4. 

Theorem 6.9. I f  there exists a feasible ~ for (QP) with ~(t) > 0 i~-a.e., then the values 
of (QP) and (DQP) are equal and both are attained. 

The dual objective function is everywhere differentiable, with derivative b -  
A(ATA + Xo) +. Furthermore, if  A is optimal for the dual problem (DQP), then the 
unique optimal solution of (QP) is given by ~ = (aTA +xo) +. 

Proof. By Examples 3.11(i), qri(L2(T,/2,)+) = { x > 0  a.e.}, and the duality result 
follows from Corollary 4.8. By Examples 5.7(i), V(~llx+ll~)=x ÷, for x~0, and is 
clearly 0 for x ~< 0. The expression for the derivative follows, and the derivation of  
the unique primal solution follows from Corollary 4.8. [] 
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7. Constrained approximation 

Throughout this section we shall concentrate on one particular example of the 
conical case of the convex model (the problem (CCM) of the previous section). 
This problem requires the minimization of the norm of the variable, subject to 
positivity constraints and a finite number of linear inequalities. Such problems arise 
in particular in questions concerning 'best' convex interpolants to given data (see 
Micchelli, Smith, Swetits and Ward, 1985 and Irvine, Marin and Smith, 1986), and 
in spectral estimation (Ben Tal, Borwein and Teboulle, 1988 and 1992). We shall 
see that many of the above authors' results are special cases of our general duality 
theorems. 

Throughout this section we shall adopt the following notation (see Schaefer, 1971 
and 1974, for definitions): 

(X, Y) a dual pair, 

with (X, II" II) a normed lattice, and 

Y a sublattice of X* (norm II" II., positive cone (X~)+), (7.1) 

A : X ~ R", ~r(X, Y)-R" continuous, linear, 

b c N", p c Nn a polyhedral cone. 

For 1 ~ p < co we consider the problem 

(CAp) inf (1/p)llxl[ p 

subject to A x c b + P ,  

x>~O, x c X .  

For l < p < o e ,  and 1 / p + 1 / q = l ,  by Examples 6.5(i) and Corollary 4.8, the dual 
becomes 

(DCAp) max bTA-(1/q)I I (ATA)+I]  ~ 

subject to A~P+,  AcR",  

while for p = 1, using Examples 6.5(ii), we obtain 

(DCA1) max  bT)t 

subject to [[(ATA)+[[, ~< 1, 

A~P+,  heN" .  

The two most significant cases of the pair (X, Y) in (7.1) are when Y =  X* (the 
norm case), and when Y is a normed lattice with X = Y* (the weak* case, cf. 
Theorem 3.5). 
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Theorem 7.1. I f  I1" II is strictly convex then any optimal solution of  (CAp) is unique. 
I f  there exists an :~ c or(X, Y)  - qri X+, feasible for (CAp), then the values of (CAp) 
and (DCAp) are equal, with attainment in (DCAp). Suppose further that - b ~  P. 

I f  I]'ll, is differentiable at (ATA) + (with derivative in X )  for some ~, optimal for 
(DCAp), some l < p < c o ,  then the unique optimal solution of (CAp) is ~= 

II (A~X) ÷ II ~-'V II (ATe) + II. 

Proof. The uniqueness follows by a standard argument and the duality result is a 
direct application of Corollary 4.8. 

Notice that if - b  c P then ~ = 0 is the unique optimal solution of (CAp). Suppose 
on the other hand that - b  ~ P. Since P - P++ it follows that there exists ~ c P+ with 
bT~ > 0. Thus the value of (DCAp) is strictly positive, since 8 i  c P+ with bV(8~.) - 
(1/q)II(AT(6~,))+I[~> O, for 8 > 0 sufficiently small. 

Suppose now that X is optimal for (DCAp). If AT~.~<0, then b : ] > 0 ,  and we 
obtain a contradiction since k~ is feasible for arbitrarily large k > 0, with arbitrarily 
large objective value. Thus ATX ~ 0, and we can apply Proposition 5.6 to obtain the 
result. [] 

It is clear that the problems (CAt,), 1 ~< p ~< ~ are all equivalent: ff ~ X is optimal 
for one problem if and only if it is optimal for all the problems. By contrast, the 
relationship between the dual problems (DCAp), 1 ~<p < ~ ,  is not so immediately 
evident. Our next result illuminates this relationship. First we need some preliminary 
results. 

Definition 7.2 (Rockafellar, 1970). A convex function g :~" ~ [0, ~ ]  is called a gauge 
if g is positively homogeneous with g(0) = 0. 

Definition 7.3 (Rockafellar, 1970). Let g be a gauge. The polar of g, gO, is defined by 

gO(y) = inf{tz ~> O]yTx <~ izg(x) Vx  c ~"}. 

Theorem 7.4. Suppose g is a closed gauge and C = {x c/~" [g(x) ~< 1}. Then gO(. ) = 

8"(.Ic). 

Proof. Rockafellar (1970, 15.1.2). [] 

Theorem 7.5. Suppose g is a closed gauge and 1 < q < ~.  Suppose f is defined by 
f ( x )  := (1 /q)g(x )  q. Then f * ( y )  = ( 1 / p ) g ° ( y y  ', where 1 /p+ 1/q = 1. 

Proof. Rockafellar (1970, 15.3.1). [] 

Theorem 7.6. Suppose g is a closed gauge and 1 < q < oo. Consider the following 
problems: 

(PHPq) sup{bTA - (1 /q )g (A)q[A  c~"} ,  

(PHPoo) sup{bV,~ [g( ) t )~  < 1, ~ ~ll~"}. 
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These problems are equivalent in the following sense. The value of  (PHPq) is 
(1/p)g°(b) p, and the set of  optimal solutions is g°(b)l' lO(g°)(b). On the other hand, 
the value of (PHPo~) is g°(b) and the set of  optimal solutions is O(g°)(b). 

Proof. V(PHPq) = ((1/q)gq)*(b), by definition, and this is (1/p)g°(b) p by Theorem 
7.6. Now h attains the value if and only if h c O((1/p)(g°)P)(b) by Rockafellar (1970, 
23.5), so by the chain rule (Clarke, 1983, 2.3.10), the solution set is g°(b)P lO(g°)(b). 

On the other hand, V(PHPo~) = 6*(b I C) = g°(b), where C = {A c R"Ig(A) ~ 1}, 
by Theorem 7.4. Thus h is optimal for (PHPo~) if and only if A c 0(6*(. [ C))(b) = 
O(g°)(b), as required. [] 

We can now apply this result to (DCAp) by setting 

g(A) := II(AVA)+]]. + 6(A ] P+). 

We now turn to examples of the application of Theorem 7.1. The case we shall 
consider is that of constrained L p approximation (cf. Micchelli, Smith, Swetits and 
Ward, 1985). 

Constrained L p approximation 

Example 7.7. (T , /x )  a (r-finite measure space, 1 < p  < e c .  

(LpA) inf (1/p)[Ixllpp 

subject to Ax c b + P, 

x>~O, x ~ L e ( T ,  ix). 

Here, A : L p --> ~n is defined by (Ax)i = iv aix dp, i = 1 , . . . ,  n, for some ai's c L q 
( l / q +  1/q = 1). The dual problem becomes 

(DLpA) max bV A 1 A~a~ 
q i=1 q 

subject to A~P+,  A c R  n. 

Applying Theorem 7.1, Examples 3.11(i) and Examples 5.7(i), we obtain that if 
there exists a feasible £ for (LpA) with £( t )> 0 bt-a.e., then the values of  (LpA) 
and (DLpA) are equal, with attainment in (DLt, A). If - b  c P, then )7 = 0 is optimal 
for (LpA). If - b  ~ P then the unique optimal solution of (L~,A) is given by 

-~= (~i)kiai) + i - l ~ l ( ~ i ) k i a i )  + q=((~i)kiai)+) q-I ( 7 . 2 )  

Definition 7.8. Suppose a set of functions ai : [a, /3]  -~ ~, i = 1 , . . . ,  n, are continuous 
and linearly independent on every non-null subset of [a,/3].  Then we say the ai's 
are pseudo-Haar on [a,/3]. 
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As an example ,  if the a~'s are analyt ic  and l inearly independen t  on [a , /3 ] ,  then 

it is easy to see that  they are p s e u d o - H a a r  (see Borwein and  Lewis, 1991). 
N o w  consider  the case where T = [a,  fl] and/.~ is Lebesgue measure ,  and the ai 's  

are pseudo-Haar .  Assuming - b ~ P ,  if  A and 0 are any two opt imal  solutions o f  
(DLI, A), then f rom (7.2) we must  have ( ~  h~a~) ~ = ( ~  Oia~) +, a.e., and so by con- 

t inuity there will exist a non-null  subset  S2 ~ [a,  fl] such that  ~i (A~ - Og)a~ = 0 on 
/2. The p s e u d o - H a a r  condi t ion now implies  that  3. = 0. Thus the opt imal  dual solut ion 

is unique.  
The case p = 2, and P = {0} (equal i ty-const ra ined L 2 approx imat ion ,  see Borwein 

and  Wolkowicz,  1986) is par t icular ly  simple. The  pr imal  p rob lem is then just  

(EL:A)  inf  ½IIx[[~ 

subject  to (x, at)---b~, i - - 1 , . . . , n ,  

x/> 0, x c L 2, 

and the dual p rob lem is max{bY3.-½]l (~  3.ia,)+ll~l 3. ~ " } .  Solving this p rob l em 
reduces to solving the equat ion A((AV3.)+) = b and the Newton  iteration reduces to 

' tl(ATAold)(t)>O} 

In part icular ,  if  t = [a ,  f l ] , / z  = Lebesgue measure ,  and ai( t )  = t ~-1, i = 1 , . . . ,  n, and 
if we denote  the Hess ian  Matrix 

___ f t~+j 2, (/-/(3.)),j J~ t[ZkAk tk 1>0} 

then the Newton  step is s imply H(3.°~)3. "ew= b. The fol lowing observat ions  are 

easy to check. 
(i) No  numerical  integrat ion is necessary (only root-finding).  

(ii) H(3.)  takes only O(n)  steps to evaluate.  
(iii) H(3.)  is posi t ive definite if  ~k 3.k tk-I  ~ 0. 
(iv) H(3.)  is locally Lipschitz i f ~ k  3.kt k-~ has no repeated  roots. 

The  Newton  me thod  is therefore  super l inear  and general ly  quadrat ic ,  locally. 
Let us return to the quest ion o f  when the constraint  qualif ication will be satisfied. 

For  simplicity, suppose  P = {0}, and let us also suppose  that  the a~'s are l inearly 
independen t  on T. it follows that  r i (A(LP+))=in t (A(L~)) ,  since otherwise there is 

a y # 0 with Y.~ y~ ~T a~x dtt  = 0, for  all x ~> 0, which implies ~.~ y~a~ = 0 a.e. on T. But 
by Proposi t ion 2.10, r i (A(LP+))=Aqri(LP+).  We thus see that  the constraint  
qualif ication is satisfied if and only if  b e int(A(LP+)). The cone A ( L  p) is called the 
' m o m e n t  cone' .  

In certain cases we can be more  explicit.  

Theorem 7.9. Suppose  T=-[0,  1], # is Lebesgue  measure,  b e W  ''+1, P = { 0 } ,  and  
ai ( t )  = t i, i = 0 . . . .  , n'. 
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(a) Suppose n'= 2m. Consider the two quadratic forms 

m--1  

bi+jy, yj, ~ (b,+i+~-bi+j+2)yiy j. 
i , j --O i , j=O 

Then (LpA) is consistent if and only if these forms are positive definite, and in this 
case the constraint qualification is satisfied. 

(b) Suppose n'= 2m + 1. Consider the two quadratic forms 
m 

~, bi+j+lYiYi, ~ (bi+j-bi+j+l)yiyi. 
i , j --O i , j - -O 

Then (LpA) is consistent if  and only if  these forms are positive definite, and in this 
case the constraint qualification is satisfied only if  they are positive definite. 

In both cases there is a non-negative measure satisfying the constraints of  (LpA) /f 
and only if the relevant forms are positive semi-definite. 

Proof. Karlin and Studden (1966, p. 106). [] 

For example, for [a,/3] =[0, 1], n '=  2 and bo = 1 we obtain 1 > b l>  b2> b~, and 
by a similar technique, for [c~, fl] = [ -1 ,  1] and n'= 2, the constraint qualification 
becomes bo> b2> 0 and bob2> b 2. 

The following trigonometric case, which occurs in the context of spectral estima- 
tion (Ben-Tal, Borwein and Teboulle, 1988), may also be treated explicitly to find 
the form of the constraint qualification. 

(SEP) inf (1/p)[lxll p 

subject  to x( t )  cos( i t )  d t  -- bj, j = 0 , . . . ,  m, 

f ~" x( t )  s i n ( j t ) d t = c j ,  j = l , . . . , m ,  
--oT 

x>~O, xeLP[- .rr ,~] .  

Theorem 7.10. Set Co:=0 and rj:= bJ+cJ~-f ,  r j := ~, j = 0 , . . . ,  m. Then (SEP) is 
r m consistent if and only if the Toeplitz matrix ( i  k)i.k=o is positive definite, and in this 

case there is a feasible ~ ( t ) > 0  a.e. on [-~r, Tr]. 

Proof. Ben-Tal, Borwein and Teboulle (1988). See also Karlin and Studden (1966, 
p. 184). [] 

Constrained L ~ approximation 

Let us now consider the problem (CAp) in the case where (X, Y ) = ( L ~ ( T ,  tx), 
LI(T, /x))  for a t~-finite measure space (T,/x). The primal problem is thus (for 
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1 <p<oO)  

(L~A) inf 

subject to 

J .M.  Borwein ,  A .S .  L e w i s / P a r t i a l l y  f i n i t e  c o n v e x  p r o g r a m m i n g  H 

(1/p)JIxJl~, 

ai dtx - bi c P, 
1 

x>~O, x c L ~ ( T , ~ ) ,  

where a~e LI(T, ~z), i =  1 , . . . ,  n, and the dual is 

(DL~A) max bT A __1 Aiai 
q i = 1  1 

subject to A~P+,  Ac~n.  

Applying Theorem 7.1, Examples 3.11(ii) and Examples 5.7(ii), we obtain that if 
there exists a feasible ~(t) > 0/z-a.e. for (L~A) then the values of (L~,A) and (DL~A) 
are equal, with attainment in (DL~A). Furthermore, if A is optimal for (DL~A) 
and ]Yi A~ail > 0 #-a.e. then the unique optimal solution of (L~A) is given by 

= X i a  i X{t[S'iAiai(t)>O } • 
1 

The case of (L~A) with P = {0} (i.e. equality constrained) and without the positivity 
constraint x>~0 was considered in Favard (1940), using a duality argument. The 
dual problem in this case becomes simply 

/ ql } max brh 1 hia~ h c//U' 
q 1 

or, in the case p = 1, 

max{bTA I ~Aia~ I~<I ,A~N~}.  

Favard also considers the case when we do not have ]~  A~a~[ > 0 at the optimum, 
and show how to construct solutions in this case. A straight-forward adaptation of 
his ideas applies to our case too (see also De Boor, 1976). We defer discussion of 
this and other numerical questions to a later paper. 

Constrained interpolation 

We have already seen two interesting concrete examples of  the constrained approxi- 
mation problem (CAp) in Theorems 7.9 and 7.10, where the function ai were either 
t i-1 or e i~'/-'~/ respectively. A third interesting example arises from problems of 
constrained interpolation. Typically we might be interested in interpolating some 
given set of data points with a convex function of minimum norm in some Sobolev 
space (see Irvine, Marin and Smith, 1986). In this case the a~'s become normalized 
B-splines. 
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Definition 7.11. The S o b o l e v  space  L~[O, 1] is defined as the set o f f ~  C~k-1)[0, 1] 
with f~k-~) absolutely cont inuous  and f~k )  C Lp[O, 1] (for 1 <~ p <~ ~ and k c ~) .  

Let us suppose  that  0 ~< t~ < t2 < • " • < t,, <~ 1. 

Definition 7.12 (Schumaker ,  1981, p. 45). For  any funct ion f :  [0, 1 ] + ~  we define 
the kth d i v ide d  d i f f e rence  of  f by, for i = 1 , . . . ,  n - k, 

[ t i , . . . , t i + k ] f :  = [[  ( t p - - t o )  fC tp ) .  
p=i q=i 

q # p  

Definition 7.13 (De Boor,  1976, p. 29). The n o r m a l i z e d  B - s p l i n e  is defined by 

i = l , . . . , ( n - k ) .  Mi,  k(  t)  = k[  ti, . . . , ti+k]( ( " -- t ) k - 1 )  +, 

Examples 7.14. 

6) Mi, l ( t ) = ( t i .  l - ti ) -  l X[ t~,t~+.]( t ). 

I O, t ~  ti and t ~  ti+2, 

(ii) M~,=(t) = 2( t i+2-  ti) -1, t = t i÷l ,  

[ l inea r ,  on [ ti, ti÷l] and [ ti÷l , ti+ =). 

Since all the Sobolev norms  are equivalent  we restrict a t tent ion to the p rob l em 
( l ~ p ~ ) :  

(Clk) inf  IIf~>ll~ 
sub jec t to  f ( t i ) = b i ,  i = 1  . . . .  ,n ,  

f(k)>~0, f c L ~ [ 0 , 1 ] .  

For  i =  1 , . . . ,  ( n - k ) ,  define 

/ -1 
di := ~ ( tp -- tq) bp, 

p~i  q=i 
qv'p 

so d~ = [ t i , . . . ,  ti+k]f, for  any feasible f. Cons ider  the fol lowing p rob lem (which is 
of  the form (CAz)). 

(CI~) inf  Ilgb 

Io' subject  to M ~ , k ( t ) g ( t )  d t  = d+, i = 1 . . . .  , ( n  - k ) ,  

g ~ 0 ,  ~ ~ L~[O, 11. 

We then have the fol lowing result showing that  the p rob lems  (Clk) and (CI~) are 
essentially equivalent.  
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Theorem 7.15. I f  f is feasible for (Clk) then f ~k) is feasible for (CI~), with the same 
value. On the other hand, if g is feasible for (CI~) then there exists feasible f for (Clk) 
with the same value and with f~k~ = g. 

Proof. See De Boor (1976) and Micchelli, Smith, Swetits and Ward (1985). [] 

Examples 7.16. 
(i) The monotone case: k = 1. 

In this case d~ = b~+~- b~, i =  1 , . . . ,  ( n -  1). (CI') is consistent if d~ ~> 0, each i, and 
the constraint qualification is satisfied if d~ > 0, each i. It is an easy and pleasant 
exercise to check from both the primal and dual problems that the optimal f for 
(CI~) is simply the piecewise linear interpolant through the data points. 

(ii) The convex case: k = 2. In this case 

bi bi+l bi+2 

d~- ( t , -  t,+~)(t~- t~+2) + (t~+~ - t~)(t~+a - ti+2) + (t~+2 - t~)(t,+2 - ti+~)' (7.3) 

e a c h i = l , . . . , n - 2 .  

The relevant moment  cone in (CI~) is simply the positive orthant: 

Lemma 7.17. 

((Io)1 ) Mi,2g g(t)>O,a.e. ,g~Lp[O, 1] ={y~N~-21y~>O, eachi }. 

Proof. Denote the left-hand side by C. Clearly C c i n t  I~+n-2. We claim cl C = I~ +-2. 
Suppose not, so there exists 0 ~< y ~: cl C. Therefore by separation there exists A c 1~ n 2 
for which ATy<0~S'n--2A 1 Vn-2AM ~0.  ~ 1  ~oMi,2g, for all g ( t ) > 0 ,  a.e. Then ~i=1 ~ i.2 
However, by Examples 7.14(ii), M~,2(tj)= 0, j # i + 1  and > 0  for j =  i+1 ,  so Ai~>0, 
each i = 1, . .  . ,  n - 2 .  But this contradicts ATy <0.  Thus cl C =N+~-2. It follows that 
C D int C = int 0~+ -2 (Rockafellar, 1970, 6.3.1), and the result follows. [] 

This result shows that the constraint qualification for (CI~) is satisfied if and only 
if each d i>  0. This has a simple geometric interpretation, which may be checked 
from formula (7.3). Consider the lines Li joining the data points (ti, bg) and 
(ti+2, hi+2). Then the constraint qualification for (CI~) is satisfied if and only if L~ 

passes strictly above (ti+l, hi+l), for each i. 
If, as is natural, we choose p = 2 and use the objective function ½11gll2 z in (CI~), 

then we obtain a problem of the form (EL2A). As we have already seen, Newton's  
method is well-suited to solving the corresponding dual problem, and in this case 
the Hessian will be tridiagonal and easy to compute exactly. It is worth noting that 
the proof  of Lemma 7.17 breaks down for k>~3. 
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8. The bounded linear case 

67 

In the previous two sections we were concerned with the convex model (CM) of 
Section 4 in the case where the underlying constraint set was a cone. In the remaining 
two sections we shall concentrate on our other main example, the case when the 
underlying constraint set has the form (cf. (3.1)) 

. . . .  , m   81) 

As we shall see, these sets arise frequently in connection with transportation-type 
problems. In an analogous fashion to the development of Section 6, we shall begin 
by identifying circumstances under which the function ( f +  6(-] C))* appearing in 
the dual problem (DCM) is easy to evaluate. We shall primarily be concerned with 
the case where f is linear. In what follows, z ( . , . )  denotes the Mackey topology 
(Schaefer, 1971). 

Theorem 8.1. Suppose X and Y are vector spaces partially ordered by convex cones 

S x  and S v  respectively, and with ( . ,  • ) : X x Y ~ R a bilinear form.  Suppose e c S x  and 

Yl ,  . • •, Ym c Y, and consider the problems 

(PR) inf (e, y) 

subjectto y >~ y~, i - - 1 ,  . . . , m, 

y c Y ,  

(DPR) sup ~ (x/,y/) 
i - -1 

subject to ~ x/= e, 
i = l  

xi>~O, x i c X ,  i = 1  . . . .  ,m. 

I f  any o f  the following three conditions are met then the values o f  (PR) and (DPR) 
are equal. ( In  each case ( . ,  .) is simply evaluation.) 

(i) (X, S x )  a vector lattice, S v  = S+x , (Y, S v )  a sublattice o f  X h. 

(ii) Y complete metrizable, S v  closed, generating, X = Y*  and Sx  = S+y. 

(iii) (X, Y )  a dual pair, S y  generating, Sx  = S+y and 

either (a) ~ ' ( Y , X ) - i n t S v ~ O ,  

or (b) S v  is tT( Y, X) -c losed  and e c z ( X ,  Y )  - int Sx .  

Proof. (i) y >/y/, i = 1 , . . . ,  m, if and only if y ~> V~ y/- It follows that )7 = Vi Y/is 
optimal for (PR), with value (Vi y/ ) (e) .  But the value of (DPR) is also (Vi yg)(e),  

by Proposition 3.1. 
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(ii) Define a function f :  Y ~ Y m by f ( y )  := ( y~ - y, . . . .  y~ - y). Then f is certainly 
ST-convex. Furthermore,  given any zl, • • . ,  z,, ~ Y, there exist ui, v~ c Sv, i = 1 , . . . ,  m 
with y i - z l  = u~-  v~, since Sy is generating. It follows that y ~ - ~ j  uj ~<sy z~, each i, 

so ( z ~ , . . . ,  zm) 6 f ( ~ j  UJ) + ST. Since (Zl, .  • •, zm) was arbitrary, f ( Y )  + ST = ym, so 
certainly 0 ~ core ( f ( Y )  + ST). 

Now define a convex relation H :  Y ~  ym by H ( y ) : =  ( y l - y + S v , . . . , y m -  Y +  

St ) .  The same argument shows H is surjective, so certainly H - l ( 0 , . . . , 0 ) c ~  

core(dora(e)) # 0. Consider the problem (PR), which we can write 

t-~ := inf{e(y)I f (Y)  <~ 0, y c Y}. 

Since e ~> 0, / x > - o o ,  so we apply Borwein (1987, 2.7) to deduce the existence of 
) ~ , . . . ,  )?,,/> 0 such that 

It follows that 

Y ~ f = e  and /x=~ffi(y~). 
i i 

But certainly for any feasible y for (PR) and feasible ( X l , . . . ,  x~) for (DPR) we 
have ~ x ~ ( y i ) < ~  x ~ ( y ) =  e ( y ) ,  so V ( D P R ) ~  V(PR). The result follows. 

(iii) (a) We can apply Theorem 3.13 in Anderson and Nash (1987). The problem 
(DPR) is the dual of  (PR) in the linear programming sense. Since Sv is generating, 
there exist u~, v ~ c S v  with u ~ - v s = y ~ ,  each i. Thus ~ _ 1  ui is feasible for (PR). 
Furthermore, since e ~> 0, the value of (PR) is finite. 

I f  ~ c T( Y, X)  - int Sy, then 

i = 1  i 

so the Slater condition is satisfied, and the result follows. 
(b) We can rewrite (DPR) in the following way: 

m - - 1  

(DPR')  sup ~ (xi, Y i - -Ym)-b(e ,  ym) 
i ~ l  

m - I  

x~ <~ e, 

- - x i ~ O  , x i c X  , i = l , . . . , ( m - 1 ) .  

We shall apply Theorem 3.13 in Anderson and Nash (1987) to this problem. Since 
Sy is closed, the dual of  (DPR')  in the linear programming sense is 

(PR') inf ( e , y ) + ( e ,  ym) 

subject to  y -  zi = y~ - y,,,, i = l ,  . . . , m - 1 ,  

O~y, Z l , . . . , Z  m 1 C Y~ 
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which is clearly equivalent to (PR). Now as in part (a), ~'i"-1 u~ ~>yj, each j, so for 
any feasible x~'s for (DPR'), 

m / 
E (x, ,y i -Y,~)+(e,Y, , )  <~ E x,, UJ-Y,, +(e, Ym) ~< e, uj , 

so the value of (DPR') is less than + ~ .  Furthermore, by assumption, xi = ( l /m)e ,  
each i, satisfies the Slater condition, so the result follows. [] 

Definition 8.2. For X, Y, Sx, Sy and ( . ,  .) as in Theorem 8.1, we say (X, Sx) ,  
(Y, Sv), ( ' ,  ")) (or more simply just (32, Y)) is a pseudo-Riesz pair if the values of 
(PR) and (DPR) are equal for all e c Sx and y~ . . . . .  y,~ c Y. 

Examples 8.3. In each of the following cases Theorem 8.1 shows that (32, Y) is a 
pseudo-Riesz pair (with ( - , . )  evaluation): 

(i) X a normed lattice, Y = X*, Su = X+, X y  = (X*)+ (by Proposition 3.2). 
(ii) Y a normed lattice, X = Y*, with the lattice cones (cf. Examples 3.7). 

(iii) Y a Banach space, Sy closed, generating, X = Y*, Sx = S +. More generally 
than (i) and (ii), (X, Y) a dual lattice pair (Definition 3.6). 

We shall now work in the following setting: 

(X, Y) a dual pair, 

Sx c X, Sy c y, convex cones partially ordering X and Y, 

y~ . . . .  , y , , c  Y, b c ~  n, e ~ S x ,  (8.2) 

p c Nn a polyhedral cone, 

Ai: X ~ Nn, o-(X, Y)-N" continuous and linear, i = 1 . . . . .  m. 

We consider the following primal problem: 

rn 

(BLP) inf ~ (xi, y~) 
i = l  

subject to ~ A~xi c b + P, 
i = l  

xi = e, 
i = 1  

O<~xicX, i = l  . . . .  ,m. 

The dual problem becomes: 

(DBLP0 sup bVh - ( e ,  y) 

subjectto A~A-y<~yi ,  i = l , . . . , m ,  

h o P  +, y~  Y.. 



70 J.M. Borwein, A.S. Lewis / Partially finite convex programming H 

Theorem 8.4. With the notation of  (8.2), suppose that ( ( X, Sx) ,  ( Y, Sv),  ( ' ,  ")) is a 
pseudo-Riesz pair. Suppose further that for some (x l , .  . . ,  x,,), feasible for (BLP), we 
have: 

or(X, Y) - c l  P[0, ~]  = tr(X, Y) - c l  P[0, e], each i. (8.3) 

Then the values of  (BLP) and (DBLP1) are equal. I f  [0, e] is ~r(X, Y)-compact and 
(BLP) is consistent then its value is attained at an extreme point of  the feasible region. 
I f  (8.3) holds and ( ~ , . . . ,  "Xm) and (~;)5) are feasible for (BLP) and (DBLP0 
respectively, then they are optimal if and only if the following complementary slackness 
conditions hold: 

iX,, y, +)5 - A ~ )  = O, each i. 
(8.4) 

Proof. Apply Corollary 4.8 with underlying constraint set F as in (8.1). The con- 
straint qualification becomes (8.3) by Theorem 3.12. In this case, f ( x l , . . . ,  xm)= 
E, (x,, y/), so 

= inf{ie, Y)IY >~ d~i-y~ Vi}, 

by Definition 8.2. The duality result now follows. 
If  (BLP) is consistent, and [0, e] is o'(X, Y)-compact,  then the feasible region of 

(BLP) is clearly nonempty and o-(X m, Ym)-compact, so its value is attained at an 
extreme point by Holmes (1975, p. 74). 

Finally, if )7 and (~;)5) are primal and dual feasible respectively, with equal value, 
then we have 

bT)t--ie, , )=bT~- - (~ -~ i ,  )5) 

<~ bVX - E  (•,, ATX --y,) 
i 

<~ E i-~,, Y,) = b TX - i e ,  )5). 
i 

Thus equality holds throughout, and (8.4) follows. [] 

Suppose now that (X, Y) is a dual lattice pair (Definition 3.6). If e c qri X+ then 
the constraint qualification reduces to finding a feasible ( ~ , . . . ,  :~m) with xi ~ qri X+ 
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for each i = 1 , . . . ,  m, by Corollary 3.14. The dual problem simplifies to the finite- 
dimensional problem 

(DBLP2) maximize b V A - ( e , ~ = ( A ~ A - y ~ ) )  

subject to hoP+ ,  h ~ " .  

Define g~ :~ 'o  Y and N g ~ X ,  each i = 1 , . . . ,  m, by gi(h)=AX~h-y~, and N~(A)= 
N " (Vk=~ gk(h)-g~(h)), where N( . )  denotes absolute kernel (cf. Section 5). For a 
specific h, set g~ = g~(A) and i~ = Ni(A), each i. As before, X~ is the principal ideal 
generated by e. 

The following result shows how we can compute the solution of the original 
problem (BLP) by first solving (DBLP2). 

Theorem 8.5. With the notation of  (8.2), suppose (X, Y)  is a dual lattice pair. I f  (8.3) 
holds for some (xl ,  . . . , x,,) feasible for (BLP), then the values of  (BLP) and (DBLP2) 
are equal (with attainment in (DBLP2)). 

Suppose further that (X, Y) is a countably regular lattice pair (Definition 5.18). 
For h c ~ ,  consider the.following condition: 

( x , ] ~ i g k - g i l ) > 0 ,  f o r a l l O ~ x ~ [ O , e ] ,  e a c h i = l  . . . . .  m. (8.5) 

I f  (8.5) holds then X~ is an order direct sum 

Xe = ~) (X~ c~ .N,), (8.6) 
i = l  

and the dual objective function is differentiable at h with derivative 

b -  ~. AiPx,¢~,(e). 
i~l  

I f  furthermore h is optimal for (DBLP2) then the unique optimal solution of  (BLP) 
is given by ffi = Pxj~yc,(e), each i = 1 . . . .  , m. 

Proof. The duality result follows directly from Corollary 4.8. The criterion for the 
differentiability of the dual objective function follows from Corollary 5.15, since 

The remainder of the result follows again from Corollary 4.8. Since (X, Y) is a 
countably regular lattice pair, X is an ideal in yb,  SO X+ = (Y_~)+ and is thus 
o-(X, Y)-closed. It follows that the function f +  6(. I C) in Corollary 4.8 is closed, 
and the result now follows. [] 
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The interpretat ion o f  the various expressions in Theorem 8.5 for concrete spaces 

(X, Y) was discussed at the end o f  Section 5. 

In Theorem 8.4 it was proved that if  [0, e] is o-(X, Y) -compac t  and (BLP) is 

consistent then its value is at tained at an extreme point  o f  the feasible region. I f  Y 

is a normed  lattice with X = Y* then [0, e] is ~r(X, Y) - compac t  by the Alaog lu-  

Bourbaki Theorem.  On the other hand,  if X is a no rmed  lattice with Y = X *  then 

Examples  5.19 gives various condit ions for X to have o-(X, Y) -compac t  order  

intervals. Our  next result characterizes the extreme points o f  the feasible region of  

(BLP). We first need some definitions and lemmas. 

Definition 8.6. Suppose  X is an Arch imedean  vector lattice (i.e. nx~ <~ x2 for all n • 

implies x~ ~< 0). For  0 ~< x • X, x is an atom if the principal ideal X,  is one-dimensional  

(Schaefer, 1974, p. 143). 

In what  follows we shall assume X is Archimedean.  Notice in particular that  any 

normed  lattice is Archimedean.  

Lemma 8.7. O < ~ x • X  is an atom i f  and only i f  X~ is a minimal ideal (i.e. {0} is the 

only ideal properly contained in X~). 

Proof. Schaefer  (1974, p. 143). []  

Lemma 8.8, I f  X has no atoms then every nonzero ideal o f  X is infinite-dimensional. 

Proof.  Suppose {0} ~ I ~ X is a minimal ideal. Take 0 ~< x • L with x ~ 0 so X~ c L 

Since I is minimal,  X~ = / ,  so X~ is minimal,  and thus x is an atom by Lemma 8.7. 

This is a contradict ion,  so X has no minimal ideals. N o w  suppose {0} ¢ J1 ~ X is 
a finite-dimensional ideal. Since J1 is not  minimal,  there exists a nonzero ideal 

J2 ~ Jt strictly, so dim J2 < dim J1. We can proceed indefinitely in this fashion to 

obtain a sequence o f  strict inclusions, J~ D J2 = J3 • • ", which contradicts dim ./1 < 
ec. []  

Examples 8.9. 
(i) I f  Tis a normal topological space with no isolated points then C ( T )  has no atoms. 

(ii) l f  tz is a nonatomic measure on T ( i.e. for  measurable T, c T, with/z(T2) > 0, 

there exists measurable T~ c 7"2 with Ix (T1) ~ 0 or tz (T2)), then L p ( T, Ix) has no atoms, 

for  l <~p<~ oc. 

(iii) In particular i f  T ~ ~ with ix absolutely continuous with respect to Lebesgue 

measure, then L p (T, IX) has no atoms, for  1 <~ p <~ oe. 

(iv) l f  X = M (  T)  and 0 <~ e c X is nonatomic on T, then the principal ideal Xe has 

no atoms. 
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Proof.  (i) Suppose O<~xc C ( T ) = X  is an atom. Since T has no isolated points,  

To = { t [x ( t )>  0} is not  a singleton, so pick distinct t~, t2 c To. By Urysohn ' s  lemma, 

there exists O<~yc C(T)  with y ( f i ) = l  and y ( t 2 ) = 0 .  N o w  set z = x A y .  Clearly 

{0} ¢ X~ ~ Xx strictly, so x is not  an atom, which is a contradict ion.  

(ii) Suppose O<~xc U'(T, I x ) = X  is an atom. Set To-- - ( t lx( t )>O}.  To is not  an 

a tom in (T, Iz), so there exists T~c To with 0 < / x ( T 1 ) < / z ( T o ) .  N o w  set y ( t ) : =  
x(t)xT,(t) ,  for each t ~ T. Then {0} ¢ Xy c X~ strictly, so x is not  an atom, which is 

a contradict ion.  
(iii) The fact that  any measure which is absolutely cont inuous with respect to 

Lebesgue measure is nona tomic  follows f rom the definition o f  Lebesgue measure.  

(iv) By the R a d o n - N i k o d y m  theorem, X~ is i somorphic  with L~(T, e) and the 

result follows by (ii). [] 

Definition 8.10. An element x c [0, e] is a characteristic element of  [0, e] if x ^ 

( e - x ) = 0 .  

I f  X is C ( T ) ,  M ( T )  or LP(T, ~) ,  1 ~ p  ~< ~ ,  then x is a characteristic element of  
[0, e] if and only if x is of  the form x = e on T1, and 0 on T~, for some 7"1 c T. 

Lemma 8.11. An element x is an extreme point of [0, e] if  and only if it is a characteristic 
element. 

Proof. Schaefer (1974, p. 65). []  

We are now ready to prove the main  result. 

Theorem 8.12. With the notation of (8.2), suppose that (X, Sx) is an Archimedean 
vector lattice, and that the principal ideal Xe has no atoms. Then a feasible ()71, • • •, xm) 

for (BLP) is an extreme point of the feasible region if and only if each "Yi is a characteristic 
element of [0, el, i =  1 , . . . ,  m. 

Proof. If  each )7i is a characteristic element of  [0, e] then ()7~,. . . ,)7,,)  is an extreme 
point  of  [0, e] m (by Lemma 8.11), and therefore of  the feasible region. 

On the other hand,  suppose without  loss of  generali ty that  u := )71 ̂  ( e - ) 2 0  ¢ 0. 

Certainly u ~> 0. 

Suppose that  )7~ ̂  u =0 ,  each i = 2 , . . . ,  m. Then  we would  have u = u ^ (e-)71)  = 
m 

u ^ ~ i=2 )~ = 0, which is a contradict ion.  Without  loss o f  generality therefore,  suppose  

that  v:=)72^ u # 0 .  We then have 0<~v<~u~<)~l, ( e - 2 ~ )  and v < ~ 2 .  Fur thermore,  

e-)72 >~ ~1 >~ v. Thus we have constructed a nonzero  v ) 0  with x~, x2 ~ Iv, e -  v]. 
N o w  the principal  ideal X~ is infinite-dimensional by Lemma 8.8 so there exists 

c o  . 

nonzero  w ~ X~ with (A1-A2)w  =0 .  Since X~ =L._Jj=lj[-v,  v], we can assume (by 

scaling if necessary) that w c [ - v , v ] .  It then follows that  ( ~ 1 , ) 7 2 , . . . , ~ m ) ±  

(w, - w ,  0 . . . .  ,0)  are both  feasible, so ()7~,)72, • • •, )Tin) is not  extreme. []  
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Notice that if the hypotheses of  Theorem 8.5 are satisfied then from (8.6) we 
know that Xe = O ~  (X~ c~ _~r) is a direct sum of  ideals and so the solution ff~ = 
P x , ~ , ( e )  satisfies Y ~ ^ ~ = 0  for all i ~ j .  Thus f f ~ ^ ( e - g ~ ) = 0 ,  for each i, so this 
solution is an extreme point. 

Notice also that under the conditions of  the theorem, if (~1, .. •, g~) is an extreme 
point of the feasible region then 0 = ~ ^ ( e - ~ )  = g~ ^ ~ j ~  £j = ~j¢~ (x~ ^ xj), so x; ^ 
x~=0 for i ~ j .  I f X  is C ( T ) ,  M ( T )  or LP(T, tx), l<~p<~oo then this says that the 
supports of  x~ and xj are disjoint. It follows that the extreme points correspond 
exactly with solutions of the form ff~ = e on T~, and 0 on T~, each i = 1 , . . . ,  m, 
where T =  (._J~=~ T~ is a partition of  T. Thus by restricting attention to the extreme 
points of  the problem we have reduced it to a set-partitioning problem. 

Upper bound constrained semi-infinite linear programming 

To conclude this section we shall illustrate Theorem 8.5 by applying it to the problem 

of  semi-infinite linear programming with an upper-bound constraint, and to the 
problem of best L ~-approximation. Suppose first that (X, Y) is a dual lattice pair, 
with cE Y, A : X ~ "  a o-(X, y )_~n  continuous linear mapping,  b c ~ ' ,  P c ~  n a 

polyhedral cone and 0 ~< e E X. The problem we wish to consider is 

(ULP1) inf (x, c) 

subject to A x c  b + P, 

O<~x<~e, x c X .  

We can write this in the form (BLP) by adding a slack variable: 

(ULP2) inf (xl, c)+(x2,  0) 

subject to Ax~ + Ox2 ~ b + P, 

x~ + x2 = e, 

O ~ x l , x 2 ~ X .  

The dual problem becomes 

(DULP) maximize bVA - ( e ,  (ATA - e) +) 

subject to A e P + ,  A e ~ ' .  

Notice again how this dual problem is reminiscent of  penalty function approaches 

to the solution of the dual semi-infinite linear program (DSILP) (see Section 6). 
The larger the element e becomes, the more we penalize violations of  the constraint 
ATA ~< e. 

The constraint qualification requires the existence of a feasible £ for (ULP0 with 
cl ~[0, ; ]  = cl P[0, e - £] = cl P[0, e] (in the ~(X, Y) topology), and if e c qri X+ 
then this is equivalent to £, (e - £) c qri X+. I f  this holds then we know from Theorem 
8.5 that the values of  (ULP0 and (DULP) are equal, with attainment in (DULP).  
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If ~ and h are feasible for (ULP1) and (DULP) respectively in this case, then 
necessary and sufficient conditions for optimality are the complementary slackness 
conditions 

)tT(Ax -- b) = O, 

(~, (A'rX - c)-)  = O, 

((e - i f ) ,  (ATX - c) +) = 0, 

by Theorem 8.4. By Theorem 8.12, if the principal ideal Xe has no atoms then the 
extreme points of (ULP1) are just the feasible characteristic elements of [0, e]. 

Finally, suppose that (X, Y) is a countably regular lattice pair. Suppose the 
constraint qualification holds and that h is optimal for (DULP). Suppose further that 

(x, IATX--C])>O, f o r a l l 0 g x ~ [ 0 ,  e]. (8.7) 

It then follows by Theorem 8.5 that if we define N~, N_ c X by N~ = N((ATh - c) :~) 
then Xe = (Xe C~ N + ) ® ( X e  ~ N )  and the unique optimal solution of (ULP1) is 

= Px,.~N (e). We defer a discussion of numerical techniques for the solution of 
(DULP) to a later paper, except to observe that the objective function is ditterentiable 
at any h for which (8.7) holds, with derivative b - APx~N_(e ) .  In particular, suppose 
that X = LP([a, /3] , /x) ,  Y =  Lq([a ,  ~] , / . t ) ,  1 <~p <~ 0% with/x Lebesgue measure, and 
that A : X ~ ~" is defined by (Ax)~ = (x, a~), for some ai ~ Y, i = 1 , . . . ,  n. Then if the 
set {a~ . . . .  , a, ,  c} is pseudo-Haar on [a,/3] (Definition 7.8), condition (8.7) will 
always hold, so the dual objective function will be everywhere differentiable. 

Best L l-approximation 

Finally, let us turn to the problem of best L 1-approximation. Suppose that (X, Y) 
is a dual lattice pair (we shall primarily be concerned with the case X = L°~(T,/x), 

Y =  LI(T,/x) with (T,/z) a or-finite measure space). Suppose that a l , . . . ,  an, c c  Y 
and e c X+, and consider the problem below, which is in the form of (BLP): 

(DL1P) inf (x~, c)+(x2, - c )  

subjectto ( x l , a i ) + ( x 2 , - a i ) = 0 ,  i = l , . . . , n ,  

XI -[- X2 = e, 

X I ,  X2 ~- 0,  x I , X 2 G X .  

The dual problem is, from Theorem 8.5, 

maximize t f  
subject to h oR". 
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When X = L *, Y =  L 1 and e--- 1 this is exactly the problem of finding the best 
approximation in the L 1 norm to c from the subspace spanned by {al, . . . ,  an}, and 
for more general e we obtain weighted best Ll-approximation. 

The constraint qualification for (DL ~P) is always met by £1 = £2 = ½ e, by Corollary 
3.13, so by Theorem 8.5 the values of (LIP) and (DLIp) are equal, with attainment 
in (L1P) (implying in the (L ~, L 1) case the existence of a best Ll-approximation).  
Furthermore, if [0, e] is ~r(X, Y)-compact  (as in the case when (X, Y) = (L ~, L~)), 
then the value of (DL/P) will also be attained. In this case it follows by complemen- 
tary slackness (Theorem 8.4) that X is optimal for (L1P) if and only if there exist 
feasible 21, Y2 for (DL~P) satisfying (21, (~i Aiai-  c ) - )= 0 = (22, (•i 7tiai- c)+). This 
is one version of the characterisation theorem for best Ll-approximation (see for 
example Singer, 1970). In the case where (X, Y) = (L "~, L 1) and e-= 1, let us denote 
the set {t 6 T[~ i A~a~ (t) > c(t)} by Z>, and similarly for Z and Z~. Then if/z (Z=) = 0 
the complementary slackness conditions define ff~, 22 essentially uniquely to be Xz~ 
and Xz. respectively, so the optimality condition simplifies to ~z:~ a~ : ~z< a~, each 
i = 1 , . . . ,  n (see Singer, 1970). An alternative approach to this result is to observe 
that/z (Z_) = 0 is the condition for the objective function in (L ~ P) to be differentiable 
at i ,  and apply Theorem 8.5. Notice in particular that if T =  [a,/3] ~ R, with /z 
Lebesgue measure and al,  • . . ,  a, ,  e pseudo-Haar on [a,/3],  then we will always 
have/x (Z~) = 0. 

If [0, e] is o-(X, Y)-compact then there exists an extreme point optimal solution 
of (DLIP). If  furthermore the principal ideal X~ has no atoms then this extreme 
point will satisfy Xl ^ x2 = 0, by Theorem 8.12. When (X, Y)=  (L ~, L ~) with (T,/x) 
nonatomic and e-= 1 it follows that there is an optimal solution of (DL~P) of the 

form 21 = Xr,, 22 = Xr~, for some T1 ~ T. 

9. Semi-infinite transportation problems 

In this final section we shall examine how our previous results can be applied to 
problems generalizing the classical transportation problem. In these examples the 
set F defined in (8.1) arises naturally from the constraints: the nonnegative xi's 
represent the supply strategies associated with each of m supply points, and the 

m 

constraint ~i=1 xi = e reflects the requirement that a total demand distribution 
represented by e has to be supplied from the m supply points. When the distribution 
strategy is subject to linear transportation costs and the total supply at each of  the 
m supply points is given, the resulting problem is a semi-infinite transportation 
problem (see Kortanek and Yamasaki, 1982), which is a special case of the bounded 
linear problem considered in the previous section. When the underlying space X is 
finite-dimensional the problem reduces to the classical transportation problem. If, 
more generally, the supply distributions are subject to certain convex production 
costs, we obtain a 'generalized market area problem' (see Lowe and Hurter, 1976, 
and Todd 1978). We shall see how the results of the above authors can be rederived 
in a more general setting using our duality theorems. 
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Let us first consider the linear case, the semi-infinite transportation problem. We 

shall adopt the following notation: 

(X, Y) a dual pair, 

Sx  c X,  Sy  c y convex cones partially ordering X and Y, 
(9.1) 

Y l , . . . , Y , ,  a l , . . . , a , c  Y, 

b ~ N " ,  e c S x .  

The primal semi-infinite transportation problem (c£ Kortanek and Yamasaki, 1982) 
is then 

(STP) inf 

subject to 

(x,, y~) 

(xi, ai)= bi, i=  1 , . . . ,  n, 

xi = e, 
i~l 

xi>~O, xi~ X,  i=  l , . .  . , n. 

This is a special case of  (BLP) with m = n, P = {0} and (Aix) j  = (xi, ai) for i =j ,  and 
0 for i ¢ j .  The dual problem becomes 

(DSTP,) sup bTA-(e,y) 

subject to Ma~ - y ~< y~, i = 1 , . . . ,  n, 

A ~R", y ~  Y.. 

This is exactly the primal-dual pair considered in Kortanek and Yamasaki (1982). 
Following Theorem 8.4, the constraint qualification requires a feasible (£1, • • •, ~,,) 

for (STP), satisfying (8.3) (or, if (X, Y) is a dual lattice pair with e c qri X+, with 
each £i c qri X+). Either of the following assumptions (cf. Kortanek and Yamasaki,  
1982), is sufficient to ensure this. 

Assumption 9.1. (e, ai) > 0, b i > 0, each i = 1 , . .  n, and ~"  . ,  ~=, (bJ (e ,  a,)) = 1. 

Assumption 9.2. a~ = a, bi > 0, each i = 1, n, and ~"  b~ = (e, a). 
• " " ' i = 1  

Clearly Assumption 9.2 implies Assumption 9.1, which in turn implies that the 
point defined by 2~i = (bJ (e ,  a~))e, each i = 1 , . . . ,  m, is feasible, and this satisfies the 
constraint qualification by Corollary 3.13. The most usual version of the semi-infinite 
transportation problem has X =  M ( T ) ,  Y =  C ( T ) ,  with T a compact Hausdorff  
space, and ai -= 1, each i = 1 , . . . ,  n. Assumption 9.2 is then simply the requirement 
that each supply point has a strictly positive supply and that the total supply is 
equal to the total demand. 
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Theorem 9.3. With the notation of (9.1), suppose either of Assumptions 9.1 and 9.2 
holds, and that ( ( X, Sx), (Y, Sy), ( . , . ) )  is a pseudo-Riesz pair. Then the values of 
(STP) and (DSTP0 are equal, and if ( x l , . . . ,  x , )  and (A; fi) are feasible for (STP) 
and (DSTP1) respectively then they are optimal if and only if 

Xi, y+yi  -A ia i )  = 0 ,  each i = 1 , . . . ,  n. (9.2) 

Proof. Theorem 8.4. [] 

This duality theorem is proved in Kortanek and Yamasaki (1982) in particular 
for the special case where X is a reflexive Banach lattice with Y=  X*, with the 
lattice orderings (cf. Theorem 4 in the above paper). This case follows from Theorem 
9.3 by Examples 8.3. They also consider the case when r-( Y, X ) - i n t  Sy # 0 (cf. 
Theorem 2 in the above paper); since Sy must then be generating this case also 
follows from Theorem 9.3 by Theorem 8.1. 

Theorem 9.4. With the notation of (9.1), if [0, e] is or(X, Y)-compact and (STP) is 
consistent then there exists an optimal extreme point for (STP). 

Proof. Apply Theorem 8.4. [] 

Theorem 9.5. With the notation of (9.1), if (X, Sx) is an Archimedean vector lattice 
and the principal ideal Xe has no atoms then a feasible ( x l , . . . ,  2,) for (STP) is an 
extreme point of the feasible region if and only if each xi is a characteristic element of  
[0, e] (with xi ^ xj=O for i C j ). 

Proof. Apply Theorem 8.12 and the remarks thereafter. [] 

Following our discussion after Theorem 8.12, we see that when (X, Y) = (LP( T, i.~), 

Lq(T,I~)), l<~p<~ ,  with /~ nonatomic, we can restrict attention to feasible 
(X l , . . . ,  x,,) where the xi's have disjoint support, i.e. of the form (exT, , . . . ,  eXT,,), 
where T=(..]~'= 1 T~ is a partition of T. A similar argument holds for (X, Y)=  
( M ( T ) ,  C(T) )  when e is nonatomic on T, by Examples 8.9(iv). Thus in these cases 
(STP) reduces to a problem of set-partitioning, reflecting the fact that optimal 
distribution strategies arise from assigning to each supply point a distinct area in 
the underlying demand set, for which it has to supply the whole demand. This 
observation was made in Corley and Roberts (1972). These authors also discuss the 
relationship between (STP) and the Neyman-Pearson lemma of statistics. The duality 
approach to the Neyman-Pearson problem was discussed in Francis and Wright 
(1969). 
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Suppose now that (32, Y) is a dual lattice pair. In this case the dual problem 
becomes 

(DSTP2) maximize 

subject to 

bTh-  (e, y (hia, - y i ) )  

h c ~ ' .  

Define gg(h):= h~a~-y~, and N~(A) = N(Vk gk(h) - gi(h)), for i = 1 , . . . ,  n. Consider 
the following condition: 

x, 2 gk(h)-g,(h) )>0, f o r a l l O ¢ x 6 [ O , e ] ,  i=1  . . . .  ,n. 
i 

(9.3) 

As we observed at the end of Section 5, (9.3) can be interpreted in the cases 
(X, Y) = (L p ( T, ix), L q ( T,/x)), 1 ~< p <~ oc, and ( m  (T), C (T)) as requiring the set 
{hiai(t) - y ~ ( t ) l i =  1 , . . . ,  n} to have a unique largest element/x-a.e, on support(e), 
and e-a.e., respectively. 

In Todd (1978) the case considered is (X, Y ) = ( M ( T ) , C ( T ) ) ,  and a~=l ,  
i = 1 , . . . ,  n. Assumption 1 in his paper requires 

e{t ~ TIA , - y , ( t )  = h i -Yj( t )}=0,  

for all i # j ,  hg, hj ~ E. This is clearly sufficient to ensure (9.3) holds for all h. 

Theorem 9.6. With the notation of  (9.1), suppose that either of  Assumptions 9.1 and 
9.2 holds. Suppose also that (X, Y)  is a dual lattice pair. then the values of  (STP) 
and (DSTP2) are equal, with attainment in (DSTP2). 

Suppose further that (X, Y)  is a countably regular lattice pair. Then the dual objective 
function is differentiable at any h for which (9.3) holds; at such points we have 

=+ X e ( X  e n N~(A)), (9.4) 
i = 1  

and the gradient is given by (bi --(Px~N~(~)(e), ai))7=l, where PXeV~Ni(A):Xe -') X e 0 
Ni(h), i=  1 , . . . ,  n, are the natural projections associated with (9.4). 

I f  furthermore h is optimal for (DSTP2) and (9.3) holds at h then the unique optimal 
solution of the problem (STP) is given by ~ = PX,~N~(X)(e), i = 1 , . . . ,  n. 

Proof. Apply Theorem 8.5. [] 

In Theorem 5 of Kortanek and' Yamasaki (1982) the existence of an optimal 
solution to (DSTP2) is proved under Assumption 9.2. However, the duality results 
they give require interiority or local compactness conditions on the cones involved, 
or X to be a reflexive Banach lattice with Y = X*. 
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The generalized market area problem 

We now turn to a generalization of  the semi-infinite transportation problem known 
as the generalized market area problem (see Lowe and Hurter, 1976). In this problem, 
instead of constraining the total production at each supply point by (xi, a~) = b~ for 
each i, we impose a convex production cost of the form k(((xi, a~))7=~). The semi- 
infinite transportation problem is the special case where k(.  ) = 3(. I{b}). 

The problem we are interested is thus 

( G M P )  i n f  ~ (Xi, yi)'~- k(((xj, aj));__l) 
i~l 

subject to ~ xi = e, 
i=-1 

xi>~O, x i c X ,  i = l , . . . , n .  

If  (X, Sx) ,  ( Y, Sv),  ( ' ,  ")) is a pseudo-Riesz pair then by applying Corollary 4.8 we 
obtain the dual problem 

(DGMP1) sup - ( e ,  y ) -  k*( -A)  

subject to Aia i - y  ~< y~, i = 1 , . . . ,  n, 

A c ~ ' ,  y 6  Y.. 

Theorem 9.7. With the notation of  (9.1), and k:Rn-+ ]-0% 00], convex, suppose that 
( ( X, Sx ), (Y, Sv) ,  ( ' ,  • )) is a pseudo-Riesz pair. Suppose further that for some feasible 
( 2 1 , . . . ,  xn) for (GMP) we have 

((xi, ai))l ~ ri(dom k) (or simply dora k i fk  polyhedral), 
(9.5) 

~(X, Y)-cl •[0, 2i] = o-(X, Y) - e l  P[0, el, i =  1 . . . .  , n. 

Then the values of  (GMP) and (DGMPI)  are equal In this case feasible ( 2 1 , . . . ,  fin) 
for (GMP) and (5; 37) for (DGMP1) are optimal if and only if 

(xi, Yi+fi-) t iai)=O, i = l , . . . , n ,  
(9.6) 

- 5  cOk(((Xi, a~))']). 

I f  (GMP) is consistent, k is closed and [0, e] is ~(X,  Y)-eompact then the value 
of  (GMP) is attained. 

Proof. Apply Corollary 4.6 and Theorem 3.12. If  the values of (GMP) and (DGMP1) 
are equal and (xl, • • •, xm) and (5; 37) are respectively feasible for the two problems, 
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then they are optimal if and only if we have 

- (e, 97) - k* ( -~ )  <~ - E (X~, 37) + k(((X~, ai)) 1) + 2 Xi(-~i, ai) 
i i 

n . q_  - - <~ -~,  (~2i, ~iai-yi)+k(((xi ,  ai)),) ~ Z.i(xi, ai) 
i i 

= E (X,, y,) + k (((X,, a,)) ~) 
i 

= - (e ,  y ) -  k*(-X), 

and (9.6) follows by Rockafellar (1970, 23.5). 
To see the last assertion, write (GMP) as 

i n f { u + k ( v ) [ u = ~ ( x ~ , y ~ ) , v i = ( x i ,  ai)Vi, f o r s o m e ( x , , . . . , x n ) c F } ,  
u ~  i 

t ~ c g ~  n 

where F is given by (8.1). If [0, e] is or(X, Y)-compact then so is F. Thus (GMP) 
is equivalent to minimizing a closed, proper convex function over a compact subset 
of N"+~ (since the continuous image of a compact set is compact). Attainment in 
(GMP) now follows by Rockafellar (1970, 27.3). [] 

Now suppose that (X, Y) is a dual lattice pair. In this case the dual problem 
becomes 

(DGMP2) maximize - / e ,  ~V (A~a i - y~ ) ) - k* ( -A )  

subject to A ~ " .  

Theorem 9.8. With the notation of (9.1), and k : ~  ~ ~ ]-oo, oo], convex, suppose that 
(X, Y) is a dual lattice pair and that for some feasible (xl , -  • . ,  x,,) for (GMP), (9.5) 
holds. Then the values of (GMP) and (DGMP2) are equal, with attainment in 
(DGMP2). 

Suppose further that ( X, Y) is a countably regular lattice pair. Suppose that k is 
closed, that ~ is optimal for (DGMP2), and that (9.3) holds at ~. Then (9.4) holds 
and the unique optimal solution of  (GMP) is given by ~ = Pxj~N,(x)(e), i = 1 , . . . ,  n. 

Proof. The duality result follows from Corollary 4.8. Under the further conditions 
we know that (9.4) holds at X, as in Theorem 9.6, and that the function (e, ~/~_ 1 (Aiai - 
yi)) is differentiable at ~ with gradient ((Xe, ai))~. Since ~ is optimal it follows that 

0 c - ((Xi, ° * - a~))l + ak (-)~). Since k is closed, this is equivalent to - ~  c ak(((~,  a~))~), 
by Rockafellar (1970, 23.5). If we now set 37:=V'~_l(~.iai-yi), it follows that 
( ~ , . . . ,  ~n) and (~; 37) are feasible for (GMP) and (DGMP2) respectively, and 
satisfy the complementary slackness conditions (9.6). By Theorem 9.7 they are 
therefore optimal. The uniqueness of (~1, • • •, ~n) follows from the fact that for any 
optimal (xl . . . .  , x,,) we have xi ~ X~ c~ Ni(~.), by (9.6), but ~i xi = e and ~i (Xe 
Ni(~)) is a direct sum by (9.4). [] 
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We can  n o w  r e d e r i v e  the  resul t s  in T o d d  (1978) by  spec i a l i z ing  to the  case  

X = M ( K ) ,  Y = C ( K ) ,  K c ~'~ c o m p a c t ,  e a b s o l u t e l y  c o n t i n u o u s  wi th  r e spec t  to 

L e b e s g u e  m e a s u r e ,  a n d  ai -= 1, e a c h  i = 1 , . . . ,  n. As we  a l r e a d y  obse rved ,  A s s u m p t i o n  

1 in T o d d ' s  p a p e r  is m a d e  to e n s u r e  tha t  (9.3) ho ld s  fo r  any  h. M a n y  o f  the  resul t s  

on  the  semi - in f in i t e  t r a n s p o r t a t i o n  p r o b l e m  in the  first h a l f  o f  this sec t ion  c o u l d  

n o w  be  r e d e r i v e d  f r o m  the  spec ia l  case  k ( . )  = 6 ( .  [{b}). It  is w o r t h  o b s e r v i n g  tha t  

we  c o u l d  g e n e r a l i z e  m u c h  o f  the  t h e o r y  o f  Sec t i on  8 on  the  b o u n d e d  l inear  p r o b l e m  

(BLP)  in m u c h  the  s a m e  w a y  as we  h a v e  e x t e n d e d  the  semi - in f in i t e  t r a n s p o r t a t i o n  

p r o b l e m  to t he  g e n e r a l i z e d  m a r k e t  a r ea  p r o b l e m .  
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