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We present a primal method for the solution of the semi-infinite linear programming problem 
with constraint index set S. We begin with a detailed treatment of the case when S is a closed 
line interval in ~. A characterization of the extreme points of the feasible set is given, together 
with a purification algorithm which constructs an extreme point from any initial feasible solution. 
The set of points in S where the constraints are active is crucial to the development we give. In 
the non-degenerate case, the descent step for the new algorithm takes one of two forms: either 
an active point is dropped, or an active point is perturbed to the left or right. We also discuss 
the form of the algorithm when the extreme point solution is degenerate, and in the general case 
when the constraint index set lies in R ~'. The method has associated with it some numerical 
difficulties which are at present unresolved. Hence it is primarily of interest in the theoretical 
context of infinite-dimensional extensions of the simplex algorithm. 
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I. Introduction 

There are a n u m b e r  of well- tr ied methods available for the solut ion of semi-infini te 

p rogramming  problems.  Hett ich [9] gives a review of these methods  and  a fuller 

t rea tment  of the whole subject  of  semi-infini te l inear  p rog ramming  can be found  in 

Glashoff and  Gus ta fson  [5]. In  this paper  we describe an algori thm which is markedly  

different to the usual  techniques .  Our  method  works directly with extreme points  

of  the feasible set for the pr imal  semi-infini te l inear  program.  It is in this sense a 

simplex-l ike algorithm, and  so has considerable  intr insic  interest  in the context  of  

at tempts to extend the s implex algori thm to more general  in f in i te -d imens iona l  l inear  

programs.  In  part icular ,  a n u m b e r  of authors  have cons idered  the possibil i ty of a 

con t inuous  t ime simplex method  (see Perold [14] and  the references therein) .  Any 

such method  must  be able to deal effectively with the semi-infini te problems we 

investigate in this paper,  since these are special cases of the general  con t inuous  t ime 

l inear  program. Thus our  invest igat ion into the difficulties inheren t  in the construc- 

t ion  of a simplex-like a lgor i thm for semi-infini te l inear  p rog ramming  is relevant  to 

a much  broader  class of  problems.  .... :'~ 

One of the aims in ex tending  the simplex algori thm to infinite-dimen'sldnal 'f io~ar,  

programs is to avoid making  an explicit  d i s c r e t i z a t i o n o f  t he  problem. O u r  degree 

of success in achieving this in the semi-infinite cas~e~is r epo r t ed  in this paper,  It is 
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however inevitable that some discretization is used in the numerical implementation 
of  the algorithm, for instance in checking that a trial solution is feasible for the 

problem. 
In addition to the algorithm's theoretical interest, it avoids some of  the difficulties 

encountered by standard solution techniques. The resolution of  the numerical 

problems raised by the implementat ion of the algorithm could thus prove to be of  
some practical interest. Moreover, the new method serves as a powerful illustration 
of  the approach to general linear programming problems described by Nash [13]. 

We consider the semi-infinite program when the index set of  the constraints, S, 
is taken as a polyhedral subset of  ~P. The semi-infinite program then has the form 

SIP1 : minimize cTx 

subject to a(s)Tx>~b(s) for all s~S, 
x c ~n, 

where a and b are continuous functions from R ~ to •" and R respectively. A dual 

problem for SIP1 can be formulated as follows: 

maximize fs b(s) dw(s) SIPI*: 

subject to fs a(s) dw(s) = e, 

w>~O, wcM[S], 

where M[S] is the space of regular Borel measures on S (see Rudin [16]). 
The algorithm described here is a primal algorithm; it approaches the optimal 

solution through a sequence of solutions each of  which are feasible for SIP1. 

Consequently we shall not make any direct use of  the dual problem and the exact 
form in which it is posed will not be important.  A key element in our approach is 
an analysis of  the extreme point structure of the primal problem. The plan of the 
paper  is as follows. We begin by giving in the next section some fundamental 
definitions and results for the general abstract linear program, which we shall later 
specialize to the semi-infinite case. A characterization of the extreme points is given 

in Section 3 for the case S = [0, 1] ~ ~. In Section 4 we show how an improved 
extreme point solution can be obtained from any feasible solution, and in the 

following section an optimality check is given. This optimality check is the basis of  
t he  improvement  step described in Section 6, for the non-degenerate case. 
Degeneracy is an important  phenomenon for the semi-infinite program, and we 
discuss in Section 7 the structure of  the feasible set near a degenerate extreme point. 
This leads to a method for making improvement  steps in the degenerate case. We 
finish by describing the form that the algorithm takes when S is a polyhedral subset 
of  NP, and by discussing the relationship of  this new method with more well-known 

techniques. 
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The algorithm that we describe here has been introduced in outline in Anderson 

[1]. This present paper completes the description given there, and adds to it a 

treatment of the degenerate case and the case where the constraint index set is of 

more than one dimension. We have yet to make a full-scale implementation of the 

algorithm, so that we are only able to give limited numerical results. 

2. The general linear program: Results and definitions 

We begin by reviewing the framework for general linear programming described by 

Nash [13]. Let X and Z be real vector spaces and X+ a convex cone in X. X+ is 

called the positive cone in X and defines a partial order "~>" on X by 

x1>y forx ,  y c X  if and only if x - y e X + .  

We write 0 for the zero element of a vector space, so that for x c X, x >~ 0 if and 

only if x c X÷. For e* ~ X*, the dual of X, denote the image of x under e* by (x, c*). 

Let A : X ~ Z be a linear map, and let b ~ Z. We consider the linear program 

LP: minimize <x, c*) 

subject to A x = b ,  

x>~O, x ~ X .  

The feasible region of LP is the set {x e X:  Ax  = b and x >/0} and ~: ~ X is called 

an extreme point of LP if ~ is an extreme point of the feasible region of LP. 

The first result we need gives a simple algebraic characterization of the extreme 

points of LP. For any ~: e X we define the following set: 

B(4:) = { x e X :  ~h >0 ,  h ~ with ~:+hx>~ 0 and ~ : - h x ~  > 0}. 

Notice that B(~) is a subspace of X. We denote the null space of the map A by 
N ( A ) .  The following lemma, due to Nash, is straightforward to establish. 

Lemma 1. ~ e X is an extreme point of LP if  and only if B (~) ~ N ( A )  = { 0}. 

If  s c is an extreme point of  LP, we can form the direct sum of B(s c) and N ( A ) .  
We denote this subspace by D(~). ~: is called degenerate if 

D(~) = B ( ( ) G  N ( A )  ~ X. 

It is not hard to check that this definition corresponds to the usual one when the 
linear program is finite, 

The definitions above can be used to establish an important characterization of  

the optimal extreme points for LP. Suppose that ~: is an extreme point of LP and 

let PN(a): D(~) ~ N ( A )  be the natural projection. Define the reduced cost for ~ to 
be a map c~ : D(~) ~ ~ given by 

<X, C~) = (PN(A)(X) ,  C*) for x e D(sC). Pro~. Ovo ~;~= "" . . . . . .  

A proof of the following result can be found in Nasfi;:[~$]; ~' : ! ~ ! - ,!"'~'r . . . .  
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Lemma 2. I f  ~ is an extreme point of LP, then ~ is an optimal solution of LP i f  and 
only if  c~ is positive on D(( ) ,  i.e. (x, c~) >~ 0 for each x EX+ c~ D(( ) .  

In the next section we show how these definitions and results specialize to the 

semi-infinite linear program. 

3. The semi-infinite linear program 

We consider the semi-infinite linear program SIP1 with S = [0, 1] c E. We will assume 
that the components a~, a 2 , . . . ,  an, of  the function a, and the function b, are all 

members  of  C~[0, 1]. In order to put SIP1 into the form LP, we introduce a slack 
variable z c C°[0,  1]. The problem then becomes 

SIP2: minimize cTx 

subject to a(s)Tx - z(s) = b(s) for all s c [0, 1], 

xc0~", z~>0, z c  Ca[0,  1]. 

In the notation of Section 2, we have 

X = ~° x C°[0 ,  U, 

z = c~[o ,  1], 

a(x;  z) = a ( ' ) T x - z ( ' ) ,  

((x; z), c*)= c~x, 

and 

X+={(x; z): z~>0}. 

Now we shall consider a specific (~:; ~), feasible for SIP2. We call the set 
{s ~ S: ( ( s )  = 0} the active points. We shall assume that there are only a finite number  

of  active points which we denote by {sl, s2, . . . ,  sk}. At the active points the slack 
function if, which is greater than or equal to zero throughout [0, 1], attains a strict 
local minimum with value 0. We shall need to keep track of the order of  these zeros 
of  ~ and so we define d(i) to be the smallest non-negative integer j such that 
(cJ+l)(si) ~ 0. I f  s~ is in the interior of  the line segment [0, 1], then d(i)  will be odd. 

We shall assume that d(i) is defined (i.e. is less than ~ )  for each i = 1, 2 , . . . ,  k. 
We now set about characterizing the extreme points of  S1P2 using the results of  

Section 2. 

Lemma 3. The subspace B(( ;  ~) is given by 

B((;  ~) ={(x;  z) 6 ~" x C~[0, 1]: z(J)(si) =0,  j = 0 , . . . ,  d(i),  i= 1 , . . . ,  k}. 
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Proof. It is easy to see that there exists a A > 0 with ~ + Az/> 0 and ~ ' -Az >~ 0 on 
[0, 1] if and only if 

sup{Iz(s) l /~(s):  s ~ [0, 1], s # s, ,  s2,. • •, Sk}< oo. 

NOW Iz (s ) l /~(s)  is continuous everywhere in [0, 1] except possibly at Sl, s2 . . . .  , sk. 
By l 'Hgpi ta l ' s  rule, Ilim . . . .  z ( s ) /~ ( s ) l  < oo if and only if zV)(s~) = O, j = 0 , . . . ,  d ( i ) ,  
i = 1 , . . . ,  k, and this establishes the result. [] 

_~_ k 
Let m = k  ~i=l d(i) .  We define the m x n  m a t r i x A b y  

,4 = (a(s , ) ,  a ' ( s O , . . . ,  a(d°))(sO,  a(s2) . . . .  , a(sk) . . . .  , a(a(k)~(sk)) T, (1) 

SO that the rows of J, are the values of  a and its derivatives at the active points. 
We then obtain the following characterization of extreme points: 

Theorem 4. (~; ~') is an extreme point o f  SIP2 i f  and only i f  the columns o f /~  are 
linearly independent, or equivalently 

span{aq)(&): j = 0 , . . . ,  d( i ) ,  i =  1 , . . . ,  k } = R  ". 

Proof. (x; z )6  B(~:; ~)c~ N ( A )  if and only if a ( s ) T x - - z ( s ) = 0 ,  for s ~ [0, 1], and 

z(J)(si) =0,  j = 0 , . . . ,  d( i ) ,  each i =  1 , . . . ,  k. Thus by Lemma 1, (~; ~') is extreme if 
and only if 

{x: a(J~(si)Vx = O, j = 0 , . . . ,  d ( i ) ,  each i = 1 . . . .  , k} = {0}, 

i.e. if and only if the columns of A are linearly independent.  [] 

4. Purification 

In this section we will consider the problem of how to construct an extreme point 

of  SIP2. This will be a necessary first step in any solution algorithm which is based 
on extreme points. We will make the following assumption concerning the problem 
SIP2: 

{x: cVx<~O and a(s)Tx>~O, so[O,  1]}={0}. (2) 

Assumption (2) will hold in particular if the feasible region is bounded.  Under  this 
assumption we can generate an extreme point of SIP2 by applying the purification 
algorithm described below to any feasible starting point. We shall return to the 

question of finding an initial feasible solution in Section 6. The algorithm proceeds 
at each step by moving in such a way as to maintain all the previous zeros of the 
slack variable, until a new zero is obtained. 
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0. Take ( ~ ;  f~) feasible for SIP2, and set r = 1. 
Iteration r 

1. Let { s ~ , . . . ,  sk} be the active points corresponding to (~r; f~), and define d( i )  

as in Section 3, for i =  1 , . . . ,  k. 

2. Define a subspace Tr ~ ~" by setting T r ~- ~,a if k = 0, and 

Tr = { x :  afJ)(si)Tx -~ 0 ,  j = 1 , . . . ,  d( i ) ,  each i = 1 , . . . ,  k}, 

otherwise. I f  7",-  {0}, STOP: (scr; fir) is an extreme point. 
3. Set g '= - -PT, (C)  (where PT~ is the orthogonal projection onto 7",). I f  g ' =  0, 

pick a nonzero g r arbitrarily in Tr. 

4. Set/3, =sup{--[a(s)Tg~/fr(S)] :  S C [0, 1], S ~ S l , . . .  , Sk}. 
5. Set ~r+~=( '+(1 / f l~ )gr ,  and f i , + ~ ( . ) = a ( . ) w ( ' + ~ - b ( . ) .  

6. Increase r by 1 and return to step 1. 

Theorem 5. The above algorithm terminates at  an extreme point  in at most  n iterations. 

Moreover,  the cost at this point  is not greater than the cost at the initial point (cT~).  

Proof. Let us denote ( 1 / / ~ r )  by ar. Notice that 

o~ r : s u p { a ~ :  ( ( r  fir) d- G(gr; a(" )Tgr) is feasible for SIP2}, 

and this supremum is attained. By definition, cTgr~ O, SO the cost cannot increase 
at any step, and by assumption (2), C~r < CO. Also notice that 

B(~:r; fir) (~ N ( A )  = {(x; a ( .  )Tx): X C Tr}. 

By the definition of B(~:'; ~'r), there is a h > 0 such that 

f , ( s ) ~ h a ( s ) g r > ~ O  f o r s c [ 0 , 1 ] ,  

so Cer > 0. Clearly T,+I --- Tr. But by the characterization of ar given above, 

(gr; a( ' )Ygr)~ ~ ( ~ r + ,  f i r+ , ) ,  

so g r~  T,+I. Thus Tr+l ~ T~ strictly, and since each Tr is a subspace of ~n, the 

algorithm terminates at an extreme point in at most n steps. [] 

This procedure is a special case of  a more general purification algorithm described 

in Lewis [12]. It has been implemented on a microcomputer ,  and an example of  
the output is shown in Figure 1. The graphs show the slack variable fir(S) at each 
iteration for the one-sided Ll-approximat ion problem 

7 
EXI: minimize ~ (1 / i ) x i  

i=1 

7 4 
subject to ~ xis ~-1 >1 - Y s 2~ for s ~ [0, 1]. 

i=1 i~0 
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Fig. 1. Purification algorithm applied to EX1. 

The start ing point  is x = s c~ = (10, 0, 0, 0, 0, 0, 0) r, and the a lgor i thm terminates  after  

6 steps at an extreme point ,  with k = 3 ,  d ( 1 ) = 2 ,  d ( 2 ) =  1, and  d ( 3 ) =  1. 

5. Degeneracy and the reduced cost 

We consider  next  the p r o b l e m  of  checking whe ther  or not  an ex t reme point  of  SIP2 
is opt imal ,  and if not, of  how to make  an i m p r o v e m e n t  to it. Using the f r a m e w o r k  
of  Section 2, we shall calculate the reduced  cost co r responding  to a non-degenera te  

ext reme point .  
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Lemma 6. (~; ~') is a non-degenerate extreme point o f  SIP2 i f  and only if,4 is invertible. 

Proof. Suppose that (( ;  ~') is extreme, and (x; z) ~ D(~; if). Then for some (u; v) c 
B(~:; O, we have ( x - u ; z - v ) c N ( A ) .  Thus v#)(si)=O, j = l , . . . , d ( i ) ,  each i =  
1 , . . . ,  k, and a ( s ) V ( x -  u) = z(s)  - v(s). Hence we have 

aO)(si)Tu=a~)(si)rx--zU)(si),  j = l , . . . , d ( i ) , f o r e a c h  i = l , . . . , k .  (3) 

((;  ~') is non-degenerate if and only if (3) is solvable for u, for every x and z, or in 
other words for every right hand side. This is equivalent to A being invertible. D 

For any z c C°[0,  1], we define a vector 2 by 

2 = ( z ( s , ) , . . . ,  z ( " ( " ( s , ) , . . . ,  z ( sk ) , . . . ,  z("("))(sk)) w. 

Thus As c =/~. If  (~:; O is an extreme point then this relationship determines its value 
once sl, s 2 , . . . ,  Sk, d(1), d(2) . . . .  , d (k )  are given. With this notation we can write 
(3) as Au = A x - 2 ,  so for non-degenerate ((;  ~') we obtain u = x -  3, 12, since A is 
invertible. Thus the projection map onto N ( A )  is given by PN(A)(X; Z)= 
(A lz; a ( .  )Trip-12), and so the reduced cost c~, o is defined by 

<(x; z), c~:o)= (PN(~)(x; z), c*) 
= C T~Z~-- 1 2 .  

We define n scalars A~j by 

c T / d ~ - I  = ( / ~ ' 1 , 0 ,  • • • , / ~ ' l , d ( 1 ) ,  • " • , Y~k,O,''', ak, d(k)) (4) 
; T .  

We then obtain the following optimality check: 

Theorem 7. A non-degenerate extreme point (~; ~') is optimal if and only if for each 
i =  1 , . . . ,  k, A~.o~>0 and,~d =0, j =  1 , . . . ,  d(i) .  

Proof. By Lemma 2, (so; ~') is optimal if and only if 

k d(i) 
Y~ AjC'(s,)  i> 0 

i - 1  j = 0  

for all z~>0 on [0, 1]. Now suppose that )tp,o<0 for some p. By constructing a 
polynomial z, non-negative on [0, 1] and satisfying 

z(J)(si)=l, j=O,  i=p,  

= 0, otherwise, 

it may be seen that ((;  if) cannot be optimal. If, on the other hand, ,~p.q ~ 0 for some 
p and some q > 0 then by constructing a non-negative z satisfying 

zU)(si)= |, j = 0 ,  i=p,  

=M,  j = q ,  i=p,  

= 0, otherwise, 
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with IM] very large, it is again clear that (~; if) cannot be optimal. The result 
follows. [] 

6. The local structure of the feasible region, and descent steps 

In this section we will consider a local description of  the feasible region by a finite 
number of implicitly defined inequality constraints. Using this description and the 
optimality check described in Theorem 7, we show how a non-degenerate extreme 
point (£; if) may be moved to a strictly improved extreme point (if it is not already 
optimal). 

We shall consider first the simplest case, with (£; if) not necessarily extreme, 
{sl . . . .  , Sk}~ (0, 1), and d ( i ) = l  for each i=  1 , . . . ,  k. The feasible region in a 
neighbourhood of (~:; ~) may then be described by k inequality constraints. The 
following result is a special case of the 'Constraint Reduction Lemma' of Hettich 
and Jongen [10]. We denote the open ball {x: IIx-~ll < ~} by N~(~). 

Theorem 8. For some 6 > 0 there exist functions w l , . . .  , Wk ~ C~[N~(sc)] such that 
for all x ~ N~(~), (x; a ( .  )Tx -- b(" )) is feasible for SIP2 if and only if  wi(x) >10 for 
each i= 1 , . . . ,  k. 

Proof. For 6 sufficiently small and any x c N~(~), the slack variable a( .  ) V x - b ( .  ) 
has a unique local minimum close to s~. We define wi(x) as the value of this local 
minimum. More precisely, by the Implicit Function Theorem, for a sufficiently small 
neighbourhood N~ (~:) we can define functions thi: N~(~) ~ (0, 1) satisfying thi(s c) = si, 
for each i = l , . . . , k b y  

a'( 4~,(x) )T x = b'( 4~,(x) ). 

Now for x sufficiently close to ~, the global minimum of a( .  )Tx-- b ( ' )  on [0, 1] 
will occur at thl(x) for some 1 ~< l<~ k. This is because, for x sufficiently close to ~, 
the points ~bi(x) remain local minima of a( .  )Tx - b(- ), and other local minima will 
have larger values. We now define functions w~: N~(~:)~R by 

wi(x) = a(chi(x))Tx- b(6,(x))  for each i = 1 , . . . ,  k. 

For x sufficiently close to ~, a(s)Tx--b(s)>-0 on [0, 1] if and only if w~(x)>~ 0 for 
each i = 1 , . . . ,  k. The result follows. [] 

Let us now suppose that (~; ~) is a non-degenerate extreme point, still with 
{ s l , . . . ,  Sk}C (0, 1) and d(i) = 1, each i =  1 , . . . ,  k, and that the optimality check 
described in Theorem 7 fails. The optimality check is in two parts, and we consider 
the two cases separately. 

A _  1 
Case1: hj.o<Oforsomej. Denot ingther thuni tvector inRnbyer ,  l e t g = A  e:~_~, 

so that g has the property that a(s~)Vg = 3~, and a'(s~)Tg = 0, each i = 1 , . . . ,  k. Thus 
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for  e > 0  sufficiently small  we have 4~i(~+eg)=s~, and w i ( ~ + e g ) = e 6  o in the 
nota t ion  of  Theorem 8, so ~ +  eg is feasible. Moreover ,  eTg = h~,o<0, so g is a 

descent  direction. Moving  as far  as possible  in this direction,  our  new poin t  will be 
~' = ~ + ag, where 

1 / a = f l = s u p  ~ . S ~ [ 0 , 1 ] , S # S l , . . . , S k  , (5) 

just  as in the purif icat ion algori thm. This step m a y  be thought  of  as increasing the 
slack at the active po in t  sj, and is ana logous  to the p ivot  in classical l inear  p rogram-  
ming. I f  the new point  is not  a l ready extreme,  we can app ly  the purif icat ion algori thm. 

Case 2: Aj.l # 0 for  some j. In this case we consider  per turbing the posi t ions of  
the active points.  Define r ~ Nk by r = (s l ,  • • •, Sk) T. For  t ~ Nk define 

3`(t) = (a(f l) ,  a ' ( t 0 , . . . ,  a(tk),  a ' ( tk))  T, (6) 

/~(t) = (b( t l ) ,  b ' ( t l ) , . . . ,  b(tk), b'( tk))  f. (7) 

Since 3`(z) is invertible by assumpt ion ,  for  some 61>0 ,  ,4(t)  is invertible for  
t c N~,(r). For  such t define x ( t )  as (3`( t))- l /~(t) .  Not ice  that  x ( z )  = ~:, and for  some 

62> 0, x ( t )  is feasible for  t ~ N~(r )  because  4~(x(t))  = t~, and Wg(X(t)) = 0, for each 
i = 1 , . . . ,  k. As 3`( t )x( t )  =/~(t)  we obtain 

o3, ox of, 
- - x ( t ) + 3 ` ( t ) - - = - -  f o r e a c h  i = 1 , . . ,  k, 
Oti Oti Oti " 

and so 

Not ice  that  the only non-zero  c o m p o n e n t  in ((03`/ati) ~-  (Ob/Oti))[, is a(2)(sg)T~ - 
b(2)(si) = ~'(2)(si), as ~'(l~(si)= 0. F rom this we deduce  that  

t i(cVx(t))[,  = -h i ,  l((2)(s~) for  each i =  1 , . . . ,  k. 

We thus have the derivat ive of  the cost with respect  to movemen t s  in t -space (the 

space  paramet r iz ing  the active points) .  
We can now use the above  gradient  in format ion  to pe r fo rm a search in ~k (t_space). 

We can either choose to move  all the active points  s imul taneous ly  at each step, or 
to move  only one at a time. The former  opt ion will give s teeper  descent  steps, but 

the latter may  be easier computa t iona l ly  since at each step only two rows of  3`(t) 
will change,  al lowing a more  efficient calculat ion o f  (3` (0)  ~. This is the me thod  
which has been  implemented .  

Having  chosen the descent  direct ion (h, say) in t-space,  we can pe r fo rm a 
const ra ined line search,  minimizing eTx(r + ah) over  a ~> 0. In general ,  as we increase 
a, x ( r + a h )  will eventual ly  become  infeasible.  I f  this happens  before  a local 
m i n i m u m  of  eTx (¢+  ah) is reached then we need to calculate the precise value of  
a for  which it occurs.  Ei ther  a new point  becomes  active, or a(2~(t~)Tx(z+ ah) - b(t~) 
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becomes  zero for  some i. Cons ider  the first possibili ty.  To find the exact  x(t)  for  
which the new point  becomes  active, we solve: 

a(Snew)TX(~'+ o~h) -- b ( s n e w )  , 

a'(s~ew)T x ( z +  o~h) = b'(s,~ew), 

(two nonl inear  equat ions  in two unknowns ,  s . . . .  the new active point ,  a s sumed  to 
lie in (0, 1), and a, the step length) using N e w t o n - R a p h s o n  for  instance.  The  second 
possible  reason  for  infeasibil i ty is dealt  with similarly,  and is s t ra ightforward.  

At this poin t  we can summar ize  the steps of  the a lgor i thm as follows: 

1. Find an initial feasible solution,  (~:0; ~o)- 
2. Use the purif icat ion a lgor i thm to find an initial ext reme point ,  (~1; (1). Set r = 1. 

Iteration r 
3. Set ~- = (s l ,  s2 . . . . .  sk) T, with coefficients the active points  for  (¢r; ~'r)- Calcula te  
f rom (1) and £ f rom (4). We assume that  A is o f  full rank. 

4. I f  hi,o< 0 for  some j, set g = A - 1 % - 1 ,  and  x = ~:r+ ag, where  a is de te rmined  
f rom (5). Set z( .  ) =  a ( .  ) X x - b ( . ) .  Apply  the purif icat ion a lgor i thm to (x;  z) (if 
necessary)  to obta in  a new improved  ext reme point ,  (~r+l; ~'r÷~)- Increase  r by 1. 

G o  to 3. 
5. I f  Aj.1 ¢ 0 for some j, set h = ej and write x(t)  for  A(t)-~b(t) ,  where A( t )  and  

/~(t) are defined by (6) and (7). Now carry out a cons t ra ined  line search to find 4, 
the choice o f  a which minimizes  cXx(~-+ ah )  subject  to x(~-+ c~h) remaining  feasible  

(see the remarks  in the above  paragraph) .  Set ~r+l = X(~'+ ~h).  Increase  r by 1. G o  
to 3. 

At step 1, the choice of  initial feasible solut ion may  be obvious.  I f  not,  it can be 
found  using a phase  1 p rocedure  which solves the semi-infinite p rog ram (posed  
over  Rn+l) 

minimize  xo 

s u b j e c t t o  xo+a(s) fx>~b(s)  for  all s ~ [0 ,1] ,  

XoC~,  X ¢ ~  n, 

s topping as soon as a feasible  solution is reached  in which x 0 ~  0. 
U p  to now we have assumed  that  {sl . . . . .  Sk} c (0, 1), and that  ~(2)(s~) > 0, for  

i = 1 . . . . .  k. We suppose  now that  this last condi t ion  does not  hold,  so that  d(1) > 1 
for  some l. As previously  observed,  d(I) must  be  odd,  so for  i l lustrat ion consider  
the case d(I) = 3. We need to consider  a variety of  different descent  steps. One way  

to keep  t rack  of  changes in the objective funct ion is to observe that,  for  (x;  z) any 
other  feasible solution,  

c ~ x -  c ~  = d ( x  - ~) 

-= 2~2, 



258 E.J. Anderson, A.S. Lewis / Semi-infinite programming 

where A is defined by (4). Hence if x is obtained by some perturbation maintaining 
all the active points except st unchanged then the change in the objective function 

is given by 

c T x  - cT~: = ,~,0z(s~) + )~,lz '(s~) + ,~,2z~2)(s~) + ;t~,3 z~3)(st) • (8)  

Consider the effect of  splitting the active point s~ into two new active points at 

sl + 61 and s/+ 62. Thus we define x(61, 62) by 

a~)(s,)Vx(6,,  62) = b~)(s,), j = 0  . . . . .  d(i) ,  i S  1, 

a(i)(st + 6p)Tx(61, 62) = b~)(st + 6p), j = 0, 1, p = 1, 2, 

for sufficiently small 61 # 62, and 

a(J)(s i )Tx(~l ,  61) = b(J)(si) , j = 0 , . . . ,  d(i) ,  i ~ I, 

a~J)(s~ + 6~)Tx(6~, 61) = b~J)(st + 60,  j = O, 1, 2, 3. 

x(61, 62) is then continuous in (61, 6z), with x(0, 0) = ~:. Assuming that the corre- 
sponding slack variable has a Taylor expansion for small ( s -  s~), ~1, 62 of order of  

magnitude O(6), we have 

a ( s ) ~ x ( 6 ~ ,  ~ )  - b ( s )  = K ( s  - s, - 6 0 ~ ( s -  s, - 6~) ~ + O ( ~ ) ,  

for some constant K, since the slack has double roots at st + 6~, s~ + 62. Equating 
coefficients of  (s - s~) 4 we obtain 

K =I(a(4) ( s l )T~-  b(4)(Sl)) 

= ~ ' ) ( s , ) .  

Thus, from (8), we obtain that the change in the objective function when we make 

this perturbation is given by 

cTx(61 ,  62) -- cT~ = ~4~'(4)(Sl)( - 12~/.3(61 + ~2) "~- 2"~/,2( ~2 -b 4~1 ~2 -b ~2) 

-2A,., 6~6~(6, + 6~) + a,,o~6~)+ 0(8').  

Using this formula and (8) we obtain the following as possible descent steps 

(without loss of generality we take 1 = k): 

(a) Ak.O<0; as Case 1 above. 
(b) Ak.2<0; let g = A-le,_~.  Then ~:+ eg is an improved solution, for small e > 0. 

This move increases ((2)(Sk), and as in Case 1 above, we need to move as far as 

possible in this direction and then possibly purify to obtain a new extreme point. 
(c) Ak,3 ¢ 0; move Sk, keeping d ( k ) =  3. 
(d) Ak,3 = 0  and Ak,2 > 0 ;  replace {sl, s 2 , . . . ,  Sk} with { s l , . . . ,  Sk-~, Sk--6, Sk+ 6}, 

and take d ( k ) = d ( k + l )  = 1. 

(e) Ak.3----Ak,2 = 0 and Ak,~ # 0; move Sk, keeping d ( k ) =  3. 
The other situation which we need to consider is when one of  the active points 

is 0 or 1. Suppose for example that Sl = 0 and d(1) = 1. The only case which causes 
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difficulty is when A~,~ < 0: Case 2 above indicates that we should decrease s~, which 
is not possible. We can however move by increasing the derivative of  the slack at 

0. Define g by 

aO)(si)Tg=O, j = O , . . . , d ( i ) ,  i = 2 , . . . , k ,  

a(sOTg = O, 

a'(sl)Tg = 1. 

Then for e > 0  sufficiently small, f + e g  is feasible, and since cTg = A~.~ <0 ,  g is a 

descent direction. 
Thus we have shown that whenever the optimality check fails an improved extreme 

point can be found, using one of the methods outlined above. Hence we have derived 
a descent method for the primal semi-infinite problem analogous to the simplex 
algorithm. We have no general result guaranteeing that the method will converge 
to an optimal solution, but the descent steps described above have beeen imple- 
mented in an algorithm to solve SIP2 on a microcomputer ,  and in practice the 
method works well, in the absence of degeneracy. The question of local convergence 
is considered in the following section. We illustrate this by describing the perform- 
ance of the algorithm for two small examples. 

First consider the problem EXI  introduced in Section 4. The non-degenerate 

extreme point found by the purification algorithm (see Section 4) is used as an 
initial point. Figure 2 shows graphs of the slack variable at various stages of the 
solution procedure. Notice that during the course of the calculation the active point 
at 0 is split into two new active points, one at 0 and one in (0, 1). The algorithm 

terminates at the opt imum (to a given tolerance). 

0 1 0 1 

I Itera'don 15 [f~ Iteration 12 O.O05J ^ (optimum) 

Fig. 2. Changes in slack variable for the algorithm applied to EX1. 



2 6 0  E.J. Anderson, A.S. Lewis / Semi-infinite programming 

Our second example is the following well known test problem (due to Roleff [15]): 

minimize ~ (1/i)xi 
i ~ l  

subject to ~ xisi-l>~tan(s) for all s o [ 0 ,  1]. 
i - - I  

This problem arises from the one-sided Ll-approximat ion  of tan(s)  on [0, 1] by 
polynomials of  degree less than n. Coope and Watson [3] observe that it is extremely 
ill-conditioned for n > 6. The problem was solved for various values of  n by the 
new algorithm. The results are shown below. 

n =3:  initial x = ( 2 ,  0, 0)T; 4 iterations (2 purification steps, 2 further descent 
steps); optimal value = 0.649042; optimal x = (0.089232, 0.422510, 1.045665)T; active 

points {0.333, 1}. 
n = 6: initial x = (2, 0, 0, 0, 0, 0)T: 12 iterations (6 purification steps, 6 further 

descent steps); optimal value=0.61608515; optimal x =  (0, 1.023223, -0.240305, 
1.220849, -1.387306, 0.940948)T; active points {0, 0.276, 0.723, 1}. 

n = 9: the cases n = 6, 7, 8 and 9 were solved sequentially, each time using the 
previous solution as the initial x for the next problem. The cases n = 7, 8 and 9 

took respectively 8, 6 and 10 iterations. For n---9, optimal value=0.61563261; 
optimal x = (0.000033, 0.998329, 0.029955, 0.089219, 1.055433, -2.459376, 3.653543, 
-2.728758, 0.919029)T; active points {0.055, 0.276, 0.582, 0.860, 1}. 

In both of  the above examples the algorithm was terminated when an extreme 
point was reached for which the reduced cost coefficients satisfied Ai.o> - 1 0  -3 and 
IAijl < 10 -3, j --- 1 , . . . ,  d(i), each i = 1 , . . . ,  k. It happens that in these examples all 

the descent steps, after finding an initial extreme point, are of  the second type. 
These steps are performed by moving only one active point at a time: the reduced 

cost is recalculated at each iteration, allowing the search to be performed by bisection. 
More accurate results could be obtained by reducing the tolerance in the termination 
criterion, at the expense of increasing the number  of  iterations required. 

One of the main practical difficulties with the new algorithm is that we often have 
to check that a new ((;  () is feasible for the problem. For example, this occurs 
frequently during the line search in step 5 of  the algorithm. In order to do this we 

need to find all the local minima of the slack variable (. Naturally, any algorithm 
for the solution of SILP will need to include a subroutine to accomplish this. In 
our implementation the local minima are simply recalculated at each step, using a 
grid search followed by Newton-Raphson.  The same technique is used in the 

calculation of fir in step 4 of the purification algorithm, and in the calculation of 
ce in (5). 

There is clearly some scope for refinement in the numerical implementation of 
these local minima computations. For example in the intial stages of  the line search 
we could afford to compute these minima less accurately, while in the later stages 
we could use the local minima of a ( . ) V ( - b ( . )  as first approximations to the 
corresponding local minima of a ( .  ) T ~ ' - b ( .  ), for ~' close to ~. 
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7. The degenerate case 

261 

In this section we shall analyse the notion of degeneracy and consider the problem 
of constructing a descent step from a degenerate extreme point. As will be seen, 
degeneracy corresponds roughly to too many points being active, and in general is 
likely to be a common phenomenon in this problem. Nevertheless there are classes 
of problem for which we can be sure that it does not occur. Consider for instance 
the problem 

minimize cTx  

subject to ~ xjs ~-1>I b(s) for all s e [0, 1], 
i=l 

XC•, 

where b(- ) has the property that b(n)( • ) has no roots in [0, 1]. It follows by repeated 
application of Rolle's theorem that any feasible slack can have at most n roots in 
[0, 1] (counted by multiplicity), and so any extreme point will be non-degenerate. 

In finite linear programming, degenerate extreme points are dealt with by perform- 
ing a sequence of degenerate pivots. One way of  thinking of  this procedure is that 
the problem is perturbed slightly and a sequence of small descent steps are made 
before a genuine descent direction is found. In the primal semi-infinite linear program 
such a perturbation approach will not necessarily succeed in resolving the 
degeneracy, because degenerate extreme points group together in manifolds on the 
boundary of the feasible region. This is expressed in the result below. We again 
consider feasible (~:; ~) for SIP2, with active points {s~ , . . . ,  sk} c (0, 1), and ~(=)(s~) > 
0 for each i = l , . . . ,  k. We consider subsets I of { 1 , . . . ,  k}, and we make the 
following regularity assumptions: 

(a) {a(s~): i e I} is linearly independent for any I with II[<~ n, and 
(b) {a(si), a'(si): i e I} spans A n for any I with 21I 1/> n. 
Now, using the notation of Theorem 8, let us partition the feasible points in a 

small neighbourhood N~(~:) into subsets in the following fashion. For any I c 
{ 1 , . . . ,  k} define EI c_ N~(£) by 

x e E 1  i f a n d o n l y i f  w~(x)=0, i e I ,  

>0 ,  i ~ L  

Theorem 9. There exists a 8 > 0 such that for all x ~ N~(~), (x; a(. ) T x - b ( ,  )) is an 
extreme point of SIP2 if and only if x c E~ for some I with 21I I >~ n. Also, each E1 is 
a manifold of dimension max{0, n -  III}. 

Proof. Observe that E~ is just the set of feasible x close to £ with active points near 
{s,: i c I}. The result follows from Theorems 8 and 4. Since 

w,(x)  = a( 4,,(x) )Tx - b( 4),(x) ), 
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it follows that 

v w,(x) = V¢,(x)(a'(¢,(x))~x- b'(¢,(x))) + a(¢,(x)), 

so that Vw;(() = a(si) (using ~;(~:) = s;). The assertion concerning the dimension of 
Et follows, since the dimension of span{Vwi(~:): i c I} is therefore III. [] 

To illustrate the sets E;, consider the problem 

minimize xl 

subject to x~+x2s+x3s2>~b(s) for all so[0 ,  1]. 

This problem consists of minimizing the intercept at 0 of parabolas lying over the 
curve y = b(s). In Figure 3, three feasible parabolas are illustrated, corresponding 
to three feasible points ((1; (~), ((2; (2), and (so3; ~'3). In x-space the feasible region 
is the convex hull of three curved lines of degenerate extreme points, emanating 

als)T~ z 
ais)T~ 3 

I ' o sf~ 
I I I 
i t I / 
l I I I 

I I I 

', \ . '  i / 
\x ~ ~ I / y=bis) 

" . ,  ~ I~. / , / "  -'-.~, ,, / ', .~¢ 

! 

I 

E{,,2,3} =,[ ~, } ~ . ~  ~ "E{2,3} 

Fig. 3. Three feasible parabolas and the feasible region. 
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from the degenerate extreme point ~:1 (see Figure 3). A detailed investigation of the 
local structure of  the feasible region may be found in Jongen and Zwier [11]. 

The simplest case is when (~; if) is a non-degenerate extreme point with active 
points { S l , . . .  , Sn/2} C2- (0, 1), and each d( i )  = 1. In this case Theorem 9 shows that 
the extreme points in a neighbourhood of (~:; ~') are those (x; a ( .  )Tx - b( .  )) with 

x lying in the manifold E~I . . . . . .  /2/. Thus any extreme point sufficiently close to 
(~:; ~) will have active points {tl, • • . ,  tn/2}, where ti is close to si for each i. It follows 
that if the optimal solution is of  this form then the new algorithm will be locally 
convergent since it reduces to an unconstrained, coordinate-wise search for a local 

minimum in t-space (the space parametrizing the active points). Of  course, conver- 
gence could be improved by using a more sophisticated search strategy such as a 
Newton method when we are sufficiently close to the optimum. Such two-phase 
approaches are well-known in semi-infinite programming (see for instance Hettich 

[8] and [9]). 
The essence of the descent step in Case 2 of  Section 6 is that we can move the 

active points around independently whilst retaining feasibility. Degeneracy causes 
two difficulties. Firstly the reduced cost is no longer defined on the whole of  
X = Nn x C~[0, 1], and so no longer provides a simple optimality check, and secondly 

we can no longer move the active points independently. Degeneracy may be roughly 
thought of  as too many points becoming active: ensuring feasibility by fixing the 
value of the slack and its derivative at all active points is no longer possible as it 
was in the non-degenerate case. 

Let us look again at the local structure of the feasible region, but instead of using 
the Implicit Function Theorem to infer the existence of the unknown functions wi, 

let us work in a larger space of points x together with associated active points 
specified by ( t l , . . .  , tk), a point in R k. Define F c _ R  n+k by 

F = {(x, t): a(h)Tx  >! b(h) ,  a ' (h)Tx  = b ' (h) ,  i =  1 , . . . ,  k}. 

Theorem 10. Suppose (s¢; ~') is feasible for  SIP2, with aetive points { sl , . . . , Sk } C (0, 1), 
and ~(2)(si) > 0 for  each i = 1 , . . . ,  k. Define "re R k by ~- = ( S l , . . . ,  Sk). Then there is 

a ~ > 0  such that for  all (x; t ) c  N~(~:; 7), (x; a ( . ) T x - b ( . ) )  is feasible for  SIP2 /f 

and only i f  (x; t) c F. 

Proof. This is essentially a restatement of  Theorem 8. [] 

Still treating ~: as a fixed point, we now consider the finite problem: 

RP: minimize cTx 

subject to (x; t) E F. 

By Theorem 10, (~:; ~-) is a local minimum for RP if and only if (¢; ~') is a local 

minimum and hence optimal for SIP2. The tangent space to F at (¢; r) ,  which we 
shall denote M, is given by 

M = { ( x ;  t): a( s i )Xx=O and a' (s i )Vx+~2~(s i )h  =0,  i =  1 , . . . ,  k}. 
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We can make a descent step by moving a small distance in the direction - PA4 (c; 0) 
(where PM is the orthogonal projection onto M) ,  followed by a restoration step to 
return us to the feasible region, F. These will be accomplished using standard 
techniques from the projected gradient algorithm (see for instance Gill, Murray and 

Wright [4]). I f  PM(C; 0)= 0 then we have 

k k 

t z ia(s i )+ ~, v i a ' ( s i ) = c  and ~,j~(2)(sj)=O f o r j = l , . . . , k ,  
i~l  i--I 

for some tz, ~'~ ~k. Since ~'~2)(sj)>0 by assumption, we have ~,~=1 tx ia(s i )= c. I f  
/zi i> 0, for i = 1 , . . . ,  k, then (so; ~-) satisfies the first order (Kuhn-Tucker)  optimality 
conditions for RP, and the projected gradient algorithm terminates. Interpreted as 
a measure on the points s ~ , . . . ,  Sk, /X is in this case a feasible solution to the dual 

problem for SIP2, 

SIP2*: maximize o lb ( s )  doJ (s) 

fo' subject to a ( s )  d~o(s) = c, 

~o~>0, o~ c M[0, 1], 

and is complementary slack with s e, so that both s c and /x are optimal for their 
respective programs (see Nash [13]). Suppose /z  is not non-negative. The standard 

projected gradient algorithm would then drop the constraint corresponding to the 
most negative component  of /z ,  /zj say, and move in the direction of the negative 
cost vector projected onto the subspace determined by the remaining active con- 
straints. In this case, dropping the constraint associated with /xj means increasing 
the value of  the slack at tj. Thus we are no longer interested in the precise value of 
tj and we can simplify calculations by working in the smaller set 

F ' = { ( x ;  t): a(ti)Tx~b(ti) and a'(ti)Wx~b'(ti), i # j } .  

As a final point, notice that the treatment we gave of the non-degenerate case 
made use of  the fact that we can write 

{(x; t): a( t i )Tx  = b(ti) ,  a ' ( t i )Tx  = b'(t i) ,  i =  1 , . . . ,  k} 

= { ( ~ ( t ) - l & t ) ;  t): t ~ Rk}, 

so that moving in the set F is in this case straightforward. It remains to be seen 
whether the special structure of  F allows an analogous simplification of calculations 
in the degenerate case. 

8. Higher dimensions 

We finally return to the problem SIP1 when S is a polyhedral subset of ~P. We shall 
suppose that al ,  • • •, aT, b c C2[S].  With the addition of a slack variable, the problem 
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SIP3: 
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minimize  crx 

s u b j e c t t o  a(s)Tx-z(s )=b(s)  for  a l l s c S ,  

X C ~  n, z c C 2 [ S ] ,  Z ~ 0 ,  

where  S c •P is a compac t  set defined by 

S = { s :  dfs<~fj, j = 1 , . . . ,  q}. 

We consider  a (so; ( )  feasible for SIP3, and denote  the active points  {s c S: ~'(s) = 0} 
by { s ~ , . . . ,  s k} (assumed to be a finite set). For  each i = 1 , . . . ,  k, let J(i) be the set 
of  indices of  those constraints  on S which are active at s i, i.e. J(i) = {j: T i djs =fj}.  
We write ~s for  the vector  (O~/Os~,..., a~/Osp), ~,, for  the cor responding  Hess ian  
matr ix ,  and a, for the matr ix  (aa/Os~,..., aa/OSp). 

We shall consider  only the case where  ~ satisfies the second order  sufficient 
condi t ions  for  a local m i n i m u m  at each s i, with strict c o m p l e m e n t a r y  slackness: 

For  i = 1 , . . . ,  k, there is a / x  i ~ R q such tha t  

/zj > 0, j cJ ( i ) ,  

- 0 ,  j~:J(i), 
(9) 

~s(Si) T'~- 2 ~zjdj = 0, and 
j~J(i) 

~ss(S i) is posi t ive definite on {s: d Ts = O, j c J ( i )} .  

In  the one-d imens iona l  case where  S = [0, 1] this cor responds  to the si tuat ion when  

d ( i ) = l  for  s ~ ( 0 , 1 )  and  d ( i ) = 0  for  s i = 0  or 1. 
N o w  for  each i =  1 , . . . ,  k, define m(i) to be the d imens ion  of  the subspace  

{s: dfs = O, j ~ J(i)}.  By (9) we can choose a basis  {gi l ,  i • . . ,g in(o}  for  this space,  
satisfying i T i i i (gj) (~.~(s)gt = 6jl. Write G~ for  the matr ix  (g~, . . . .  g~(i)). We then obta in  

the fol lowing analogue  of  L e m m a  3: 

L e m m a  l l .  For (x;  z ) ~ "  x C2[S],  (x;  z )~  B(~; ~) if and only if 

z ( s i ) = 0  and z~(si)Gi=O for e a c h i = l , . . . , k .  (10) 

Proof .  I f  (x;z)cB(~;  ~) then ~(s i )q- . '~z (s i )~o  for  some h > O ,  so z(si)=O and 

~ + h z  must  satisfy the first order  condi t ions for  a local m i n i m u m  at each s ~, 

i = 1 , . . . ,  k. Thus  for  some 3" c Eq, 

~,(s~)~+;~zs(s') T+ 2 ~4=0. 
jEJ(i) 

So f rom (9), for l =  1 , 2 , . . . ,  re(i), 
i i AZs(S )g,= E (tzj-  yj)aji''Tg; 

jGJ(i) 

=0.  

Hence  z~(s~)G~ = 0 ,  for  each i =  1 , . . . ,  k, so (10) is satisfied. 
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Conversely,  suppose  (x; z) satisfies (10). Then z~(s~) v is perpendicular  to the 

space spanned by {g~, - . - ,  g[,(o}, and SO 7~s(si)T :~j~J(i) yJ4i for some 7 !J. Hence 

~(s ' )~+Azs (s ' )  T+ Z ( ~ : ~ ) 4 : 0 ,  
jGJ(i) 

and it is not  hard  to check that (± /~z  satisfies the second order  sufficient condit ions 

for a local min imum at each s ~, for h sufficiently small. So ~'(s)± ,~z(s)>~ 0 for s ~ S, 

for  .~ sufficiently small. [ ]  

We now define .4 and 2 in an analogous fashion to the one-dimensional  case by: 

A = (a(s') ,  a ~ ( s ' ) G , , . . . ,  a(sk), a,(sk)Gk) T, 

: (z (s ' ) ,  z~(s~)G, . . . .  , z(s~), z~(s~)G~) T. 

The analogue of  Theorem 4 is then: 

Theorem 12. ( ( ;  ~) is an extreme point of  SIP3 if  and only i f  the columns of  /~ are 
linearly independent. 

ProoL (x; z) c B(~:; if) c~ N ( A )  if and only if a(si)Tx = 0, and G~a~(s~)Tx = 0, each 

i = 1 . . . .  , k, i.e. if and only if Ax  = 0, whence the result. []  

The purification algori thm described in Section 4 will operate  in exactly the same 

fashion, if we take 

Tr = {x: a(si)Vx = O, G~a~(si)Tx = 0 for  each i = 1 , . . . ,  k}, 

providing that  the slack fir satisfies (9) at each step. 

Just as in the one-dimensional  case, we find that an extreme point  ( ( ;  ~') is 

non-degenera te  exactly when .4 is invertible, and in this case the associated reduced 

cost is defined by 

((x; z), c~) )  = cTA-'2. 

Write cT.4 -~ = (A1,0, A1.1 . . . .  , h~.,,(1) . . . . .  hk.0, • • . ,  hk,,,(k)). Then an analogous argu- 

ment  to the one-dimensional  case shows that (~; if) is opt imal  if and only if for 

each i =  1 , . . . ,  k, hi.o~> 0 and hi, j =0 ,  for j =  1 , . . . ,  re(i). 
Condi t ion  (9) allows us to describe the feasible region in a ne ighbourhood  of  

by k inequali ty constraints,  exactly as in the one-dimensional  case (see Hettich and 

Jongen [10]). I f  Ai, o < 0  for  some i then we can make a descent step by increasing 

the value of  the slack at s ~. I f  on the other  hand  h~,j # 0 for some i and j > 0, then 
we can make a descent step by moving s ~ in the direction :~ g~, Consider  for  example 

the effect of  moving the active point  s ~ to t ~ ~o. Define 

A(t)  = (a(t),  a~(t)G1, a(s z) . . . .  , a~(sk)Gk) v, 

b(t) = (b(t), b~(t)G~, b ( sZ) , . . . ,  b~(sk)Gk) v, 
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and 2 similarly. Define x( t )  as fi~(t)-~f)(t), which is well defined for t sufficiently 

close to s ~, and let the corresponding cost  be c(t) = cTx(t).  Since ,4( t )x( t )  = b(t) ,  
we have 

Xt(S i) ~- A(s l ) - I (b t ( s  1) -- At(s l )x(s1)) ,  

and so the rate o f  change of  cost is given by 

P' ~' 1 ^ i Ct (S1)  = cTA-1(b,(s  ) - A t ( s  )~) 

/ bs(s l ) - -a ' (s l )T~ 1 
NT[b~s (S ' ) -a~ ( s l )T~]  I 

= - ( , ~ , . o , . . . ,  Ak, m(k))(~fis'), ~ , ( s ' ) a ~ ,  0 , . . . ,  O) T. 

From the definition o f  the g~, we therefore have that  c,(s~)g) = -h~,s,  so for A~,j ~ 0 
we can make a descent step by moving s ~ in the direction ±g) .  Notice that  this will 

T 1 not  violate any of  the active constraints on s ~ since dj gj - 0 f o r j  c J(1) ,  by definition. 

An example. Cons ider  the problem 

minimize x3 

subject to xlsl  + x2s2 + x3 >t --~[ ( Sl - 1)2 + s2][ sl + (2 - s2)] 

for all 0 ~ si, s2 <~ 2. 

In the above notat ion we have: c = (0, 0, 1) T, a(s)  = (sl ,  s2, 1) T, dl = (o~), d2 = (_°0, 

d3 = (1), d4 -~ (01) ' f l  = 0 ,  f2  = 0,  f3  = 2,  f4  -= 2. W e  consider  the point  ~: = (0, 0, 0) T, with 

cost 0 and slack variable given by 

~ ( s , ,  s2) = -~[(s~ - 1)2 + s2J[s, + (2 - s2)]. 

We obtain the active points  s I = (~) and s 2 = (0), with J(1)  = {2} and J(2)  = {1, 4}. It 

may  be checked that ff satisfies (9) at s I and s 2, and that  ~,s(s ~) = 1 6 ~(1 J2). We require 
{gl} to be a basis for {s: d~s =0},  satisfying (gl~)T~,(s~)g] = 1, SO we take 1 g l  = (~), 
a n d  G I  = (1).  G 2  is  n u l l .  

N o w  ,4 = ( a ( sl), as( sl ) G1, a( s2) ) T, so 

A =  o . 
2 

A is invertible, so (~; ~) is a non-degenera te  extreme point,  with a reduced cost  

given by Al,O = 1, ~tx.~ = - 1 ,  h2,o = 0. We make a descent  step by moving s ~ in the 
direction - g l  = - (~).  We find that to minimize the cost in this search direction, we 

wish to move s ~ to (o°). This corresponds to ~ =~(3, 1, - 2 ) ,  which is easily seen to 

be opt imal  with cost --~. 
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The usual methods for the solution of semi-infinite programming problems are 

essentially dual methods. Approximate  solutions are generated which are infeasible 
for the primal problem. In fact an approximate problem is solved where the index 
set of the constraints, S, is replaced by a finite subset { S l , . . . ,  sN}. This set is either 

a grid approximation to the original set S or it is a subset of  size n which is updated 
iteratively using an exchange (perhaps multiple exchange) method. In this latter 
case the algorithm can be thought of as the simplex algorithm applied to the dual 
problem. However, in either case this first phase of  the algorithm must be followed 
by a second phase in which a more or less exact solution is found using Newton's 
method (say) to solve a set of  nonlinear equations which take into account the kind 

of  derivative information which is at the heart of  the primal algorithm described 
here (see for instance Hettich [9]). 

A number  of  difficulties are associated with these standard methods. Firstly, since 
they are dual methods, if the algorithm is terminated before the opt imum is reached 
then the resulting solution will not be feasible, which may be a disadvantage. 
Secondly, if the set S is replaced by a grid approximation then the resulting finite 

linear program must be solved by special variants of the simplex algorithm if 
numerical instability is to be avoided, and convergence of  the solution as the grid 
is refined may be slow. Similar difficulties occur with exchange methods (see Hettich 
[8] and [9]). Thirdly, finding an initial approximation to the solution for phase 2 
of  the algorithm requires the clustering of points in the output of  phase 1 into a 

reduced set of  points (approximations to the active points at the optimum, see 
Glashoff and Gustafson [5]). Unfortunately the clustering procedure may present 
difficulties, as has been observed in, for instance, Watson [17]. Finally, if the initial 
approximation for phase 2 is insufficiently accurate then the algorithm may not 

converge, and we will have to return to phase 1. For further details, see Gustafson 
and Kortanek [6]. These difficulties are well-known and have led to the adoption 
of  various globally convergent methods (see for example Watson [17], Coope and 
Watson [3]). 

We have not at tempted any sophistication in the choice of  a descent direction 
for improvement  steps of  the second kind. As we observed previously, if the optimal 

solution is non-degenerate then the algorithm reduces to an unconstrained search 
sufficiently close to this optimum, and so by employing a suitable search strategy 
such as a Newton method,  we can ensure superlinear convergence. I f  the optimal 
solution is degenerate on the other hand, a standard second phase technique may 
be necessary to give rapid convergence. In either case the new method has the 
advantages that it maintains feasibility and avoids the clustering difficulties which 
constitute one of the main disadvantages associated with standard two phase 
techniques. 

The main obstacle to the practical use of  the new method is in the degenerate 
case. It is clear, for example,  that the method would be unsuitable for standard 
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Chebychev  approx imat ion  problems,  where the opt imal  solut ion can be seen to be 

always degenerate:  the wel l -known exchange method  for this p rob lem is extremely 

effective (and  in fact may be viewed as working with a sequence of non-degenera te  

dual  extreme points).  The work we have done  on degeneracy is impor tan t  f rom a 

theoretical  po in t  of  view, and  gives a bet ter  unde r s t and ing  of the na ture  of this 

impor tan t  p h e n o m e n o n ,  bu t  it still leaves cons iderable  imp lemen ta t ion  difficulties. 

Our  own small-scale imp lemen ta t ion  does no t  deal effectively with degeneracy.  One 

of the pr inc ipa l  at tractions of the new method  is that  feasibili ty is main ta ined .  

However,  as in the projected gradient  algori thm, it is hard  to see how to achieve 

this s imply in the degenerate  case without  the computa t iona l ly  unat t ract ive projec- 

t ion and restorat ion steps described in Section 7. Unt i l  this difficulty is resolved the 

method  remains  pr imari ly  of theoretical interest.  
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