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Partial smoothness and constant rank
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Abstract

The idea of partial smoothness in optimization blends certain smooth and
nonsmooth properties of feasible regions and objective functions. As a con-
sequence, the standard first-order conditions guarantee that diverse iterative
algorithms (and post-optimality analyses) identify active structure or con-
straints. However, by instead focusing directly on the first-order conditions,
the formal concept of partial smoothness simplifies dramatically: in basic dif-
ferential geometric language, it is just a constant-rank condition. In this view,
partial smoothness extends to more general mappings, such as saddlepoint op-
erators underlying primal-dual splitting algorithms.

Key words: partial smoothness, active set identification, nonsmooth optimization,
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1 Introduction

A variety of optimization algorithms, ranging from classical active set methods
to contemporary first-order algorithms for machine learning and high-dimensional
statistics, exhibit “identification” properties. Iterates in the underlying Euclidean
space U converging to an optimal solution ū eventually lie in a subset M ⊂ U cap-
turing the structure of the optimal solution. In traditional nonlinear programming,
M might be the “identifiable surface” [27] of the feasible region defined by the con-
straints active at optimality; in machine learning applications, M might consist of
vectors with a certain sparsity pattern [18].
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A simple but quite extensive model of this phenomenon, following the philosophy
of [27], is as follows. We consider minimizing a lower semicontinuous objective
function f : U → R (convex, for now), and assume that the set M of interest is
a smooth surface, or more precisely a manifold around ū, meaning that locally it
consists of solutions of a system of C(2)-smooth equations with linearly independent
gradients. Identification amounts to the property

(1.1) vk ∈ ∂f(uk), uk → ū, vk → 0 ⇒ uk ∈ M eventually,

where ∂f denotes the classical subdifferential operator. Earlier versions of this
identifiability idea include [1–4, 9–11].

Closely related to the identification property (1.1) is the idea that the function f

is partly smooth at the point ū relative to the manifold M . This property combines
smoothness conditions on f when restricted to M with a sharpness property of f in
directions normal to M . More precisely, around the point ū the restrictions of the
function f and its subdifferential ∂f to the manifold M should be C(2)-smooth and
continuous respectively, and the affine span of ∂f(ū) should be a translate of the
normal space to M at ū. This property, along with the nondegeneracy assumption
that zero lies in the relative interior of ∂f(ū), together suffice to ensure identifiability
(1.1), as shown in [19, Thm 4.10].

As a simple example, the function f on the space R2 defined by f(x, y) = |x|+y2

is partly smooth at its minimizer (0, 0) relative to the manifold {0} ×R, and zero
lies in the relative interior of the subdifferential ∂f(0, 0) = [−1, 1]× {0}. Hence the
identifiability property (1.1) holds, as is easy to verify directly.

The terminology and original definition of partly smooth sets and functions origi-
nated in [17]. A closely related thread of research, known as “VU theory”, originated
with [16], and includes [12, 15, 21–24]. Inevitably, it seems, the formal definition of
partly smooth sets and functions, and their VU analogues, are rather involved. The
definition of an identifiable surface in [27] is not simple either, despite the trans-
parency of the identifiability property (1.1).

As an approach to identifiability, considering partly smooth functions seems
roundabout: our aim, the property (1.1), involves only the subdifferential operator
∂f , and not the underlying function f . It turns out that we can indeed characterize
identifiability more naturally through a simple and fundamental property of the
underlying operator ∂f . Simply put, if the graph of the operator (in the product
space U × U) is a smooth manifold around the point (ū, 0), and the canonical
projection of nearby points (u, v) in the graph to u ∈ U is constant rank (meaning
that the projected tangent spaces at those points have constant dimension), then
the identifiability property (1.1) follows.

In summary, the notion of partial smoothness, and the closely related idea of
identifiability, are in essence constant-rank properties. This perspective not only
clarifies our understanding of these powerful tools, but broadens their potential
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application beyond the basic optimality condition 0 ∈ ∂f(ū) to more general vari-
ational conditions. As an example, we consider the saddlepoint optimality condi-
tions associated with primal-dual splitting methods like the Chambolle-Pock algo-
rithm [5].

2 Manifolds

We begin a more formal development by summarizing some elementary ideas about
manifolds. Given a Euclidean space U, we consider a set M ⊂ U that has the
structure of a smooth manifold locally, around a point ū ∈ M . By “smooth”, we
mean C(1)-smooth, unless we state otherwise. We can consider such sets M using
“local coordinates”, as follows.

We denote the open ball of radius δ > 0 around the point ū by Bδ(ū). In
elementary language, M is a smooth manifold around ū when there exists a Euclidean
space W and a map H : W → U that is smooth around 0, with the derivative
∇H(0) : W → U injective and H(0) = ū, and such that, for all small δ > 0,

M = H
(

Bδ(ū)
)

around ū.

More formally [14, Chapter 8], some open neighborhood of ū in M is an embedded

submanifold ofU. Any small vector w ∈ W constitutes the local coordinates centered
around ū for the point H(w) ∈ M . The tangent space at such a point is given simply
by

TM

(

H(w)
)

= Range
(

∇H(w)
)

.

Its dimension (the dimension of M around ū) is a constant, namely dimW. The
normal space is the orthogonal complement:

NM

(

H(w)
)

= Null
(

∇H(w)∗
)

.

Given another Euclidean space V, a map F : M → V is smooth around ū when
there exists a map G : U → V that is smooth around ū and agrees with F on a
neighborhood of ū in M . In that case, the rank of F at ū is dim

(

∇G(ū)TM(ū)
)

.
Equivalently, F is smooth around ū when the composition F ◦H is smooth around
0, and its rank at ū is then rank of the derivative ∇(F ◦H)(0) : W → V as a linear
map.

The map H defines a diffeomorphism from the open ball Bδ(0) ⊂ W (for small
δ > 0) to an open neighborhood of the point ū in the manifold M . We can describe
the inverse of this diffeomorphism via a map G : U → W, smooth around the point
ū, and satisfying

(2.1) G
(

H(w)
)

= w for all small vectors w ∈ W.

The restriction G|M , around ū, is the inverse of the diffeomorphism H .
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Adopting a dual approach, we can equivalently define a set M ⊂ U to be a
smooth manifold around a point ū when there exists a Euclidean space X and a
map P : U → X that is smooth around ū, with the derivative ∇P (ū) : U → X
surjective and P (ū) = 0, and such that

M = P−1(0) = {u ∈ U : P (u) = 0} around ū.

Then the tangent and normal spaces are given by

TM(u) = Null(∇P (u))

NM(u) = Range(∇P (u)∗)

at all points u ∈ M near ū. The normal space has the same dimension as X.
We can naturally decompose the space U as a direct sum:

U = TM(ū)⊕NM(ū).

With this decomposition, the two derivatives ∇H(0) : W → U and ∇P (ū) : U → X
are given by

∇H(0)w = (Dw, 0)

∇P (ū)(r, s) = Es

for some invertible linear maps D : W → TM(ū) and E : NM (ū) → X. Furthermore,
the derivative ∇G(ū) : U → W, restricted to TM(ū), is just the inverse map D−1.

3 Partly smooth mappings

We consider the canonical projection proj : U×V → U defined by proj(u, v) = u.

Definition 3.1 (Partly smooth mappings) A set-valued mapping Φ: U →→ V
is called partly smooth at a point ū ∈ U for a value v̄ ∈ Φ(ū) when the graph gphΦ
is a smooth manifold around (ū, v̄) and the projection proj restricted to gphΦ has
constant rank around (ū, v̄). The dimension of Φ at ū for v̄ is then just the dimension
of its graph around (ū, v̄).

Note. An example is when the inverse mapping Φ−1 : V →→ U is locally single-
valued, smooth and constant-rank around v̄ for ū. In this case, Φ is in particular
“strongly regular” at ū for v̄.

By definition, the constant rank condition means that the subspace

proj
(

Tgph Φ(u, v)
)
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and its orthogonal complement (called, in variational analysis, the coderivative of
the mapping Φ)

D∗Φ(u, v)(0) =
{

w ∈ U : (w, 0) ∈ Ngph Φ(u, v)
}

,

or equivalently, the subspace

Ngph Φ(u, v) ∩ (U× {0})
all have constant dimension for points (u, v) near (ū, v̄).

Consider, for example, the set-valued mapping Φ: R →→ R defined by

Φ(u) =

{

{±√
u} (u ≥ 0)

∅ (u < 0).

The graph is of Φ is the manifold {(u, v) ∈ R2 : u = v2}. However, Φ is not partly
smooth at 0 for 0, because the projection proj restricted to gphΦ has rank zero at
the point (0, 0) but rank one at all nearby points.

Proposition 3.2 If a set-valued mapping Φ: U →→ V is partly smooth at a point

ū ∈ U for a value v̄ ∈ Φ(ū), then there exists a set M ⊂ U, uniquely defined around

ū, that is a smooth manifold around ū, and satisfies

M =
{

u ∈ Bǫ(ū) : ∃v ∈ Φ(u) ∩Bǫ(v̄)
}

around ū,

for all small ǫ > 0. We call any such set M the active manifold.

Proof For any small ǫ > 0, the set

Gǫ = gphΦ ∩
(

Bǫ(ū)× Bǫ(v̄)
)

is a manifold, and the projection proj restricted to Gǫ is a constant-rank map. By
the Constant Rank Theorem, the resulting image

Mǫ =
{

u ∈ Bǫ(ū) : ∃v ∈ Φ(u) ∩Bǫ(v̄)
}

is a manifold of dimension dimproj TGǫ
(ū, v̄). This dimension is constant, for small

ǫ > 0, since the tangent space satisfies TGǫ
(ū, v̄) = TgphΦ(ū, v̄). For any ǫ′ ∈ (0, ǫ),

we know Mǫ′ ⊂ Mǫ, but these sets are manifolds around ū of the same dimension,
so must be identical around ū. ✷

We use the following definition [7].

Definition 3.3 A set M ⊂ U is identifiable for a set-valued mapping Φ: U →→ V
at a point ū ∈ U for a value v̄ ∈ Φ(ū) when gphΦ ⊂ M×V around the point (ū, v̄).

The following proposition is then immediate.

Proposition 3.4 If a set-valued mapping Φ: U →→ V is partly smooth at a point

ū ∈ U for a value v̄ ∈ Φ(ū), then the active manifold is an identifiable set.

In fact, as we see shortly, the active manifold is a locally minimal identifiable set.
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4 Representations of partly smooth mappings

The following result gives a representation of a partly smooth mapping using local
coordinates.

Theorem 4.1 (Coordinate representation) A set-valued mapping Φ: U →→ V
is partly smooth at a point ū ∈ U for a value v̄ ∈ Φ(ū) if and only if it has a

local representation of the following form: there exist Euclidean spaces W and Z,
maps H : W → U, smooth around 0 with H(0) = ū and ∇H(0) injective, and

G : W × Z → V, smooth around (0, 0) with G(0, 0) = v̄, such that,

(4.2) w ∈ W, z ∈ Z, ∇H(0)w = 0 and ∇G(0, 0)(w, z) = 0 ⇒ w = 0 and z = 0,

and for all small δ > 0,

(4.3) gphΦ =
{(

H(w), G(w, z)
)

: w ∈ Bδ(0), z ∈ Bδ(0)
}

around (ū, v̄).

In this case, the dimension of Φ at ū for v̄ is dimW+dimZ, and the active manifold

is H
(

Bδ(0)
)

around ū, providing δ > 0 is sufficiently small.

Proof Assuming the local representation, we first prove that Φ is partly smooth at
ū for v̄. Consider the map P : W×Z → U×V defined by P (w, z) =

(

H(w), G(w, z)
)

for w ∈ W and z ∈ Z. This map is smooth around the point (0, 0), with derivative

∇P (w, z)(r, s) =
(

∇H(w)r,∇G(w, z)(r, s)
)

,

for all small w ∈ W and z ∈ Z, and vectors r ∈ W and s ∈ Z. By assumption, the
derivative ∇P (0, 0) is injective, so gphΦ is a smooth manifold around (0, 0), with
tangent space at such points (w, z) given by

TgphΦ

(

H(w), G(w, z)
)

=
{(

∇H(w)r,∇G(w, z)(r, s)
)

: r ∈ W, s ∈ Z
}

.

Its image under the projection map proj : gphΦ → U is simply the range of ∇H(w).
Since ∇H(0) is injective, the projection has locally constant rank dimW. Partial
smoothness follows, and the local description of the active manifold follows from
Proposition 3.2.

Conversely, suppose Φ: U →→ V is partly smooth at ū for v̄ ∈ Φ(ū). By the
Constant Rank Theorem, we can consider the projection map proj as having the
form (w, z) 7→ (w, 0) ∈ W × Y, where (w, z) ∈ W × Z (for Euclidean spaces W
and Z) defines local coordinates for the manifold gphΦ, centered at (ū, v̄), and
(w, y) ∈ W×Y (for a Euclidean space Y) defines local coordinates for U centered
around ū.
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More explicitly, there exist maps

F : W × Z → U, smooth around (0, 0), with F (0, 0) = ū

G : W × Z → V, smooth around (0, 0), with G(0, 0) = v̄

Q : W ×Y → U, smooth around (0, 0), with Q(0, 0) = ū

with

(

∇F (0, 0),∇G(0, 0)
)

: W × Z → U×V

∇Q(0, 0) : W ×Y → U

both injective, and for all small δ > 0,

gphΦ =
{(

F (w, z), G(w, z)
)

: w ∈ Bδ(0), z ∈ Bδ(0)
}

around (ū, v̄)

U =
{

Q(w, y) : w ∈ Bδ(0), y ∈ Bδ(0)
}

around v̄,

and furthermore, F (w, z) = Q(w, 0) for all small w ∈ W and z ∈ Z.
Now define a map H : W → U by H(w) = Q(w, 0), for w ∈ W, and notice

∇F (0, 0) = (∇H(0), 0). Then, for points w ∈ W and z ∈ Z, whenever 0 =
∇H(0)w = ∇F (0, 0)(w, z) and ∇G(0, 0)(w, z) = 0, we must have w = 0 and z = 0.
The result now follows. ✷

One consequence is the locally minimal identifiability of active manifolds we
mentioned above, as we show next.

Corollary 4.4 (Minimal identifiability) If a set-valued mapping Φ: U →→ V is

partly smooth at a point ū ∈ U for a value v̄ ∈ Φ(ū), then the active manifold M

has the following properties.

• There exists a map F : M → V, smooth around ū, such that F (ū) = v̄ and

F (u) ∈ Φ(u) for all points u ∈ M near ū.

• For any set M ′ ⊂ U containing ū, and any map F ′ : M ′ → V that is contin-

uous at ’ū and satisfies F (ū) = v̄ and F (u) ∈ Φ(u) for all points u ∈ M ′ near

ū, we must have M ′ ⊂ M around ū.

• M is a locally minimal identifiable set at ū for v̄.

Proof To see the first property, we apply the coordinate representation guaranteed
by Theorem 4.1, and define the map F by F

(

H(w)
)

= G(w, 0) for small vectors
w ∈ W. The last property follows, since we just need to show the following inner
semicontinuity property (see [7, Proposition 2.8 ]: for any sequence of points ur → ū

in the active manifold M , there exists a sequence of values vr → v̄ with vr ∈ Φ(ur)
for all large indices r. To see this, simply set vr = F (ur).
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To see the second property, consider any sequence ur ∈ M ′ converging to ū.
By assumption, the sequence

(

ur, F
′(ur)

)

∈ gphΦ converges to the point (ū, v̄), so
ur ∈ M for all large indices r by Proposition 3.4. ✷

We also have the following calculus rule.

Corollary 4.5 (Sum rule) Consider a set-valued mapping Φ: U →→ V that is

partly smooth at a point ū ∈ U for a value v̄ ∈ Φ(ū). If the function F : U → V
is smooth around ū, then the set-valued mapping Φ + F is partly smooth at ū for

v̄ + F (ū), with the same dimension and active manifold.

Proof In terms of the coordinate representation guaranteed by Theorem 4.1, we
have

gph(Φ + F ) =
{(

H(w), G̃(w, z)
)

: w ∈ Bδ(0), z ∈ Bδ(0)
}

around (ū, v̄),

where the map G̃ : W × Z → V is defined by

G̃(w, z) = G(w, z) + F
(

H(w)
)

(w ∈ W, z ∈ Z).

This map is smooth around the point (0, 0) with G̃(0, 0) = v̄ + F (ū). Furthermore,
by assumption,

w ∈ W, z ∈ Z, ∇H(0)w = 0 and ∇G̃(0, 0)(w, z) = 0 ⇒ w = 0 and z = 0,

since
∇G̃(0, 0)(w, z) = ∇G(0, 0)(w, z) +∇F (ū)∇H(0)w.

The result now follows by Theorem 4.1. ✷

As with manifolds, a dual representation is sometimes more useful.

Theorem 4.6 (Dual representation) A set-valued mapping Φ: U →→ V is partly

smooth at a point ū ∈ U for a value v̄ ∈ Φ(ū) if and only if it has a local representa-

tion of the following form: there exist Euclidean spaces X and Y, maps P : U → X,

smooth around ū with P (ū) = 0 and ∇P (ū) surjective, and Q : U×V → Y, smooth

around (ū, v̄) with Q(ū, v̄) = 0 and ∇vQ(ū, v̄) surjective, such that

gphΦ =
{

(u, v) ∈ U×V : P (u) = 0, Q(u, v) = 0
}

around (ū, v̄).

The active manifold is then the inverse image P−1(0), around ū.
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Proof Assuming the given representation, define a map R : U ×V → X ×Y by
R(u, v) =

(

P (u), Q(u, v)
)

for points u ∈ U and values v ∈ V . Clearly R is smooth
around the point (ū, v̄), with R(ū, v̄) = (0, 0). The derivative ∇R(ū, v̄) : U ×V →
X×Y is surjective, because for any values x ∈ X and y ∈ Y we can first find r ∈ U
satisfying ∇P (ū)r = x, and then find s ∈ V satisfying ∇vQ(ū, v̄)s = y−∇uQ(ū, v̄)r,
and in that case we have

∇R(ū, v̄)(r, s) =
(

∇P (ū)r,∇uQ(ū, v̄)r +∇vQ(ū, v̄)s
)

= (x, y).

Since gphΦ = R−1(0, 0) around the point (ū, v̄), we deduce that the graph of Φ is a
manifold around (ū, v̄).

For points (u, v) ∈ gphΦ near the point (ū, v̄), we have

TgphΦ(u, v) = Null
(

∇R(u, v)
)

=
{

(r, s) ∈ U×V : ∇P (u)r = 0, ∇uQ(u, v)r +∇vQ(u, v)s = 0
}

,

so, since the partial derivative ∇vQ(u, v) is surjective, we deduce

proj
(

TgphΦ(u, v)
)

= Null
(

∇P (u)
)

.

Since the derivative ∇P (u) is surjective, this space has constant dimension for u

near ū, namely dimU− dimX, so partial smoothness follows.
Clearly the active manifold is contained in the inverse image P−1(0) around

ū. We claim these sets in fact agree around ū. If not, there exists a sequence of
points uk → ū in P−1(0) lying outside the active manifold. By the implicit function
theorem, since the derivative ∇vQ(ū, v̄) is surjective, there exists a sequence of
values vk → v̄ such that Q(uk, vk) = 0 and hence vk ∈ Φ(uk) for all large k. But
this contradicts the definition of the active manifold.

Conversely, suppose the mapping Φ is partly smooth at the point ū ∈ U for
the value v̄ ∈ Φ(ū). Using Theorem 4.1 (Coordinate representation), there exists a
Euclidean space W and a map H : W → U, smooth around 0 with H(0) = ū and
derivative ∇H(0) injective, such that the active manifold is M = H

(

Bδ(0)
)

around
ū providing δ > 0 is sufficiently small.

Consider the map G : U → W discussed in Section 2, satisfying the property
(2.1), so its restriction G|M is the inverse of the diffeomorphism H around the point
ū. Since gphΦ is a manifold and contained in M ×V around the point (ū, v̄), the
set

Λ =
{(

G(u), v
)

: (u, v) ∈ gphΦ, u ∈ Bδ(ū), v ∈ Bδ(v̄)
}

is a manifold around the point (0, v̄) ∈ W ×V. Hence Λ = S−1(0) around (0, v̄),
for some map S : W×V → Y (a Euclidean space), smooth around the point (0, v̄)
with S(0, v̄) = 0 and ∇S(0, v̄) surjective. Equivalently, we have

gphΦ =
{(

H(w), v
)

: S(w, v) = 0, w ∈ Bδ(0), v ∈ Bδ(v̄)
}

around (ū, v̄).
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We claim, more precisely, that the partial derivative ∇vS(0, v̄) : V → Y is sur-
jective. If not, there exists a nonzero vector y ∈ Y such that ∇vS(0, v̄)

∗y = 0. By
Corollary 4.4 (Minimal identifiability), there exists a function F : W → V, smooth
around 0, such that F (0) = v̄ and F (w) ∈ Φ

(

H(w)
)

for all small vectors w ∈ W.
We deduce S

(

w, F (w)
)

= 0 for all small w ∈ W, so

∇wS(0, v̄) +∇vS(0, v̄)∇F (0) = 0

Taking adjoints shows ∇wS(0, v̄)
∗y = 0, so in fact ∇S(0, v̄)∗y = 0, contradicting the

surjectivity of ∇S(0, v̄).
There exists a Euclidean space X and a map P : U → X, smooth around the

point ū, with P (ū) = 0 and ∇P (ū) surjective, such that the active manifold is
M = P−1(0) around ū. Furthermore, if we define a map Q : U × V → Y by
Q(u, v) = S

(

G(u), v
)

, then the desired representation now follows, since the partial
derivative

∇vQ(ū, v̄) = ∇vS(0, v̄)

is surjective. ✷

5 The normal bundle and partial smoothness

Given a manifold M ⊂ U around a point ū ∈ M , we can consider the normal space
as a set-valued mapping NM : U →→ U, where we define NM(u) = ∅ if u 6∈ M .

Theorem 5.1 (Normal space) If a set M ⊂ U is a C(2)-smooth manifold around

a point ū ∈ M , then the normal space mapping NM : U →→ U is partly smooth at ū

for any value v̄ ∈ NM(ū), with dimension dimU and active manifold M .

Proof We apply Theorem 4.1 (Coordinate representation). Following the notation
of Section 2, there exists a vector x̄ ∈ X satisfying ∇P (ū)∗x̄ = v̄. We claim

gphNM =
{(

H(w),∇P
(

H(w)
)∗
x
)

: w ∈ Bδ(0), x ∈ Bδ(x̄)
}

, around (ū, v̄),

providing δ > 0 is sufficiently small. The inclusion “⊃” is clear, so it suffices to
prove the inclusion “⊂”.

For sufficiently small δ > 0, the map H gives a diffeomorphism between the open
ball Bδ(0) ⊂ W and an open neighborhood of the point ū in the manifold M . For
such δ, if the desired inclusion fails, then there exists a sequence of points ur → ū in
M and a sequence of normals vr ∈ NM(ur) approaching v̄, such that the sequence
(ur, vr) is disjoint from the right-hand side. There must therefore exist a sequence
of vectors wr → 0 in W satisfying H(wr) = ur, and a sequence of vectors xr ∈ X
satisfying

∇P (ur)
∗xr = vr → v̄ = ∇P (ū)∗x̄.
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Since the linear map ∇P (ū) is surjective, we can represent it with respect to some
orthonormal bases by the matrix (A 0), where the matrix A is invertible. Denote the
corresponding representation of ∇P (ur) by (Ar Cr), where Ar → A and Cr → 0.
The property above ensures AT

r xr → AT x̄ and hence xr → x̄, contradicting our
assumption that xr 6∈ Bδ(x̄).

Now define a map G : W ×X → U by

G(w, z) = ∇P
(

H(w)
)∗
(x̄+ z) (for w ∈ W, z ∈ X).

Clearly G is smooth around the point (0, 0), with G(0, 0) = v̄. Furthermore, around
the point (ū, v̄), the graph of Φ has the representation (4.3), as we have just seen.
It remains to verify the regularity condition (4.2). By assumption, Null

(

∇H(0)
)

=
{0}, so we just need to check that vectors z ∈ X satisfy the property

∇G(0, 0)(0, z) = 0 ⇒ z = 0

However, ∇G(0, 0)(0, z) = ∇P (ū)∗z, and ∇P (ū) is surjective. Notice that the
dimension of NM is

dimW + dimX = dimTM(ū) + dimNM(ū) = dimU,

so the result now follows. ✷

We can generalize this result substantially. In the variational analysis that fol-
lows, we follow the terminology and notation of [25]. The original definition of a
partly smooth set appeared in [17]. Here we use a slightly modified directional
version [7].

Definition 5.2 Consider a closed set Q ⊂ U, a point ū ∈ Q, and a normal vector
v̄ ∈ NQ(ū). We call Q partly smooth at ū for v̄ with respect to a set M ⊂ Q when
all of the following properties hold.

• Q is prox-regular at ū for v̄.

• M is a C(2)-smooth manifold around ū.

• NM(ū) = span N̂Q(ū).

• For some neighborhood W of v̄, the mapping u 7→ NQ(u) ∩W is inner semi-
continuous at ū relative to M .

Since this definition is rather technical, a more concrete model is helpful. Con-
sider the fully amenable case when the set Q coincides around ū with an inverse
image F−1(D) where F is a C(2)-smooth mapping and D is a closed convex set
satisfying ND

(

F (ū)
)

∩ N
(

∇F (ū)
)

= {0} (as holds in particular if Q is closed and
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convex). Then the prox-regularity condition holds, and the normal and regular nor-
mal cones, NQ(ū) and N̂Q(ū), coincide. The inner semicontinuity condition means
that, for any normal vector v ∈ NQ(ū) near v̄, and any sequence of points ur → ū

in M , there exists a corresponding sequence of normals vr ∈ NQ(ur) approaching v̄.
We then have the following result.

Theorem 5.3 Consider a closed set Q ⊂ U, a point ū ∈ Q, a regular normal vector

v̄ ∈ N̂Q(ū), and suppose that M ⊂ Q is a C(2)-smooth manifold around ū. Then the

following properties are equivalent for the normal cone mapping NQ.

(i) NQ is partly smooth at ū for v̄, with active manifold M .

(ii) M is identifiable for NQ at ū for v̄.

(iii) Q is partly smooth at ū for v̄ with respect to M , and v̄ ∈ ri N̂Q(ū).

(iv) gphNQ = gphNM around (ū, v̄).

When these properties hold, the dimension of NM at ū for v̄ is just dimU.

Proof The implication (i) ⇒ (ii) follows from Proposition 3.4. The equivalence of
the properties (ii), (iii), and (iv) follows from [7, Proposition 8.4]. The implication
(iv) ⇒ (i) follows from Theorem 5.1. ✷

The definition of a partly smooth function parallels that for sets. Again we use
a directional version of the original idea in [17], following [8].

Definition 5.4 Consider a closed function f : U → R, a point ū ∈ U, and a
subgradient v̄ ∈ ∂f(ū). We call f partly smooth at ū for v̄ with respect to a set
M ⊂ U when all of the following properties hold.

• f is prox-regular at ū for v̄.

• The restriction f |M is C(2)-smooth around ū.

• The regular subdifferential ∂̂f(ū) is a translate of the normal space NM(ū).

• For some neighborhood W of v̄, the mapping u 7→ ∂f(u) ∩W is inner semi-
continuous at ū relative to M .

We then have the following result.

Theorem 5.5 Consider a closed function f : U → R, a point ū ∈ U, and a regular

subgradient v̄ ∈ ∂̂f(ū). Suppose that f is subdifferentially continuous at ū for v̄.

Suppose furthermore that M ⊂ Q is a C(2)-smooth manifold around ū, and that the

restriction f |M is C(2)-smooth around ū. Then there exists a function f̄ : U → R
that is both C(2)-smooth and satisfies f |M = f̄ |M around ū, and for any such function

the following properties are equivalent for the subdifferential mapping ∂f .
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(i) The mapping ∂f is partly smooth at ū for v̄, with active manifold M .

(ii) The manifold M is identifiable for ∂f at ū for v̄.

(iii) The function f is partly smooth at ū for v̄ with respect to M , and v̄ ∈ ri ∂̂f(ū).

(iv) Around (ū, v̄) we have

gph ∂f = {(u,∇f̄(u) + v) : u ∈ M, v ∈ NM(u)}.

When these properties hold, the dimension of ∂f at ū for v̄ is just dimU.

Proof The existence of the function f̄ is just the definition smoothness of f |M .
The implication (i) ⇒ (ii) follows from Proposition 3.4. The equivalence of the
properties (ii), (iii), and (iv) follows from [8, Proposition 10.12]. The implication
(iv) ⇒ (i) follows from Theorem 5.1 and Corollary 4.5 (Sum rule). ✷

Again, the assumptions are rather technical, so we illustrate with a more concrete
model. Consider the fully amenable case when the function f is finite at ū and
agrees around ū with a composite function g ◦ F , where the mapping F is C(2)-
smooth around ū and the function g is lower semicontinuous and convex, satisfying
Ncl(dom g)

(

F (ū)
)

∩ N
(

∇F (ū)
)

= {0}. (When F is simply the identity mapping,
we recover the case when f is lower semicontinuous and convex). Then both the
subdifferential continuity and prox-regularity condition holds, and the normal and
regular subdifferentials, ∂f(ū) and ∂̂f(ū), coincide.

6 Identifiability for primal-dual splitting

We consider the saddlepoint problem

inf
x∈X

sup
y∈Y

{(f + p)(x) + 〈Ax, y〉 − (g + q)(y)}

for Euclidean spaces X and Y, lower-semicontinuous convex functions f : X → R
and g : Y → R, C(2)-smooth convex functions p : X → R and q : Y → R, and a
linear map A : X → Y. Saddlepoints (x, y) satisfy the inclusion

(0, 0) ∈ Φ(x, y)

where the set-valued mapping Φ: X×Y →→ X×Y is defined by

Φ(x, y) =
(

∂f(x) +∇p(x) + L∗y
)

×
(

− Lx+ ∂g(y) +∇q(y)
)

.

The following method (following [20]) covers a variety of primal-dual algorithms
[5, 6, 13, 26]. As usual, we denote by proxf(x) the unique minimizer of the function
f(·) + 1

2
‖ · −x‖2.
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Algorithm 6.1 (Primal-dual splitting)
Choose γ, µ > 0. For k = 0, x0 ∈ X, y0 ∈ Y,
while not done do
xk+1 = proxγf

(

xk − γ∇p(xk)− γA∗yk
)

,

yk+1 = proxµg
(

yk − µ∇q(yk) + µA(2xk+1 − xk)
)

,
k = k + 1;

end while

Assuming suitable conditions [20, Theorem 3.3], there exists a saddlepoint (x̄, ȳ)
satisfying

(6.2) (xk, yk) → (x̄, ȳ) and dist
(

(0, 0),Φ(xk, yk)
)

→ 0.

Assume furthermore, again following [20], that the function f is partly smooth
at x̄ for −∇p(x̄) − L∗ȳ with respect to some set M ⊂ X, that the function g is
partly smooth at ȳ for −∇q(ȳ) +Lx̄ with respect to some set N ⊂ Y, and that the
nondegeneracy conditions

−∇p(x̄)− L∗ȳ ∈ ri ∂f(x̄) and −∇q(ȳ) + Lx̄ ∈ ri ∂g(ȳ)

hold. Theorem 5.5 implies that the mapping ∂f is partly smooth at x̄ for −∇p(x̄)−
L∗ȳ with respect to M , and the mapping ∂g is partly smooth at ȳ for −∇q(ȳ)+Lx̄

with respect to N . It follows immediately that the set-valued mapping (x, y) 7→
∂f(x) × ∂g(y) is partly smooth at (x̄, ȳ) for (−∇p(x̄) − L∗ȳ,−∇q(ȳ) + Lx̄) with
respect to M × N and hence by the sum rule that the set-valued mapping Φ is
partly smooth at (x̄, ȳ) for (0, 0) with respect to M×N . By Proposition 3.4, M×N

is identifiable for Φ at (x̄, ȳ) for (0, 0), so the convergence property (6.2) implies
xk ∈ M and yk ∈ N eventually: exactly the conclusion of [20, Theorem 3.3].

7 Example: smooth optimization on a manifold

We end with a brief but representative example to illustrate the interplay between
partial smoothness and the second-order sufficient conditions. Suppose M ⊂ U is
a C(2)-smooth manifold around a point ū ∈ M , and f : M → R is a C(2)-smooth
function. We can consider a corresponding extended-valued function f̃ : U → R
defined by

f̃(u) =

{

f(u) (u ∈ M)
+∞ (u 6∈ M),

Its subdifferential map is given by

∂f̃(u) =

{

∇Mf(u) +NM(u) (u ∈ M)
∅ (u 6∈ M),
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where ∇Mf(u) ∈ TM(u) denotes the covariant derivative. By Corollary 4.5 (Sum
rule), this set-valued mapping ∂f̃ is partly smooth at ū for any value in the set
∇Mf(ū) +NM(ū). In particular, assuming the first-order necessary condition

∇Mf(ū) = 0,

then ∂f̃ is partly smooth at ū for 0, with dimension dimU and active manifold M .
Now suppose further that ū is a local minimizer around which f grows quadrat-

ically: for some δ > 0,

f(u) ≥ f(ū) + δ|u− ū|2 for all u ∈ M near ū.

Equivalently, in addition to the first-order condition, f satisfies the second-order
sufficient condition: the covariant Hessian ∇2

Mf(u) : TM(u) → TM(u) (a self-adjoint
linear map) is positive definite when u = ū. We also have (from [19]):

Ngph ∂f̃ (ū, 0) =
{

(z, w) : w ∈ TM (ū) and z +∇2
Mf(ū)w ∈ NM(ū)

}

.

Hence gph ∂f̃ intersects the subspace U × {0} transversally at (ū, 0). To see this,
note

(z, w) ∈ Ngph ∂f̃ (ū, 0) ∩NU×{0}(ū, 0)

if and only if
w ∈ TM(ū), z +∇2

Mf(ū)w ∈ NM(ū), z = 0.

Since ∇2
Mf(ū) is positive definite, the latter property holds if and only if z = 0

and w = 0, as required. Consequently, (ū, 0) is an isolated transversal point of
intersection of the two manifolds gph ∂f̃ and U× {0}.

To summarize, satisfying the first-order optimality conditions for minimizing
the smooth function f on the manifold M ⊂ U amounts to finding a point in
the intersection of the space U × {0} and the graph of the subdifferential of the
corresponding extended-valued function f̃ . Assuming the second-order sufficient
conditions, the subdifferential is a partly smooth mapping of dimension dimU, and
its graph intersects the subspace U× {0} transversally at an isolated point.
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[21] R. Mifflin and C. Sagastizábal. Proximal points are on the fast track. Journal
of Convex Analysis, 9:563—579, 2002.
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