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Abstract Let W (A) denote the field of values (numerical range) of a matrix A.
For any polynomial p and matrix A, define the Crouzeix ratio to have numerator
max {|p(ζ )| : ζ ∈ W (A)} and denominator ‖p(A)‖2. Crouzeix’s 2004 conjecture pos-
tulates that the globallyminimal value of theCrouzeix ratio is 1/2, over all polynomials
p of any degree and matrices A of any order. We derive the subdifferential of this ratio
at pairs (p, A) for which the largest singular value of p(A) is simple. In particular,
we show that at certain candidate minimizers (p, A), the Crouzeix ratio is (Clarke)
regular and satisfies a first-order nonsmooth optimality condition, and hence that its
directional derivative is nonnegative there in every direction in polynomial-matrix
space. We also show that pairs (p, A) exist at which the Crouzeix ratio is not regular.
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230 A. Greenbaum et al.

1 Crouzeix’s conjecture

Let MN denote the space of N × N complex matrices, let PM denote the space of
polynomials with complex coefficients and degree≤ M , and let ‖ ·‖ denote the vector
or matrix 2-norm. Michel Crouzeix’s 2004 conjecture [4] states that for all A ∈ MN

and all p ∈ PM , the following inequality holds regardless of the values of N and M :

‖p(A)‖ ≤ 2‖p‖W (A) (1)

where W (A) is the field of values (or numerical range) of A,

W (A) = {v∗Av : v ∈ C
N , ‖v‖ = 1},

and

‖p‖W (A) = max
ζ∈W (A)

|p(ζ )| = max‖v‖=1
|p(v∗Av)|.

Here ∗ denotes complex conjugate transpose. The set W (A) is a convex, compact
subset of the complex plane [11, Ch. 1]. Clearly, the conjecture holds for N = 1 or if
p is a constant polynomial (with the factor 2 replaced by 1) so we assume that N ≥ 2
and p is not constant.

This conjecture, which seeks to bound the spectral norm of the polynomial of a
matrix by the normof the polynomial on thefield of values of thematrix in a remarkably
simple way, has been open for more than a decade. Crouzeix’s 2007 theorem [5] states
that the inequality (1) holds if the 2 on the right-hand side is replaced by 11.08. The
conjecture postulates that the Crouzeix ratio ‖p‖W (A)/‖p(A)‖ is bounded below by
1/2, while the theorem states that it is bounded below by 1/11.08. The Crouzeix ratio
is locally Lipschitz continuous on the set of all pairs (p, A) for which p(A) �= 0. It is
neither smooth nor convex, but it is semialgebraic.

The conjecture is known to hold for certain restricted classes of polynomials p or
matrices A:

– p(ζ ) = ζ M (from the power inequality, Berger [1] and Pearcy [17])
– W (A) is a disk (Badea [4, p. 462], based on von Neumann’s inequality [21] and
work of Okubo and Ando [16])

– N = 2 (Crouzeix [4], and, more generally, if the minimum polynomial of A has
degree 2 (applying results in [20])

– N = 3 and A3 = 0 (Crouzeix [6])
– A is an upper Jordanblockwith a perturbation in the bottom left corner (Greenbaum
and Choi [9]) or any diagonal scaling of such A (Choi [2])

– A is diagonalizable with an eigenvector matrix having condition number less than
or equal to 2 (easy)

– AA∗ = A∗A (then the constant 2 can be improved to 1).

Extensive numerical experiments by Crouzeix [7] and Greenbaum and Overton [10]
strongly support the conjecture.
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Variational analysis of the Crouzeix ratio 231

Pairs (p, A) for which the Crouzeix ratio is 0.5 are known. Given an integer n with
2 ≤ n ≤ min(N , M + 1), set m = n − 1, define the polynomial p ∈ Pm ⊂ PM by
p(ζ ) = ζm , set the matrix Ã ∈ Mn to

[
0 2
0 0

]
if n = 2, or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√
2
· 1

· ·
· ·
· 1

· √
2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

if n > 2, (2)

and set A = diag
(
Ã, 0

) ∈ MN . It was independently observed by Choi [2] and
Crouzeix [7] that W (A) is the unit disk D, so the numerator of the Crouzeix ratio for
(p, A) is one, and that p(A) = An−1 is a matrix with just one nonzero, namely a two
in the (1, n) position, so the denominator of the Crouzeix ratio is two and hence the
ratio is 0.5. In fact, the experiments of Greenbaum and Overton suggest that this is
essentially the only pair for which the Crouzeix ratio is 0.5.1

Crouzeix’s conjecture is equivalent to saying that the pair (p, A) given above is a
global minimizer of the Crouzeix ratio onPM ×MN . The main theorem in this paper,
established in Sect. 5, is that a first-order nonsmooth necessary condition for (p, A)

to be a local minimizer holds, and furthermore that the directional derivative of the
Crouzeix ratio at (p, A) is nonnegative in every direction in PM × MN .

2 Variational analysis

We will use the following standard notions from variational analysis. Let h map a
Euclidean space E to R. We say that h is smooth on an open set X ⊂ E if it is
continuously differentiable there and that h is directionally differentiable on X if, for
all x ∈ X , the directional derivative

h′(x; d) ≡ lim
t↓0

h(x + td) − h(x)

t

exists and is finite for all d ∈ E. If h is locally Lipschitz and directionally differentiable
on X , we say that h is (Clarke) regular on X when its directional derivative x →
h′(x; d) is upper semicontinuous (usc) on X for every fixed direction d [19, Thm. 9.16].
It iswell known that for regular functions, various different notions of subgradients [19,
Ch. 9] or generalized gradients [3] all coincide. We use ∂h(x) to denote the set of such
subgradients, or subdifferential, of h at x ∈ X . In the case we are considering (when h

1 By this we mean, apart from making the following transformations: scaling p, scaling A, shifting the
root of the monomial p and the diagonal of the matrix A by the same scalar, applying a unitary similarity
transformation to A, or replacing the zero block in A by any matrix whose field of values is contained in
D. Note, however, that if the condition that p is a polynomial is relaxed to allow it to be analytic, there are
many choices for (p, A) for which the ratio 0.5 is attained; for the case N = 3, see [8, Sec. 10].
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232 A. Greenbaum et al.

is locally Lipschitz, directionally differentiable and regular), the subdifferential ∂h(x)
is a nonempty compact convex set consisting of those vectors y for which the inner
product 〈y, d〉 is no greater than h′(x; d) for all directions d ∈ E; furthermore

h′(x; d) = max
y∈∂h(x)

〈y, d〉. (3)

Note that the map d → h′(x; d) is sublinear [19, Def. 3.18]. Hence, the nonsmooth
stationarity condition 0 ∈ ∂h(x) is equivalent to the first-order optimality condition
h′(x, d) ≥ 0 for all directions d ∈ E. Convex functions and smooth functions are
globally regular, but nonsmooth concave functions are not.

The following nonsmooth quotient rule will be useful. It is a special case of [15,
Theorem 3.45], but we include a proof for completeness.

Proposition 1 Let ν : E → R be locally Lipschitz, directionally differentiable and
regular on an open set X ∈ E and let δ : E → R be smooth on X with gradient ∇δ.
Define the quotient h by x → ν(x)/δ(x), assuming δ(x) �= 0 for x ∈ X. Then h is
regular on X with subdifferential

∂h(x) = δ(x)∂ν(x) − ν(x)∇δ(x)

δ(x)2
.

Proof Fix d ∈ E. Applying the ordinary quotient rule to the function t → h(x + td),
which maps R to R, we find

δ(x)2h′(x; d) = δ(x)ν′(x; d) − ν(x)δ′(x; d)

= δ(x) max
y∈∂ν(x)

〈y, d〉 − ν(x)
〈∇δ(x), d

〉

= max
y∈∂ν(x)

〈
δ(x)y − ν(x)∇δ(x), d

〉
.

Since ν′(·; d) is usc on X and ∇δ(·) is continuous on X , it follows that h′(·; d) is also
usc on X and hence that h is regular there. The result now follows from (3). ��

3 Parameterizing the boundary of W(A)

By the maximum modulus principle, |p(ζ )| must attain its maximum over ζ ∈ W (A)

on a nonempty subset of the boundary of W (A), and since p is not constant, the
maximum is attained only on the boundary. The following fundamental proposition
goes back to [13] and is also well known from [11,12], but the usual proof is less
succinct than ours.

Proposition 2 For θ ∈ [0, 2π), define the Hermitian matrix

Hθ = 1

2

(
eiθ A + e−iθ A∗) . (4)
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Variational analysis of the Crouzeix ratio 233

A point z is a boundary point of W (A) if and only if z = v∗Av where v is a unit
eigenvector of Hθ corresponding to λmax(Hθ ), the largest eigenvalue of Hθ , for some
θ ∈ [0, 2π).

Proof We use the real inner product onC defined by 〈ξ, η〉 = Re(ξ∗η). SinceW (A) is
closed and convex, z is a boundary point ofW (A) if and only if it lies on a supporting
hyperplane, namely, a line Lθ described by the conditions 〈e−iθ , y−z〉 = 0 for y ∈ Lθ

and 〈e−iθ , y − z〉 ≤ 0 for y ∈ W (A), for some θ ∈ [0, 2π). Such a boundary point
satisfies z = v∗

θ Avθ where vθ maximizes, over all unit vectors v ∈ C
N ,

〈
e−iθ , v∗Av

〉
= Re

(
v∗(eiθ A)v

)
= v∗Hθ v.

Hence, vθ is a unit eigenvector corresponding to λmax(Hθ ). ��
Note that if λmax(Hθ ) is simple, then vθ is uniquely defined up to a unimodular

scalar.

4 The subdifferential of the Crouzeix ratio

Let us identify p ∈ PM with its coefficient vector c = [c0, c1, . . . , cM ]T ∈ C
M+1,

with c j �= 0 for at least one j ∈ {1, . . . , M}, and define the function q : CM+1 ×C →
C by

q(c, ζ ) =
M∑
j=0

c jζ
j .

Depending on the context, wewill also interpret q as a functionmappingCM+1×MN

to MN , defined by substituting A ∈ MN for ζ ∈ C above. We write the Crouzeix
ratio as

f (c, A) = τ(c, A)

β(c, A)

where

τ(c, A) = max
{|q(c, z)| : z ∈ W (A)

}
, (5)

and

β(c, A) = ‖p(A)‖ = σmax
(
q(c, A)

)
, (6)

the largest singular value of
∑M

j=0 c j A
j . Thus f maps the Euclidean space CM+1 ×

MN , with real inner product

〈(c, A), (d, B)〉 = Re
(
c∗d + tr(A∗B)

)
,
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234 A. Greenbaum et al.

to R. We address the case where the denominator is zero below. The notations τ and
β were chosen to indicate the “top” and “bottom” components of the ratio.

We begin our analysis with the numerator. We can rewrite τ as

τ(c, A) = max
{
φ(c, A, ω, v) : |ω| = 1, ‖v‖ = 1

}
, (7)

where the function φ : CM+1 × MN × C × C
N → R is defined by

φ(c, A, ω, v) = Re
(
ω∗q(c, v∗Av)

)
.

Let Z(c, A) denote the set of points z ∈ W (A) attaining the maximum in (5) and let
Ω(c, A) denote the set of pairs (ω, v) attaining the maximum in (7). Clearly

Ω(c, A) = {
(ω, v) : |ω| = 1, ‖v‖ = 1, z ∈ Z(c, A), v∗Av = z, ω∗z = |q(c, z)|}.

By [19, Thm. 10.31], τ is everywhere locally Lipschitz, directionally differentiable
and regular, with subdifferential

∂τ(c, A) = conv
{∇(c,A)φ(c, A, ω, v) : (ω, v) ∈ Ω(c, A)

}
. (8)

By definition, the gradient vector satisfies

φ(c + δc, A + δA, ω, v) − φ(c, A, ω, v)

=
〈
∇(c,A)φ(c, A, ω, v), (δc, δA)

〉
+ o(δc, δA).

The left-hand side is

Re
(
ω∗(q(c + δc, v∗(A + δA)v) − q(c, v∗Av)

))

= Re
(
ω∗(〈∇q(c, v∗Av),

(
δc, v∗(δA)v

)〉)) + o(δc, δA).

The gradient of q at the pair (c, ζ ) is defined by

〈∇q(c, ζ ), (δc, δζ )〉 = (δc)0 +
M∑
j=1

(
(δc) jζ

j + jc jζ
j−1(δζ )

)
.

Setting z = v∗Av, we deduce

123

Author's personal copy



Variational analysis of the Crouzeix ratio 235

〈
∇(c,A)φ(c, A, ω, v), (δc, δA)

〉

= Re
(
ω∗(δc)0 + ω∗

M∑
j=1

(
(δc) j z

j + jc j z
j−1v∗(δA)v

))

=
〈
ω
(
(z∗) j

)M
j=0 , δc

〉
+

〈
ω

M∑
j=1

jc∗
j (z

∗) j−1vv∗ , δA
〉
,

so

∇(c,A)φ(c, A, ω, v) =
(
ω
(
(z∗) j

)M
j=0 , ω

M∑
j=1

jc∗
j (z

∗) j−1vv∗).

Assuming τ(c, A) �= 0 and applying (8), we find that

∂τ(c, A) = conv

{
q(c, z)

|q(c, z)|
((

(z∗) j
)M
j=0 ,

M∑
j=1

jc∗
j (z

∗) j−1vv∗) :

z = v∗Av ∈ Z(c, A), ‖v‖ = 1

}
. (9)

Recall from Sect. 3 that, exploiting the maximum modulus principle together with
Proposition 2, we know an explicit formula for the unit vectors v satisfying v∗Av ∈
Z(c, A): they are eigenvectors corresponding to the maximum eigenvalue of Hθ for
some θ ∈ [0, 2π).

Now we turn to the denominator β(c, A) = σmax
(
q(c, A)

)
. The largest singular

value of a matrix X is characterized by

σmax(X) = max
{
Re

(
u∗Xw

) : ‖u‖ = ‖w‖ = 1
}

= max
{〈
X, uw∗〉 : ‖u‖ = ‖w‖ = 1

}
.

Assume that σmax
(
q(c, A)

)
is simple, with corresponding left and right unit singular

vectors u, w ∈ C
N , so that the denominator is smooth with gradient

∇β(c, A) = uw∗.

It follows that

β(c + δc, A + δA) − β(c, A)

= σmax
(
q(c + δc, A + δA)

) − σmax
(
q(c, A)

)
= Re

(
u∗(q(c + δc, A + δA) − q(c, A)

)
w
)

+ o(δc, δA)
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236 A. Greenbaum et al.

= Re
(
u∗

M∑
j=0

(
(c j + δc j )(A + δA) j − c j A

j )w)
+ o(δc, δA)

= Re
M∑
j=0

(δc j )(u
∗A jw) + Re tr

( M∑
j=1

c j

j−1∑
l=0

Al(δA)A j−l−1
)
wu∗ + o(δc, δA)

= Re
M∑
j=0

(δc j )(u
∗A jw) + Re tr

( M∑
j=1

c j

j−1∑
l=0

A j−l−1wu∗Al
)
δA + o(δc, δA),

and hence

∇β(c, A) =
((

w∗A∗ j u
)M
j=0 ,

M∑
j=1

c∗
j

j−1∑
l=0

A∗luw∗A∗( j−l−1)
)
. (10)

Since N ≥ 2, it follows from the assumption on the simplicity of the maximum
singular value of q(c, A) that β(c, A) is nonzero, and therefore that τ(c, A) is nonzero
(because if it were zero, W (A) would consist of a single point λ with

∑
c jλ j = 0,

and this would imply that A = λI and hence β(c, A) = 0).
This discussion leads to the following result.

Theorem 3 Let c = [c0, c1, . . . , cM ]T , with c j nonzero for at least one j > 0, and
A ∈ MN be given, with N ≥ 2. Assume that the largest singular value of

∑
j c j A

j

is simple. Then the Crouzeix ratio f is regular on a neighborhood of (c, A) with
subdifferential

∂ f (c, A) = β(c, A)∂τ (c, A) − τ(c, A)∇β(c, A)

β(c, A)2
, (11)

where ∂τ(c, A) and ∇β(c, A) are given by (9) and (10) respectively.

Proof The proof follows from the analysis above, using the nonsmooth quotient rule
in Proposition 1. ��

5 Local optimality conditions at candidate minimizers

We are now in a position to study nonsmooth stationarity of our candidate minimizers.
As at the end of Sect. 1, given an integer n with 2 ≤ n ≤ min(N , M+1), setm = n−1
and define the polynomial p as the monomial ζ → ζm with coefficients

c = [0, . . . , 0, 1, 0, . . . 0]T ∈ C
M+1. (12)

Let

A = diag
(
Ã, 0

) ∈ MN (13)
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Variational analysis of the Crouzeix ratio 237

where Ã ∈ Mn is given in (2). Then, as observed following (2), W (A) is the unit
diskD, and p(A) = An−1, which has norm two, so τ(c, A) = 1, β(c, A) = 2 and the
Crouzeix ratio f (c, A) = 0.5. Hence, the pair (c, A) is a candidate minimizer of f ,
and is a global minimizer if Crouzeix’s conjecture is true.

Theorem 4 Let c, A be given by (12), (13). The subdifferential of the Crouzeix ratio
at (c, A) is

∂ f (c, A) = convθ∈[0,2π)

{(
yθ ,Yθ

)}

where

yθ = 1

2

[
zm, zm−1, . . . , z, 0, z−1, z−2, . . . , zm−M

]T

and Yθ is the block diagonal matrix diag
(
Ỹθ , 0

)
, where Ỹθ is the n × n matrix

Ỹθ = 1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z 0
√
2z−1

√
2z−2 · · · √

2z3−n z2−n√
2z2 2z 0 2z−1 · · · 2z4−n

√
2z3−n

...
...√

2zn−2 2zn−3 2zn−4 2zn−5 · · · 0
√
2z√

2zn−1 2zn−2 2zn−3 2zn−4 · · · 2z 0
zn

√
2zn−1

√
2zn−2

√
2zn−3 · · · √

2z2 z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

with z = e−iθ . When n = 2, these should be interpreted as

yθ = [
z, 0, z−1, . . . , z1−M

]T
and Ỹθ = 1

4

[
z 0
z2 z

]
.

Corollary 5 Let c, A be given by (12), (13). Then

0 ∈ ∂ f (c, A).

This says that for any n and m satisfying 2 ≤ n ≤ N and m = n − 1 ≤ M , the
pair (c, A) is a nonsmooth stationary point of f . As explained in Sect. 2, together
with regularity this implies that the directional derivative of the Crouzeix ratio is
nonnegative in every direction—a new result for N > 2. It was implicitly already
known for N = n = 2, because Crouzeix’s conjecture is known to hold for 2 × 2
matrices. It was also implicitly known previously that, for fixed c given in (12), 0 ∈
∂ f (c, ·)(A), since Crouzeix’s conjecture is known to hold when p is a fixedmonomial.

The proof of Corollary 5 is immediate, as the convex combination

1

N + 1

N∑
k=0

(
y2kπ/(N+1),Y2kπ/(N+1)

)
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238 A. Greenbaum et al.

is zero. Alternatively, note that the integral

1

2π

∫ 2π

0

(
yθ ,Yθ

)
dθ

is zero.

Proof of Theorem 4 Since W (A) = D and
∑

j c jζ
j = ζm , we have that Z(c, A) is

the unit circle
{
eiθ : θ ∈ [0, 2π)

}
. The Hermitian matrix defined in (4) is Hθ =

diag(H̃θ , 0), where

H̃θ = 1

2

(
eiθ A + e−iθ A∗) = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
√
2eiθ√

2e−iθ 0 eiθ

e−iθ 0 eiθ

. . .
. . .

. . .

e−iθ 0
√
2eiθ√

2e−iθ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Some calculations show that, for all θ , its largest eigenvalue is simple with unit eigen-
vector

vθ = 1√
n − 1

[
x̃θ

0

]
where x̃θ =

[
e(n−1)iθ

√
2

, e(n−2)iθ , . . . , eiθ ,
1√
2

]T

(14)

and with v∗
θ Avθ = e−iθ . In what follows we write z as an abbreviation for e−iθ .

Let us consider the numerator τ . Equation (9) gives

∂τ(c, A) = convθ∈[0,2π)

{(
sθ , Sθ

)}

where

sθ = zm
[
1, z−1, . . . , z−M

]T =
[
zm, . . . , 1, . . . , zm−M

]T

and, using (12) and noting that m = n − 1,

Sθ = zn−1(n − 1)z2−nvθv
∗
θ = (n − 1)zvθv

∗
θ .

Using (14) we find that Sθ = diag
(
S̃θ , 0

)
where, if n = 2,

S̃θ = 1

2

[
z 1
z2 z

]

123

Author's personal copy



Variational analysis of the Crouzeix ratio 239

and otherwise

S̃θ = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z
√
2

√
2z−1

√
2z−2 · · · √

2z3−n z2−n√
2 z2 2z 2 2z−1 · · · 2z2−n

√
2z3−n

...
...√

2zn−2 2zn−3 2zn−4 2zn−5 · · · 2
√
2z√

2zn−1 2zn−2 2zn−3 2zn−4 · · · 2z
√
2

zn
√
2zn−1

√
2zn−2

√
2zn−3 · · · √

2z2 z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we turn to the denominator. Let e j denote the j th coordinate vector. Since
p(A) = diag(2e1e∗

n, 0), its maximum singular value is simple, with corresponding
left and right singular vectors u = [e1; 0] and v = [en; 0]. Hence, using (10), we have

∇β(c, A) = (rθ , Rθ )

where

rθ = [0, . . . , 0, 2, 0, . . . , 0]T

since u∗Akw = 0 for k = 0, . . . ,m − 1, u∗Amw = 2, and Ak = 0 for k > m, and,
using (12) and (13), Rθ = diag

(
R̃θ , 0

)
, where R̃θ = e1e∗

2 if n = 2, and otherwise

R̃θ =
n−2∑
�=0

Ã∗�e1e
∗
n Ã

∗(n−2−�) = √
2e1e

∗
2 + 2

n−2∑
l=2

e�e
∗
�+1 + √

2en−1e
∗
n

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√
2
· 2

· ·
· ·
· 2

· √
2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, since the assumptions of Theorem 3 hold, we obtain from (11) that

∂ f (c, A) = convθ∈[0,2π)

{(
yθ ,Yθ

)}

where, since τ(c, A) = 1 and β(c, A) = 2,

yθ = 1

4
(2sθ − rθ ) and Yθ = 1

4
(2Sθ − Rθ ) .

The proof is completed by combining the equations given above. ��

123

Author's personal copy



240 A. Greenbaum et al.

A crucial point in the proof is that the twos in 2sθ and rθ cancel and the first
superdiagonals in 2Sθ and in Rθ cancel. Since these quantities are independent of θ ,
Corollary 5 could not hold without their cancellation.

6 Breakdown of regularity

In this section we show that pairs (c, A) exist at which the Crouzeix ratio f is not
regular. The numerator τ is regular everywhere, even without the assumptions in
Theorem 3. The same is true of the denominator β, as it is the composition of a convex
function (the maximum singular value) with a polynomial. However, Proposition 1
does not apply when the denominator is not smooth. So, we focus on the directional
derivative instead.

Fix M = m = 1 and p by p(ζ ) = ζ , equivalently c = [0, 1]T , and write

f̌ (A) = f (c, A) = τ̌ (A)

β̌(A)
= τ(c, A)

β(c, A)
.

Then immediately from the definition,

f̌ (A) = max‖v‖=1 |v∗Av|
max‖u‖=‖w‖=1 |u∗Aw| .

If, for some A, σmax(A) has multiplicity greater than one, β̌ is nonsmooth at A, and
hence (11) does not apply. However, by the ordinary quotient rule, the directional
derivative of f̌ at A in a direction D ∈ MN is

f̌ ′(A; D) = β̌(A)τ̌ ′(A; D) − τ̌ (A)β̌ ′(A; D)

β̌(A)2
. (15)

Since the numerator and denominator are both regular, we have from (3) that

τ̌ ′(A; D) = max
G∈∂τ̌ (A)

〈G, D〉 and β̌ ′(A; D) = max
G∈∂β̌(A)

〈G, D〉. (16)

Let N = n = 3 and fix A to be given by Ã in (2), that is, a 3 × 3 Jordan block
with zero on the diagonal, scaled by

√
2. Note that W (A) is the unit disk D, so the

numerator τ̌ (A) = 1, but the denominator β̌(A) = √
2, not 2 as in Theorem 4, because

now p(A) = A, not A2. So, f̌ (A) = 1/
√
2.

We can derive ∂τ̌ (A) using (9). We find

∂τ̌ (A) = convθ∈[0,2π)

{
Tθ

}
(17)
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Fig. 1 Plot of the denominator
β, the numerator τ and the
Crouzeix ratio f evaluated at
(c, A + t A2), where c = [0, 1]T
(so p(ζ ) = ζ )) and A is the 3×3
Jordan block scaled by

√
2, for

t ∈ [−2, 2]. This example shows
that f is not regular at (c, A)

−2 −1 0 1 2
0.5

1

1.5

2

2.5

t

Lack of Regularity of Crouzeix Ratio

β
τ
f

where, noting that q(z) = z,

Tθ = zvθv
∗
θ = 1

4

⎡
⎣ z

√
2 z−1√

2z2 2z
√
2

z3
√
2z2 z

⎤
⎦

with z = e−iθ .
Since σmax(A) has multiplicity two, the denominator is not smooth at A, but it is

convex and hence regular and its subdifferential is [22]

∂β̌(A) = conv
{
uw∗ : u∗Aw = σmax(A) = √

2, ‖u‖ = ‖w‖ = 1
}

= conv

⎧⎨
⎩
⎡
⎣0 |μ|2 μν

0 μν |ν|2
0 0 0

⎤
⎦ : |μ|2 + |ν|2 = 1

⎫⎬
⎭ . (18)

Now, let D = A2 = 2e1e∗
3. Then, it follows from (16), (17) and (18) that

τ̌ ′(A; D) = 2

4
max

θ∈[0,2π)
cos(θ) = 1

2
and β̌ ′(A; D) = 2 max

|μ|2+|ν|2=1
Re(μν) = 1.

So, using (15), we find

f̌ ′(A; D) =
√
2
2 − 1

2
< 0.

A similar argument shows that f̌ ′(A;−D) = f̌ ′(A; D) < 0, so the directional deriv-
ative f̌ ′(A; ·) is not sublinear: if it were, we would arrive at the contradiction

0 > f̌ ′(A; D) + f̌ ′(A;−D) ≥ f̌ ′(A; 0) = 0.
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Hence, it follows from the discussion in Sect. 2 that f̌ is not regular at A, and so f
is not regular at (c, A). Figure 1 shows plots of β̌, τ̌ and f̌ evaluated at A + t D for
t ∈ [−2, 2].

7 Concluding remarks

If the polynomial-matrix pair (c, A) described by Eqs. (12) and (13) is indeed a
global minimizer of the Crouzeix ratio, as numerical evidence strongly suggests, then
Crouzeix’s conjecture is true. In this work we have shown, in contrast, just a local
stationarity property of (c, A): the ratio has nonnegative directional derivative in every
direction. Even in classical smooth optimization, this property does not certify a local
minimizer, let alone a global one.

However, perhaps we have somewhat understated our progress towards proving
that the pair(c, A) is at least a local minimizer. One variational analytic approach
to establishing local optimality [14, Cor. 4.13] would need three properties of the
Crouzeix ratio f at (c, A):

– prox-regularity of f [19, Def. 13.27]
– zero lying in the relative interior [19, Sec. 2.H] of the subdifferential ∂ f (c, A)

– when f is restricted to a certain “active” manifold, on which it is smooth, (c, A)

is a local minimizer.

The first two properties follow from the results established above, as we now explain.
Theorem 3 gives conditions under which the ratio f is (Clarke) regular, and Theo-

rem 4 confirms that f is regular at (c, A) given by (12) and (13). However, under
the same conditions, it follows from the representation (7) of the numerator and
the smoothness of the denominator that the ratio has the stronger property of prox-
regularity at (c, A). Indeed, it can be written locally as the sum of a continuous convex
function and a C2 smooth function [19, Thm. 10.33].

The second property follows fromour second proof of Corollary 5 and the following
observation: for any continuous map F from the unit interval into a Euclidean space,
the integral of F lies in the relative interior of the convex hull of its range. To see this,
denote the integral by x , and consider any normal vector y to the convex hull at x .
By definition, the inner product of y with F(·) − x is everywhere nonnegative, but its
integral is zero, so it must be identically zero. Hence −y is also a normal vector. The
result then follows from the definition of relative interior [18, Cor. 11.6.2].

The third propertymentioned abovewould need a second-order analysis beyond our
current scope.Nonetheless, the progresswehavepresented is a striking showcase of the
variational-analytic toolkit for investigating local optimality conditions for nonsmooth
functions, as well as a reassuring test of Crouzeix’s conjecture.
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