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GENERIC MINIMIZING BEHAVIOR
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Abstract. We present a theorem of Sard type for semialgebraic set-valued mappings whose
graphs have dimension no larger than that of their range space: the inverse of such a mapping ad-
mits a single-valued analytic localization around any pair in the graph, for a generic value parameter.
This simple result yields a transparent and unified treatment of generic properties of semialgebraic
optimization problems: “typical” semialgebraic problems have finitely many critical points, around
each of which they admit a unique “active manifold” (analogue of an active set in nonlinear opti-
mization); moreover, such critical points satisfy strict complementarity and second-order sufficient
conditions for optimality are indeed necessary.
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1. Introduction. Many problems of modern interest can broadly be phrased as
an inverse problem: given a vector ȳ in Rm find a point x̄ satisfying the inclusion

ȳ ∈ F (x̄),

where F : Rn ⇒ Rm is some set-valued mapping (a mapping taking elements of Rn

to subsets of Rm) arising from the problem at hand. In other words, we would like
to find a point x̄ such that the pair (x̄, ȳ) lies in the graph

gphF := {(x, y) : y ∈ F (x)}.

Stability analysis of such problems then revolves around understanding sensitivity of
the solution set F−1(ȳ) near x̄ to small perturbations in ȳ. An extremely desirable
property is for F to be strongly regular [47, section 3G] at a pair (x̄, ȳ) in gphF ,
meaning that the graph of the inverse F−1 coincides locally around (ȳ, x̄) with the
graph of a single-valued Lipschitz continuous mapping g : Rm → Rn. Naturally, then
vectors ȳ for which there exists a solution x̄ ∈ F−1(ȳ) so that F is not strongly
regular at (x̄, ȳ) are called weak critical values of F . We begin this work by asking
the following question of Sard type: which mappings F : Rn ⇒ Rm have “almost no”
weak critical values? Little thought shows an immediate obstruction: the size of the
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graph of F . Clearly if gphF ⊂ Rn ×Rm has dimension (in some appropriate sense)
larger than m, then no such result is possible. Hence, at the very least, we should
insist that gphF is in some sense small in the ambient space Rn ×Rm.

Luckily, set-valued mappings having small graphs are common in optimization
and variational analysis literature. Monotone operators make up a fundamental ex-
ample: a mapping F : Rn ⇒ Rn is monotone if the inequality 〈x1 − x2, y1 − y2〉 ≥ 0
holds whenever the pairs (xi, yi) lie in gphF . Minty [40] famously showed that the
graph of a maximal monotone mapping on Rn is Lipschitz homeomorphic to Rn, and
hence monotone graphs can be considered small for our purposes. This property, for
example, is fundamentally used in [44, 45]. The most important example of mono-
tone mappings in optimization is the subdifferential ∂f of a convex function f . More
generally, we may consider set-valued mappings arising from variational inequalities,

x �→ g(x) + NQ(x),

where g is locally Lipschitz continuous and NQ is the normal cone to a closed convex
subset Q of Rn. Such mappings appear naturally in perturbation theory for varia-
tional inequalities; see [47]. One can easily check that the graph of this mapping is
locally Lipschitz homeomorphic to gphNQ, and is therefore small in our understand-
ing. In particular, we may look at conic optimization problems of the form

min
x

{f(x) : G(x) ∈ K}

for a smooth function f : Rn → R, a smooth mapping G : Rn → Rm, and a closed
convex cone K in Rm. Standard first-order optimality conditions (under an appro-
priate qualification condition) amount to the variational inequality[

0
0

]
∈
[∇f(x) + ∇G(x)∗λ

−G(x)

]
+ N{0}n×K∗(x, λ),

where K∗ is the dual cone of K and the vector λ serves as a generalized Lagrange
multiplier; see [47] for a discussion. Consequently the set-valued mapping on the
right-hand side again has a small graph, being locally Lipschitz homeomorphic to its
range space.

In summary, set-valued mappings with small graphs appear often, and naturally
so, in optimization problems. Somewhat surprisingly, assuming that the graph is small
is by itself not enough to guarantee that strong regularity is typical—the conclusion
that we seek. For instance, there exists a C1-smooth convex function g : R → R so
that every number on the real line is a weakly critical value of the subdifferential
∂g. Such a function is easy to construct. Indeed, let f : R → R be a surjective,
continuous, and strictly increasing function whose derivative is zero almost everywhere
(such a function f is described in [53], for example). Observe that f is nowhere
locally Lipschitz continuous, since otherwise the fundamental theorem of calculus
would imply that that f is constant on some interval—a contradiction. On the other
hand, f is the derivative of the function h(t) :=

∫ t

0
f(r) dr. The Fenchel conjugate

h∗ : R → R is then exactly the function g that we seek. This example is interesting
in light of Mignot’s theorem [48, Theorem 9.65], which guarantees that at almost
every subgradient, the inverse of the convex subdifferential must be single valued and
differentiable, though, as we see, not necessarily locally Lipschitz continuous.

Thus, we see that even monotone variational inequalities can generically fail to
be strongly regular. Incidentally, this explains the absence of Sard’s theorem from all
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standard texts on variational inequalities (e.g., [21, 22, 41, 47, 48]), thereby deviating
from classical mathematical analysis literature where implicit function theorems go
hand in hand with Sard’s theorem.

Motivated by optimization problems typically arising in practice, we consider
semialgebraic set-valued mappings—those whose graphs can be written as a finite
union of sets each defined by finitely many polynomial inequalities. See, for exam-
ple, [30] on the role of such mappings in nonsmooth optimization. In Theorem 3.7, we
observe that any semialgebraic mapping F : Rn ⇒ Rm, whose graph has dimension
no larger than m, has almost no weak critical values (in the sense of the Lebesgue mea-
sure). Thus in the semialgebraic setting, the size of the graph is the only obstruction
to the Sard-type theorem that we seek.

Despite its simplicity, both in the statement and the proof, Theorem 3.7 leads to
a transparent and unified treatment of generic properties of semialgebraic optimiza-
tion problems, covering, in particular, polynomial optimization problems, semidefinite
programming, and copositive optimization—topics of contemporary interest. To il-
lustrate, consider the family of optimization problems

min
x

f(x) + h(G(x) + y) − vTx,

where f and h are semialgebraic functions on Rn and Rm, respectively, and G : Rn →
Rm is a C2-smooth semialgebraic mapping. Here the vectors v, y serve as perturbation
parameters. First-order optimality conditions (under an appropriate qualification
condition) then take the form of a generalized equation[

v
y

]
∈
[∇G(x)∗λ

−G(x)

]
+
(
∂f × (∂h)−1

)
(x, λ),

where the subdifferentials ∂f and ∂h are meant in the limiting sense; see, e.g., [48].
Observe that the perturbation parameters (v, y) appear in the range of the set-valued
mapping on the right-hand side. This set-valued mapping in turn, has a small graph.
Indeed, the graphs of the subdifferential mappings ∂f and ∂h always have dimension
exactly n and m, respectively [16, Theorem 3.7] (even locally around each of their
points [12, Theorem 3.8], [13, Theorem 5.13]); monotonicity or convexity are irrele-
vant here. Thus the semialgebraic Sard’s theorem applies. In turn, appealing to some
standard semialgebraic techniques, we immediately conclude, for almost all parame-
ters (v, y) ∈ Rn×Rm, the problem admits finitely many composite critical points with
each one satisfying a strict complementarity condition, a basic qualification condition
(generalizing that of Mangasarian–Fromovitz) holds, both f and h admit unique active
manifolds in the sense of [18, 35], and positivity of a second-derivative (of parabolic
type) is both necessary and sufficient for second-order growth.

This development nicely unifies and complements a number of earlier results, such
as the papers [51, 52] on generic optimality conditions in nonlinear programming, the
study of the complementarity problem [49], generic strict complementarity and non-
degeneracy in semidefinite programming [2, 50], as well as the general study of strict
complementarity in convex optimization [15, 42]. In contrast, many of our arguments
are entirely independent of the representation of the semialgebraic optimization prob-
lem at hand. It is worth noting that convexity (and even Clarke regularity) is of no
consequence for us. In particular, our results generalize and drastically simplify the
main results of [3], where convexity of the semialgebraic optimization problem plays a
key role. Though we state our results for semialgebraic problems, they all generalize
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to the “tame” setting; see [30] for the definitions. Key elements of the development
we present here were first reported in [36]. In particular Theorem 7.3 in that work
sketches the proof of generic minimizing behavior, restricted for simplicity to the case
of linear optimization over closed semialgebraic sets. Following our initial announce-
ments of this work [14, 36], some similar ideas were announced independently in [32].

The outline of the manuscript is as follows. We begin in section 2, by recording
some basic notation to be used throughout the manuscript. In section 3, we recall
some rudimentary elements of semialgebraic geometry and prove the semialgebraic
Sard theorem for weak critical values. In section 4, we establish various critical point
properties of generic semialgebraic functions, while in section 5, we refine the analysis
of the previous section for semialgebraic functions in composite form.

Our arguments are concise, depending primarily on simple stratification tech-
niques. Such techniques extend broadly, in particular to stratified Morse theory [25],
suggesting generalizations of our arguments here. We defer such exploration, confining
ourselves to the simple, concrete, and illuminating semialgebraic setting.

2. Basic notation. We begin by summarizing a few basic notions of variational
and set-valued analysis. Unless otherwise stated, we follow the terminology and nota-
tion of [47, 48]. Throughout, Rn, will denote an n-dimensional Euclidean space with
inner product 〈·, ·〉 and corresponding norm | · |. We denote by Bε(x) an open ball of
radius ε around a point x in Rn.

A set-valued mapping F from Rn to Rm, denoted F : Rn ⇒ Rm, is a mapping
taking points in Rn to subsets of Rm, with the domain and graph of F being

domF := {x ∈ Rn : F (x) 
= ∅},
gphF := {(x, y) ∈ Rn ×Rm : y ∈ F (x)}.

We say that F is finite valued, when the cardinality of the image F (x) is finite (possibly
zero) for every x ∈ Rn.

A mapping F̂ : Rn ⇒ Rm is a localization of F around (x̄, ȳ) ∈ gphF if the
graphs of F and F̂ coincide on a neighborhood of (x̄, ȳ). The following is the central
notion we explore.

Definition 2.1 (strong regularity and weak critical points). A set-valued map-
ping F : Rn ⇒ Rm is Cp-strongly regular at (x̄, ȳ) ∈ gphF if the inverse F−1 admits
a Cp-smooth single-valued localization around (ȳ, x̄).

A vector ȳ ∈ Rm is a Cp-weak critical value of F if there exists a point x̄ in the
preimage F−1(ȳ), so that F is not Cp-strongly regular at (x̄, ȳ).

Observe that ȳ being a weak critical value of F , at the very least, entails that the
preimage F−1(ȳ) is nonempty. It is instructive to comment on the terms “strong”
and “weak.” We use these to differentiate strong regularity from the weaker notion
of metric regularity [28, 47] and the corresponding criticality concept. Note that the
term “weakly critical” (with no qualifier) refers to the real-analytic version of the
definition.

A mapping F : Q → Q̃, where Q̃ is a subset of Rm, is Cp-smooth if for each point
x̄ ∈ Q, there is a neighborhood U of x̄ and a Cp-smooth mapping F̂ : Rn → Rm that
agrees with F on Q ∩ U . The symbol Cω will always mean real analytic. Smooth
manifolds will play an important role in our work; a nice reference is [33].

Definition 2.2 (smooth manifolds). A subset M ⊂ Rn, is a Cp manifold of
dimension r if for each point x̄ ∈ M, there is an open neighborhood U around x̄ and a
mapping F from Rn to an (n−r)-dimensional Euclidean space so that F is Cp-smooth
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with the derivative ∇F (x̄) having full rank and we have

M∩ U = {x ∈ U : F (x) = 0}.

In this case, the tangent space to M at x̄ is simply the set TM(x̄) := ker∇F (x̄), while
the normal space to M at x̄ is defined by NM(x̄) := range∇F (x̄)∗.

Given a C1-smooth manifold M and a mapping F that is C1-smooth on M, we
will say that F has constant rank on M if the rank of the operator ∇F̂ (x) restricted

to TM(x), with F̂ being any C1-smooth mapping agreeing with F on a neighborhood
of x in M, is the same for all x ∈ M.

3. Semialgebraic geometry and Sard’s theorem. Our current work is cast
in the setting of semialgebraic geometry. A semialgebraic set Q ⊂ Rn is a finite union
of sets of the form

{x ∈ Rn : P1(x) = 0, . . . , Pk(x) = 0, R1(x) < 0, . . . , Rl(x) < 0},

where P1, . . . , Pk and R1, . . . , Rl are polynomials in n variables. In other words, Q
is a union of finitely many sets, each defined by finitely many polynomial equalities
and inequalities. A map F : Rn ⇒ Rm is semialgebraic if gphF ⊂ Rn+m is a
semialgebraic set. For more details on semialgebraic geometry, see, for example,
[9, 55]. An important feature of semialgebraic sets is that they can be decomposed
into analytic manifolds. Imposing a very weak condition on the way the manifolds fit
together, we arrive at the following notion.

Definition 3.1 (stratification). A Cp-stratification of a semialgebraic set Q is
a finite partition of Q into disjoint semialgebraic Cp manifolds {Mi} (called strata)
with the property that for each index i, the intersection of the closure of Mi with Q
is the union of some Mj’s.

In particular, we can now define the dimension of any semialgebraic set Q.
Definition 3.2 (dimension of semialgebraic sets). The dimension of a semialge-

braic set Q ⊂ Rn is the maximal dimension of a semialgebraic C1 manifold appearing
in any C1-stratification of Q.

It turns out that the dimension of a semialgebraic set Q does not depend on any
particular stratification. It is often useful to refine stratifications. Consequently, the
following notation becomes convenient.

Definition 3.3 (compatibility). Given finite collections {Bi} and {Cj} of sub-
sets of Rn, we say that {Bi} is compatible with {Cj} if for all Bi and Cj, either
Bi ∩ Cj = ∅ or Bi ⊂ Cj.

As we have alluded to at the onset, the following is a deep existence theo-
rem for semialgebraic stratifications [55, Theorem 4.8], originating with the work
of �Lojasiewicz [38], Thom [54], and Whitney [56].

Theorem 3.4 (stratifications exist). Consider a semialgebraic set Q in Rn and
a semialgebraic map F : Q → Rm. Let A be a finite collection of semialgebraic subsets
of Q and B a finite collection of semialgebraic subsets of Rm. Then there exists a
Cω-stratification A′ of Q that is compatible with A and a Cω-stratification B′ of Rm

compatible with B such that for every stratum M ∈ A′, the restriction of F to M is
analytic and has constant rank, and the image F (M) is a stratum in B′.

Classically a set U ⊂ Rn is said to be “generic,” if it is large in some precise
mathematical sense, depending on context. Two popular choices are that of U being
full measure, meaning its complement has Lebesgue measure zero, and that of U
being topologically generic, meaning it contains a countable intersection of dense
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open sets. In general, these notions are very different. However for semialgebraic
sets, the situation simplifies drastically. Indeed, if U ⊂ Rn is a semialgebraic set,
then the following are equivalent:

• U is dense.
• U is full measure.
• U is topologically generic.
• The dimension of U c is strictly smaller than n.

Complements of such sets are said to be negligible.
The following is the basic tool that we will use. A semialgebraic finite-valued map-

ping F : Rn ⇒ Rm can be decomposed into finitely many Cω-smooth single-valued
selections that “cross” almost nowhere. This result is standard: it readily follows, for
example, from [16, Corollary 2.27]. We provide a proof sketch for completeness.

Theorem 3.5 (selections of finite-valued semialgebraic mappings). Consider a
finite-valued semialgebraic mapping G : Rn ⇒ Rm. Then there exists an integer N , a
finite collection of open semialgebraic sets {Ui}Ni=0 in Rn, and analytic semialgebraic
single-valued mappings

Gj
i : Ui → Rm for i = 0, . . . , N and j = 1, . . . , i,

satisfying,
1.

⋃
i Ui is dense in Rn;

2. for any x ∈ Ui, the image G(x) has cardinality i;
3. we have the representation

G(x) = {Gj
i (x) : j = 1, 2, . . . , i} whenever x ∈ Ui.

Proof. Since G is semialgebraic, there exists an integer N with the property
that the cardinality of the images G(x) is no greater than N [55, Theorem 4.4]. For
i = 0, . . . , k, define Ui to be the set of points x ∈ Rn so that that image G(x) has
cardinality precisely equal to i. A standard argument shows that the sets Ui are
semialgebraic. Stratifying, we replace each Ui with an open set (possibly empty) so
that the union of Ui is dense in Rn.

Fix now an index i. By [16, Corollary 2.27], there exists a dense open subset
Xi of Ui with the property that there exists a semialgebraic set Yi ⊂ Rm and a
semialgebraic homeomorphism θi : gphG

∣∣
Xi

→ Xi × Yi satisfying

θi({x} ×G(x)) = {x} × Yi for all x ∈ Xi.

Observe that for each i the set Yi has cardinality i. Enumerate the elements of Yi

by labeling Yi = {y1, . . . , yi}. Define π to be the projection π(x, y) = y and for each
j = 1, . . . , i set

Gj
i (x) = π ◦ θ−1

i (x, yj) for x ∈ Xi.

Stratifying Xi, we may replace Ui by an open dense subset on which all the mappings
Gj

i are analytic. The result follows.
In particular, this theorem is applicable for semialgebraic mappings with “small”

graphs, since such mappings are finite valued almost everywhere [16, Proposition 4.3].
This leads to the following theorem proved in [31, Theorem 14].

Theorem 3.6 (finite selections for mappings with small graphs). Suppose that
the graph of a semialgebraic set-valued mapping F : Rn ⇒ Rm has dimension no
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larger than m. Then the inverse mapping F−1 : Rm ⇒ Rn is finite valued almost
everywhere.

We now arrive at the semialgebraic Sard theorem—the main result of this section.
Theorem 3.7 (semialgebraic Sard theorem for weakly critical values). Consider

a semialgebraic set-valued mapping F : Rn ⇒ Rm satisfying dim gphF ≤ m. Then
the collection of weakly critical values of F is a negligible semialgebraic set. More pre-
cisely, there exists an integer N , a finite collection of open semialgebraic sets {Ui}Ni=0

in Rn, and analytic semialgebraic single-valued mappings

Gj
i : Ui → Rn for i = 0, . . . , N and j = 1, . . . , i,

satisfying
1.

⋃
i Ui is dense in Rm;

2. for any x ∈ Ui, the preimage F−1(x) has cardinality i;
3. we have the representation

F−1(x) = {Gj
i (x) : j = 1, 2, . . . , i} whenever x ∈ Ui.

Proof. Consider the open semialgebraic sets {Ui}Ni=0 along with the single-valued,

analytic, semialgebraic mappings Gj
i : Ui → Rn provided by Theorems 3.5 and 3.6.

Since for any y ∈ Ui, the preimage F−1(y) has cardinality i and we have F−1(y) =
{Gj

i (y) : j = 1, 2, . . . , i}, we deduce that the values Gj
i (y) for j = 1, . . . , i are all

distinct. Since the Gj
i are, in particular, continuous, we deduce that the mapping

F−1 has a single-valued analytic localization around (y, x) for every point x ∈ F−1(y).
The result follows.

We note that a Sard-type theorem for a semialgebraic set-valued mapping with
possibly large graphs, where criticality means absence of “metric regularity” [28, 47],
was proved in [29]; see also [10]. Since we will not use this concept in the current
work, we omit the details.

4. Critical points of generic semialgebraic functions. In this section, we
derive properties of critical points (appropriately defined) of semialgebraic functions
under generic linear perturbations. Throughout, we will consider functions f on Rn

taking values in the extended real line R = R ∪ {+∞}. We will always assume that
such functions are proper, meaning they are not identically equal to +∞. The domain
and epigraph of f are

dom f := {x ∈ Rn : f(x) < +∞},
epi f := {(x, r) ∈ Rn ×R : r ≥ f(x)}.

The indicator function of a set Q ⊂ Rn, denoted δQ, is defined to be zero on Q
and +∞ off it. A function f : Rn → R is lower semicontinuous (lsc) whenever the
epigraph epi f is closed. The notion of criticality we consider arises from the workhorse
of variation analysis, the subdifferential.

Definition 4.1 (subdifferentials and critical points). Consider a function f : Rn →
R and a point x̄ with f(x̄) finite.

1. The proximal subdifferential of f at x̄, denoted ∂pf(x̄), consists of all vectors
v ∈ Rn satisfying

f(x) ≥ f(x̄) + 〈v, x − x̄〉 + O(|x − x̄|2).

2. The limiting subdifferential of f at x̄, denoted ∂f(x̄), consists of all vectors
v ∈ Rn for which there exist sequences xi ∈ Rn and vi ∈ ∂pf(xi) with
(xi, f(xi), vi) converging to (x̄, f(x̄), v).
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3. The horizon subdifferential of f at x̄, denoted ∂∞f(x̄), consists of all vectors
v ∈ Rn for which there exist points xi ∈ Rn, vectors vi ∈ ∂f(xi), and real
numbers ti ↘ 0 with (xi, f(xi), tivi) converging to (x̄, f(x̄), v).

We say that x̄ is a critical point of f whenever the inclusion 0 ∈ ∂f(x̄) holds.
The subdifferentials ∂pf and ∂f generalize the notion of a gradient to the non-

smooth setting. In particular, if f is C2-smooth, then ∂P f and ∂f simply coincide
with the gradient ∇f , while if f is convex, both subdifferentials coincide with the sub-
differential of convex analysis [48, Proposition 8.12]. The horizon subdifferential ∂∞f
plays an entirely different role: it detects horizontal normals to the epigraph of f and
is instrumental in establishing calculus rules [48, Theorem 10.6]. For any set Q ⊂ Rn,
we define the proximal and limiting normal cones by the formulas Np

Q := ∂pδQ and
NQ := ∂δQ, respectively.

We will show in this section that any semialgebraic function, subject to a generic
linear perturbation, satisfies a number of desirable properties around any of its critical
points. To this end, a key result for us will be that whenever f : Rn → R is semi-
algebraic, the graphs of the two subdifferentials ∂pf and ∂f have dimension exactly
n [16, Theorem 3.7]. (This remains true even in a local sense within the subdifferen-
tial graphs [12, Theorem 3.8], [13, Theorem 5.13]). Combining this with Theorem 3.7,
we immediately deduce that generic subgradients of a semialgebraic function are not
weakly critical.

This observation, in turn, has immediate implications for minimizers of generic
semialgebraic functions, since strong regularity of the subdifferential is closely related
to quadratic growth of the function. To be more precise, recall that x̄ is a strong local
minimizer of f whenever there exists α > 0 and a neighborhood U of x̄ so that

f(x) ≥ f(x̄) +
α

2
|x− x̄|2 for each x in U.

A more stable version of this condition follows.
Definition 4.2 (stable strong local minimizers). A point x̄ is a stable strong

local minimizer1 of a function f : Rn → R if there exist α > 0 and a neighborhood U
of x̄ so that for every vector v near the origin, there is a point xv (necessarily unique)
in U , with x0 = x̄, so that in terms of the perturbed functions fv := f(·) − 〈v, ·〉, the
inequality

fv(x) ≥ fv(xv) +
α

2
|x− xv|2 holds for each x in U.

In [17, Proposition 3.1, Corollary 3.2], the authors show that strong metric regu-
larity of the subdifferential at (x, v), where x is a local minimizer of fv := f(·)−〈v, ·〉,
always implies that x is a stable strong local minimizer of fv. See also [11, 19] for
related results. Thus local minimizers of any semialgebraic function, for a generic
linear perturbation parameter, are stable strong local minimizers. Moreover, since
the subdifferentials all have dimension exactly n and dim(gph ∂f) \ (gph ∂pf) ≤ n it
is easy to see that for a generic vector v, the strict complementarity condition

v ∈ ∂f(x) =⇒ v ∈ ri ∂pf(x) holds for any x ∈ Rn.

We summarize all of these observations below.
Corollary 4.3 (basic generic properties of semialgebraic problems). Consider

an lsc, semialgebraic function f : Rn → R. Then there exists an integer N > 0 such

1This notion appears under the name of uniform quadratic growth for tilt perturbations in [5],
where it is considered in the context of optimization problems in composite form.
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that for a generic vector v ∈ Rn the function

fv(x) := f(x) − 〈v, x〉
has no more than N critical points. In turn, each such critical point x̄ satisfies the
strict complementarity condition

0 ∈ ri ∂pfv(x̄),

and if moreover x̄ is a local minimizer of fv, then x̄ is a stable strong local minimizer.
We will see that by appealing further to semialgebraic stratifications much more

is true: any semialgebraic function, up to a generic perturbation, admits a unique
“stable active set.” To introduce this notion, we briefly record some notation. To
this end, working with possibly discontinuous functions f : Rn → R, it is useful to
consider f -attentive convergence of a sequence xi to a point x̄, denoted xi −→

f
x̄. In

this notation

xi −→
f

x̄ ⇐⇒ xi → x̄ and f(xi) → f(x̄).

An f -attentive neighborhood of x̄ is any set of the form {x : (x, f(x)) ∈ U}, where
U ⊂ Rn+1 is a neighborhood of (x̄, f(x̄)). An f -attentive localization of ∂f at (x̄, v̄) is
any mapping T : Rn ⇒ Rn that coincides on an f -attentive neighborhood of x̄ with
some localization of ∂f at (x̄, v̄).

It is often useful to require a kind of uniformity of subgradients. Recall that
the subdifferential ∂f of an lsc convex function f is monotone in the sense that
〈v1 − v2, x1 − x2〉 ≥ 0 for any pairs (x1, v1) and (x2, v2) in gph ∂f . Relaxing this
property slightly leads to the following concept [43, Definition 1.1].

Definition 4.4 (prox-regularity). An lsc function f : Rn → R is called prox-
regular at x̄ for v̄, with v̄ ∈ ∂pf(x̄), if there exists a constant r > 0 and an f -attentive
localization T of ∂f around (x̄, v̄) so that T + rI is monotone.

In particular C2-smooth functions and lsc, convex functions are prox-regular at
each of their points [48, Example 13.30, Proposition 13.34].

We are now ready to state what we mean by a “stable active set.” This notion
introduced in [35], and rooted in even earlier manuscripts [1, 6, 7, 8, 20, 23, 24, 57],
extends active sets in nonlinear programming far beyond the classical setting. The
exact details of the definition will not be important for us, since we will immediately
pass to an equivalent, but more convenient for our purposes, companion concept.
Roughly speaking, a smooth manifold M is said to be “active” or “partly smooth”
for a function f whenever f varies smoothly along the manifold and sharply off it. The
parallel subspace of any nonempty set Q, denoted parQ, is the affine hull of convQ
translated to contain the origin. We also adopt the convention par ∅ = ∅.

Definition 4.5 (partial smoothness). Consider an lsc function f : Rn → R and
a Cp manifold M. Then f is Cp-partly smooth (p ≥ 2) with respect to M at x̄ ∈ M
for v̄ ∈ ∂f(x̄) if

1. (smoothness) f restricted to M is Cp-smooth on a neighborhood of x̄;
2. (prox-regularity) f is prox-regular at x̄ for v̄;
3. (sharpness) par ∂pf(x̄) = NM(x̄);
4. (continuity) there exists a neighborhood V of v̄, such that the mapping, x �→

V ∩ ∂f(x̄), when restricted to M, is inner semicontinuous at x̄.
In [18, Proposition 8.4], it was shown that the somewhat involved definition of

partial smoothness can be captured more succinctly, assuming a strict complemen-
tarity condition v̄ ∈ ri ∂pf(x̄). Indeed, the essence of partial smoothness is in the fact
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that algorithms generating iterates, along with approximate criticality certificates,
often “identify” a distinguished manifold in finitely many iterations; see the extensive
discussions in [18, 27].

Definition 4.6 (identifiable manifolds). Consider an lsc function f : Rn → R.
Then a set M ⊂ Rn is a Cp identifiable manifold of f : Rn → R at a point x̄ ∈ M
for v̄ ∈ ∂f(x̄) if the set M is a Cp manifold around x̄, the restriction of f to M is
Cp-smooth around x̄, and M has the finite identification property: for any sequences
xi −→

f
x̄ and vi → v̄ with vi ∈ ∂f(xi), the points xi must lie in M for all sufficiently

large indices i.
In [18, Proposition 8.4], the authors showed that for p ≥ 2 the two sophisticated

looking properties
1. f is Cp-partly smooth with respect to M at x̄ for v̄,
2. v̄ ∈ ri∂pf(x̄),

taken together are simply equivalent to M being a Cp identifiable manifold of f at
x̄ for v̄ ∈ ∂pf(x̄). This will be the key observation that we will use with regard to
partly smooth manifolds.

It is important to note that identifiable manifolds can fail to exist. For example,
the function f(x, y) = (|x| + |y|)2 does not admit any identifiable manifold at the
origin for the zero subgradient. On the other hand, we will see that such behavior, in
a precise mathematical sense, is rare.

Roughly speaking, existence of an identifiable manifold at a critical point opens
the door to Newton-type acceleration strategies [27, 34, 39] and moreover certifies
that sensitivity analysis of the nonsmooth problem is in essence classical [26, 37]. To
illustrate, we record two basic properties of identifiable manifolds [18, Propositions 5.9,
7.2], which we will use in section 5.

Theorem 4.7 (basic properties of identifiable manifolds). Consider an lsc func-
tion f : Rn → R and suppose that M is a C2 identifiable manifold around x̄ for
v̄ = 0 ∈ ∂pf(x̄). Then the following are equivalent:

1. x̄ is a strong local minimizer of f .
2. x̄ is a strong local minimizer of f + δM.

Moreover, equality

gph ∂f = gph∂(f + δM),

holds on an f-attentive neighborhood of (x̄, v̄).
Generic existence of identifiable manifolds for semialgebraic functions will now

be a simple consequence of stratifiability of semialgebraic sets. We note that, in
particular, it shows that convexity is superfluous for the main results of [3].

Corollary 4.8 (generic properties of semialgebraic problems). Consider an lsc,
semialgebraic function f : Rn → R. Then there exists an integer N > 0 such that for
a generic vector v ∈ Rn the function

fv(x) := f(x) − 〈v, x〉
has no more than N critical points. Moreover each such critical point x̄ satisfies the
following:

1. (prox-regularity) fv is prox-regular at x̄ for 0.
2. (strict complementarity) The inclusion 0 ∈ ri ∂pfv(x̄) holds.
3. (identifiable manifold) fv admits a Cω identifiable manifold at x̄ for 0.
4. (smooth dependence of critical points) The subdifferential ∂f is strongly reg-

ular at (x̄, v). More precisely, there exist neighborhoods U of x̄ and V of v so
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that the critical point mapping

w �→ U ∩ (∂f)−1(w) = {x ∈ U : x is critical for f(·) − 〈w, ·〉}

is single valued and analytic on V , and maps V onto M.
Moreover, if x̄ is a local minimizer of fv then x̄ is in fact a stable strong local mini-
mizer of fv.

Proof. Generic finiteness of critical points and generic strict complementarity were
already recorded in Corollary 4.3. We now tackle existence of identifiable manifolds.
To this end, by [16, Theorem 3.7], the graph of the subdifferential mapping ∂f : Rn ⇒
Rn has dimension n. Consequently, applying Theorem 3.7, we obtain a collection of
open semialgebraic sets {Ui}ki=0 of Rn, with dense union, and analytic semialgebraic
single-valued mappings

Gj
i : Ui → Rn for i = 0, . . . , k and j = 1, . . . , i

with the property that for each v ∈ Ui the set (∂f)−1(v) has cardinality i and we
have the representation

(∂f)−1(v) = {Gj
i (v) : j = 1, 2, . . . , i}.

Let B now be a stratification of dom f so that f is analytic on each stratum. Applying
Theorem 3.4 to each Gj

i , we obtain a stratification Aj
i of Ui so that Gj

i is analytic and

has constant rank on each stratum of M of Aj
i , and so that f is analytic on the images

Gj
i (M). Finding a stratification of Ui compatible with

⋃
j Aj

i , we obtain a dense open

subset Ûi of Ui so that around each point v ∈ Ûi there exists a neighborhood V of v
so that Gj

i is analytic and has constant rank on V , and so that f is analytic on the

images Gj
i (V ). Due to the constant rank condition, decreasing V further, we may be

assured that the Gj
i (V ) are all analytic manifolds. Taking into account Theorem 3.7,

we may also assume that none of the values in Ûi are weakly critical. Consequently for
each v ∈ Ûi, there exists a sufficiently small neighborhood V of v so that the analytic
manifold Gj

i (V ) coincides with (∂f)−1(V ) on a neighborhood of Gj
i (v). Hence Gj

i (V )

is an identifiable manifold at Gj
i (v) for v. Finally, appealing to Corollary 4.3, the

result follows.
Next we look more closely at second-order growth, from the perspective of second

derivatives. To this end, we record the following standard definition.
Definition 4.9 (subderivatives). Consider a function f : Rn → R and a point

x̄ with f(x̄) finite. Then the subderivative of f at x̄ is defined by

df(x̄)(ū) := liminf
t↘0
u→ū

f(x̄ + tu) − f(x̄)

t
,

while for any vector v̄ ∈ Rn, the critical cone of f at x̄ for v̄ is defined by

Cf (x̄, v̄) := {u ∈ Rn : 〈v̄, u〉 = df(x̄)(u)}.

The parabolic subderivative of f at x̄ for ū ∈ domdf(x̄) with respect to w̄ is

d2f(x̄)(ū|w̄) = liminf
t↘0
w→w̄

f(x̄ + tv̄ + 1
2 t

2w) − f(x̄) − df(x̄)(ū)
1
2 t

2
.
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Some comments are in order. The directional subderivative df(x̄)(ū) simply mea-
sures the maximal instantaneous rate of decrease of f in direction ū. Whenever f is
locally Lipschitz continuous at x̄ we may set u = ū in the definition. The critical cone
Cf (x̄, v̄) denotes the set of directions u along which the directional derivative at x̄
of the function x �→ f(x) − 〈v̄, x〉 vanishes. The parabolic subderivative d2f(x̄)(ū|w̄)
measures the second-order variation of f along points lying on a parabolic arc, and
hence the name. In particular, when f is C2 smooth at x̄, we have

d2f(x̄)(ū|w̄) = 〈∇2f(x̄)ū, ū〉 + 〈∇f(x̄), w̄〉.
These three constructions figure prominently in second-order optimality condi-

tions. Namely, if x̄ is a local minimizer of f , then df(x̄)(u) ≥ 0 for all u ∈ Rn, and
we have infw∈Rn d2f(x̄)(u|w) ≥ 0 for any nonzero u ∈ Cf (x̄, 0). On the other hand,
deviating from the classical theory, the assumption df(x̄)(u) ≥ 0 for all u ∈ Rn along
with the positivity infw∈Rn d2f(x̄)(u|w) > 0 for any nonzero u ∈ Cf (x̄, 0), guarantees
that x̄ is a strong local minimizer of f only under additional regularity assumptions
on the function f . See, for example, [5] or [48, Theorem 13.66] for more details.

We will now see that in the generic semialgebraic setup, the situation simplifies
drastically: the parabolic subderivative completely characterizes quadratic growth at
a critical point. The key to the development, not surprisingly, is the relationship
between subderivatives of a function f and the subderivatives of the restriction of f
to an identifiable manifold.

Theorem 4.10 (first-order subderivatives and identifiable manifolds). Consider
an lsc function f : Rn → R and suppose that f admits a C2 identifiable manifold M
at a point x̄ for v̄ ∈ ∂pf(x̄). Then for any u ∈ TM(x̄) we have

df(x̄)(u) = d(f + δM)(x̄)(u) = 〈v̄, u〉.
Proof. Let g : Rn → R be a C2-smooth function coinciding with f on M near x̄.

Standard subdifferential calculus implies

∂pf(x̄) ⊂ ∂p(f + δM)(x̄) = ∂p(g + δM)(x̄) = ∇g(x̄) + NM(x̄).

Moreover, one can easily verify d(g + δM)(x̄)(u) = 〈∇g(x̄), u〉 for any u ∈ TM(x̄).
Since by the chain of inclusions above v̄ lies in ∇g(x̄) + NM(x̄), we deduce

d(f + δM)(x̄)(u) = d(g + δM)(x̄)(u) = 〈∇g(x̄), u〉 = 〈v̄, u〉.
Now since identifiable manifolds are partly smooth, we have par ∂pf(x̄) = NM(x̄).
Consequently we deduce

aff∂pf(x̄) = ∇g(x̄) + NM(x̄).

In particular, for any u ∈ TM(x̄) we have the equality 〈aff ∂pf(x̄), u〉 = 〈∇g(x̄), u〉 =
〈v̄, u〉. On the other hand df(x̄) is the support function of the Fréchet subdifferen-

tial ∂̂f(x̄) (see [48, Excercise 8.4]), and since f is prox-regular at x̄ for v̄, we have

aff ∂pf(x̄) = aff ∂̂f(x̄). We conclude df(x̄)(u) = 〈v̄, u〉, as claimed.
As a direct consequence, we deduce that critical cones are simply tangent spaces

to identifiable manifolds, when the latter exist. A generalization of this also appears
in [16, Proposition 6.4].

Theorem 4.11 (critical cones and identifiable manifolds). Consider an lsc func-
tion f : Rn → R and suppose that f admits a C2 identifiable manifold M at a point
x̄ for v̄ ∈ ∂pf(x̄). Then the critical cone coincides with the tangent space

Cf (x̄, v̄) = TM(x̄).
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Proof. The inclusion Cf (x̄, v̄) ⊃ TM(x̄) is immediate from Theorem 4.10. Con-
versely, consider a vector u ∈ Cf (x̄, v̄). Since df(x̄) is the support function of the

Fréchet subdifferential ∂̂f(x̄) (see [48, Exercise 8.4]) and by prox-regularity the sub-

differentials ∂pf(x̄) and ∂̂f(x̄) coincide near v̄, we deduce that u lies in N∂pf(x̄)(v̄).
On the other hand, by Theorem 4.7, locally near v̄, we have the equality

∂pf(x̄) = ∂p(f + δM)(x̄) = ∇g(x̄) + NM(x̄),

where g is any C2-smooth function agreeing with f on M near x̄. Consequently u
lies in TM(x̄), as claimed.

Next we need to set analogues of subderivatives—first-order and second-order tan-
gent sets. These are obtained by applying the subderivative concepts to the indicator
function. More concretely we have the following.

Definition 4.12 (first-order and second-order tangent sets). Consider a set
Ω ⊂ Rn and a point x̄ ∈ Ω. Then the tangent cone to Ω at x̄ is the set

TΩ(x̄) := {u : ∃ti ↓ 0 and ui → u such that x̄ + tiui ∈ Ω},

while the critical cone of Ω at x̄ for v̄ is defined by

CΩ(x̄, v̄) := TΩ(x̄) ∩ v̄⊥.

The second-order tangent set to Ω at x̄ for ū ∈ TΩ(x̄) is the set

T 2
Ω(x̄|ū) :=

{
w : ∃ti ↓ 0 and wi → w such that x̄ + tiū +

1

2
t2iwi ∈ Ω

}
.

One can now easily verify the relationships

TΩ(x̄) = dom dδQ(x̄), CΩ(x̄, v̄) = CδΩ(x̄, v̄), T 2
Ω(x̄|ū) = dom d2δΩ(x̄)(ū|·).

Next we record an important relationship between projections and identifiable man-
ifolds [26, Theorem 3.3], [37, Proposition 4.5]. Naturally, we say that a set M is a
Cp identifiable manifold relative to a set Q at x̄ for v̄ ∈ NQ(x̄) whenever M is a Cp

identifiable manifold relative to the indicator function δQ at x̄ for v̄ ∈ ∂δQ(x̄).
Proposition 4.13 (projections and identifiability). Consider a closed set Q ⊂

Rn and suppose that M is a Cp-identifiable manifold (p ≥ 2) at x̄ for v̄ ∈ Np
Q(x̄).

Then for all sufficiently small λ > 0, the projections PQ and PM coincide on a
neighborhood of x̄ + λv̄ and are Cp−1-smooth there.

Proposition 4.14 (second-order tangents to sets with identifiable structure).
Suppose that a closed set Q ⊂ Rn admits an identifiable C3 manifold at x̄ for v̄ ∈
Np

Q(x̄). Consider a nonzero tangent ū ∈ TM(x̄) and a vector w̄ ∈ T 2
Q(x̄|ū). Then for

any real ε > 0, there exist û ∈ TM(x̄) and ŵ ∈ T 2
M(x̄|û) satisfying

|ū− û| ≤ ε and 〈v̄, ŵ〉 ≥ 〈v̄, w̄〉.

Proof. By the definition of w̄, there exist numbers ti ↓ 0 and vectors wi → w̄ so
that the points xi := x̄ + tiū + 1

2 t
2
iwi lie in Ω for each i. By Proposition 4.13, we

may choose r > 0 satisfying PQ(x̄ + rv̄) = x̄, so that PQ coincides with PM on a
neighborhood of x̄ + rv̄, and so that PQ is C2-smooth on this neighborhood. Define
now zi = PQ(xi + rv̄). Since PQ is C2-smooth on a neighborhood of x̄ + rv, we may

D
ow

nl
oa

de
d 

03
/0

7/
16

 to
 1

28
.8

4.
12

6.
52

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

526 D. DRUSVYATSKIY, A. D. IOFFE, AND A. S. LEWIS

write zi = x̄ + tiû + 1
2 t

2
i ŵi for some û ∈ TM(x̄) and some ŵi converging to a vector

ŵ ∈ T 2
M(x̄|û). It is standard that the derivative ∇PM(x̄) coincides with the linear

projection onto the tangent space TM(x̄), and hence decreasing r we may ensure
|u− û| < ε. By the definition of zi then we have the inequality

|xi − zi + rv̄| ≤ r|v̄|,
and hence

〈v̄, zi − xi〉 ≥ 1

2r
|xi − zi|2 ≥ 0.

We deduce

0 ≤
〈
v̄, ti(û − ū) +

1

2
t2i (ŵi − wi)

〉
=

1

2
t2i 〈v̄, ŵi − w̄i〉.

Dividing by 1
2 t

2
i and taking the limit the result follows.

Finally, we arrive at the key relationship between the parabolic subderivative of
a function and that of its restriction to an identifiable manifold.

Corollary 4.15 (second-order subderivatives and identifiability). Suppose that
an lsc function f : Rn → R admits an identifiable C3 manifold M at x̄ for 0 ∈ ∂pf(x̄).
Consider a nonzero vector ū ∈ TM(x̄) and a vector w̄. Then for any real ε > 0, there
exists û ∈ TM(x̄) and ŵ satisfying |ū− û| ≤ ε and

d2f(x̄)(ū|w̄) ≥ d2(f + δM)(x̄)(û|ŵ).

Proof. By [18, Proposition 3.14], the set K := gph (f + δM) is a C3 identifiable
manifold relative to epi f at (x̄, f(x̄)) for (v̄,−1). Moreover by Theorem 4.10, we have

TK(x̄) = {(u, α) : u ∈ TM(x̄) and α = df(x̄)(u)}.
Define β̄ := df(x̄)(ū). Then by [48, Example 13.62], equality

epi d2f(x̄)(ū|·) = T 2
epi f ((x̄, f(x̄))|(ū, β̄))

holds. Define r̄ := d2f(x̄)(ū|w̄). Applying Proposition 4.14, we deduce that there

exist (û, β̂) ∈ TK(x̄, f(x̄)) and (ŵ, r̂) ∈ T 2
K((x̄, f(x̄))|(û, β̂)) satisfying

|(ū, β̄) − (û, β̂)| ≤ ε and 〈(0,−1), (ŵ, r̂)〉 ≥ 〈(0,−1), (w̄, r̄)〉.

Clearly β̂ = df(x̄)(û) and r̂ = d2(f + δM)(x̄)(û|ŵ). We deduce

d2f(x̄)(ū|w̄) ≥ d2(f + δM)(x̄)(û|ŵ),

as claimed.
We now arrive at the main result of this section.
Theorem 4.16 (generic properties of semialgebraic problems). Consider an lsc,

semialgebraic function f : Rn → R. Then there exists an integer N > 0 such that for
a generic vector v ∈ Rn the function

fv(x) := f(x) − 〈v, x〉
has no more than N critical points. Moreover each such critical point x̄ satisfies the
following:
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1. (prox-regularity) fv is prox-regular at x̄ for 0.
2. (strict complementarity) The inclusion 0 ∈ ri ∂pfv(x̄) holds.
3. (identifiable manifold) fv has an identifiable manifold M at x̄ for 0.
4. (smooth dependence of critical points) The subdifferential ∂f is strongly reg-

ular at (x̄, v). More precisely, there exist neighborhoods U of x̄ and V of v so
that the critical point mapping

w �→ U ∩ (∂f)−1(w) = {x ∈ U : x is critical for f(·) − 〈w, ·〉}
is single valued and analytic on V , and maps V onto M.

Moreover the following are all equivalent:
(i) x̄ is a local minimizer of fv.

(ii) x̄ is a stable strong local minimizer of fv.
(iii) The inequality

inf
w∈Rn

d2fv(x̄)(u|w) > 0 holds for all 0 
= u ∈ Cf (x̄, v).

(iv) The inequality

inf
w∈Rn

d2(fv + δM)(x̄)(u|w) > 0 holds for all 0 
= u ∈ TM(x̄).

Proof. In light of Corollary 4.8, we must only argue the claimed equivalence of
the four properties. To this end, observe that for generic v, the equivalence (i) ⇔ (ii)
was established in Corollary 4.8. On the other hand, Theorem 4.7 shows that (ii) is
equivalent to x̄ being a strong local minimizer of fv on M, which, in turn, for classical
reasons is equivalent to (iv). Note also that the implication (iii) ⇒ (iv) is obvious
from Theorem 4.11. Thus we must only show the implication (iv) ⇒ (iii), but this
follows immediately from Corollary 4.15.

Note that property (iv) in the theorem above involves only classical analysis.

5. Composite semialgebraic optimization. In this section, we consider com-
posite optimization problems of the form

min f(x) + h(G(x)),

where f : Rn → R and h : Rm → R are lsc functions and G : Rn → R is C2-smooth.
A prime example is the case of smoothly constrained optimization; this is the case
where h is the indicator function of a closed set. We call a point x ∈ Rn composite
critical for the problem if there exists a vector

λ ∈ ∂h(G(x)) satisfying −∇G(x)∗λ ∈ ∂f(x).

Whenever the optimality condition above holds, we call λ a Lagrange multiplier vector
and the tuple (x, λ) a composite critical pair. The multiplier λ is sure to be unique
under the condition:

(5.1) par ∂h(G(x))
⋂

[∇G(x)∗]−1par ∂f(x) = {0}.

Indeed, this is a direct analogue of the linear independence constraint qualification in
nonlinear programming.

In general, the notion of composite criticality is different from criticality (as de-
fined in the previous sections) for the function f + h ◦ G. If x is a critical point of
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f + h ◦G, then x is composite critical only under some additional condition, such as
the basic constraint qualification

(5.2) ∂∞h(G(x))
⋂

[∇G(x)∗]−1∂∞f(x) = {0}.

This qualification condition is a generalization of the Mangasarian–Fromovitz con-
straint qualification in nonlinear programming and is in particular implied by (5.1);
see the discussion in [46] for more details. Conversely, if x is a composite critical
point and both f and h are subdifferentially regular [48, Definition 7.25] (as is the
case when f and h are convex), then x is also a critical point of the function f +h◦G.

In this section, we consider properties of composite critical points for generic
composite semialgebraic problems. To this end, we will assume that f , G, and h are
all semialgebraic and we will consider the canonically perturbed problems

min f(x) + h(G(x) + y) − 〈v, x〉.
Then composite criticality is succinctly captured by the generalized equation

(5.3)

[
v
y

]
∈
[∇G(x)∗λ

−G(x)

]
+
(
∂f × (∂h)−1

)
(x, λ).

The path to generic properties is now clear since the perturbation parameters (v, y)
appear in the range space of a semialgebraic set-valued mapping having a small graph.

Before we proceed, we briefly recall that subderivatives admit a convenient calcu-
lus [48, Exercise 13.63] for the composite problem. In what follows, for any C2-smooth
mapping G(x) = (g1(x), . . . , gm(x)) we use the notation

∇2G(x)[u, u] =
(〈∇2g1(x)u, u〉, . . . , 〈∇2gm(x)u, u〉).

Theorem 5.1 (calculus of subderivatives). Consider a C2-smooth mapping
G : Rn → Rm and lsc functions f : Rn → R and h : Rm → R. Suppose that a
point x satisfies the constraint qualification

∂∞h(G(x))
⋂

[∇G(x)∗]−1∂∞f(x) = {0}.

Then the equality

d(f + h ◦G)(x)(u) = df(x)(u) + dh(G(x))(∇G(x)u))

holds. Moreover for any u with d(f + h ◦G)(x)(u) finite, we have

d2(f + h ◦G)(x)(u|w) = d2f(x)(u|w) + d2h(G(x))
(
∇G(x)u

∣∣∣∇2G[u, u] + ∇G(x)w
)
.

We are now ready to prove the main result of this section. Note that if for almost
every v, a property is valid for almost every y (with the v fixed), then by Fubini’s
theorem the said property holds for almost every pair (v, y). The same holds with v
and y reversed. We will use this observation implicitly throughout.

Theorem 5.2 (generic properties of composite optimization problems). Consider
a C2-smooth semialgebraic mapping G : Rn → Rm and lsc semialgebraic functions
f : Rn → R and h : Rm → R. Define now the family of composite optimization
problems P (v, y) by

min fv(x) + h(Gy(x))
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under the perturbations fv(x) := f(x)−〈v, x〉 and Gy(x) = G(x)+y. Then for almost
every y ∈ Rm, the qualification conditions

span∂∞h(Gy(x))
⋂

[∇G(x)∗]−1span∂∞fv(x) = {0},(5.4)

par∂h(Gy(x))
⋂

[∇G(x)∗]−1par ∂fv(x) ⊆ {0},(5.5)

hold for any x for which fv(x) and h(Gy(x)) are finite. Moreover there exists an
integer N > 0 such that for a generic collection of parameters (v, y) ∈ Rn ×Rm, the
problem P (v, y) has at most N composite critical points, and for any such composite
critical point x̄ of P (v, y), there exists a unique Lagrange multiplier vector

λ̄ ∈ ∂h(Gy(x̄)) satisfying −∇G(x̄)∗λ̄ ∈ ∂fv(x̄).

Moreover, defining w̄ := −∇G(x̄)∗λ̄, the following are true.
1. (prox-regularity) fv is prox-regular at x̄ for w̄ and h is prox-regular at Gy(x̄)

for λ̄.
2. (strict complementarity) The inclusions

λ̄ ∈ ri∂ph(Gy(x̄)) and w̄ ∈ ri∂pfv(x̄) hold.

3. (identifiable manifold) fv admits a Cω identifiable manifold M at x̄ for w̄
and h admits a Cω identifiable manifold K at Gy(x̄) for λ̄.

4. (nondegeneracy) The constraint qualification (nondegeneracy condition)

NK(Gy(x̄)) ∩ [∇G(x̄)∗]−1NM(x̄) = {0} holds.

5. (smooth dependence of critical triples) The mapping

(v̂, ŷ) �→
{

(x, λ) : the pair (x, λ) is composite critical for P (v̂, ŷ)
}

admits a single-valued analytic localization around (v, y, x̄, λ̄).
Moreover the following are equivalent:

(i) x̄ is a local minimizer of P (v, y).
(ii) x̄ is a strong local minimizer of P (v, y).

(iii) The inequality

d2f(x̄)(u|z) + d2h(Gy(x̄))
(
∇G(x̄)u

∣∣∣∇2G(x̄)[u, u] + ∇G(x̄)z
)
> 0

holds for all nonzero u ∈ Cf (x̄, w̄) ∩ [∇G(x̄)]−1Ch(Gy(x̄), λ̄) and all z ∈ Rn.
(iv) The inequality

d2(f+δM)(x̄)(u|z)+d2(h+δK)
(
Gy(x̄)

)(∇G(x̄)u
∣∣∣∇2G(x̄)[u, u]+∇G(x̄)z

)
> 0

holds for all nonzero u ∈ TM(x̄) ∩ [∇G(x̄)]−1TK(Gy(x̄)) and all z ∈ Rn.
Proof. First applying [4, Lemma 8] and Theorem 3.4, we obtain a Cω stratification

{Ai} of dom f and a Cω stratification {Bj} of domh having the property that f is
Cω-smooth on each Ai and h is Cω-smooth on each Bj , and so that

∂∞f(x) ∪ par ∂f(x) ⊂ NAi(x) and ∂∞h(z) ∪ par ∂h(z) ⊂ NBj (z)
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for any x ∈ Ai and z ∈ Bj . For fixed indices i and j, the standard Sard’s theorem
implies that for almost every y ∈ Rm, the restriction of Gy to Ai is transverse to Bj ,
that is for any x ∈ Ai with Gy(x) ∈ Bj we have

NBj (Gy(x)) ∩ [∇G(x)∗]−1NAi(x) = {0}.
Since there are finitely many indices i and j, the claimed qualification conditions (5.4)
and (5.5) follow.

Define now the set-valued mapping I : Rn ×Rm ⇒ Rn ×Rm by

I(x, λ) =

[∇G(x)∗λ
−G(x)

]
+

(
∂f × (∂h)−1

)
(x, λ).

Observe (v, y) ∈ I(x, λ) if and only if (x, λ) is a composite critical pair for P (v, y).
It is easy to see, in turn, that gph I is C1 diffeomorphic to gph∂f × gph (∂h)−1,
and hence by [16, Theorem 3.7] has dimension n + m. Applying the semialgebraic
Sard’s theorem for weakly critical values (Theorem 3.7), we deduce that there exists
an integer N > 0 such that for generic parameters (v, y), the problem P (v, y) has at
most N composite critical points x. Moreover for any composite critical point x̄ of
P (v, y), the Lagrange multiplier vector λ̄ is unique for almost every (v, y) by inclusion
(5.5).

We now prove the strict complementarity claim. To this end, define the mapping

Ip(x, λ) =

[∇G(x)∗λ
−G(x)

]
+
(

ri ∂pf × (
ri ∂ph

)−1
)

(x, λ).

Clearly the inclusion gph Ip ⊂ gph I holds, and by what we have already proved both
mappings Ip and I are finite valued almost everywhere. We now claim that gph Ip is
dense in gph I. To see this, fix a pair (v, y) ∈ I(x, λ). Equivalently we may write

0 = w + ∇G(x)∗λ for some w ∈ ∂fv(x) and λ ∈ ∂h(Gy(x)).

By definition of the limiting subdifferential, there are sequences (xk, uk) → (x,w + v)
in gph (ri∂pf) and (zk, λk) → (Gy(x), λ) in gph (ri ∂ph). Defining γk := (uk−(w+v))+
(∇G(xk)∗λk −∇G(x)∗λ) and αk := zk −Gy(xk) it is easy to verify the inclusion

(v + γk, y + αk) ∈ Ip(xk, λk).

Hence gph Ip is dense in gph I. Since both I−1 and I−1
p are semialgebraic and finite

almost everywhere, it follows immediately that I−1 and I−1
p agree almost everywhere

on Rn ×Rm. This establishes the strict complementarity claim 2.
Moving on to the existence of identifiable manifolds, applying Theorem 3.7 to the

mapping Ip, we deduce that there exists an integer N , a finite collection of open semi-
algebraic sets {Ui}Ni=0 in Rn×Rm, and analytic semialgebraic single-valued mappings

Ej
i : Ui → Rn ×Rm for i = 0, . . . , N and j = 1, . . . , i

satisfying
1.

⋃
i Ui is dense in Rn ×Rm;

2. for any (v, y) ∈ Ui, the image I−1
p (v, y) has cardinality i;

3. we have the representation

I−1
p (v, y) = {Ej

i (v, y) : j = 1, 2, . . . , i} whenever (v, y) ∈ Ui.
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Let Xj
i (v, y) denote the composition of Ej

i with the projection (x, λ) �→ x and let

F j
i (v, y) := G(Xj

i (v, y)) + y. Applying Theorem 3.4 to each Xj
i and F j

i , we may find

a dense open subset Ûi of Ui so that
• f is analytic on Xj

i (Ûi) and h is analytic on F j
i (Ûi);

• Xj
i and F j

i are analytic and have constant rank on Ûi

Let (x, λ) be such that Xj
i (v, y) = x and so that (x, λ) is a composite critical

pair for P (v, y). Define also w := −∇G(x)∗λ. Then due to the constant rank, there
exists a neighborhood W of (v, y) so that Xj

i (W ) and F j
i (W ) are analytic manifolds.

We claim that Xj
i (W ) is an identifiable manifold relative to fv at x for w and that

F j
i (W ) is an identifiable manifold relative to h at Gy(x) for λ.

To see this, consider sequences (xk, wk) → (x,w) in gph ∂fv and (zk, λk) →
(Gy(x), λ) in gph ∂h. Defining γk := (wk − w) + (∇G(xk)∗λi −∇G(x)∗λ) and αk :=
zk −Gy(xk) we have the inclusion

(v + γk, y + αk) ∈ Ip(xk, λk).

Hence for all large indices k the equality

Ei
j(v + γk, y + αk) = (xk, λk)

holds. We deduce for sufficiently large k the inclusion xk ∈ Xj
i (W ). Hence Xj

i (W ) is

indeed identifiable relative to fv at x for w. Moreover, we have zk = F j
i (v+γk, y+αk)

∈ F j
i (W ) for all large k. We conclude that F j

i (W ) is identifiable relative to h at Gy(x)
for λ, as claimed. The nondegeneracy claim is a simple consequence of the construction
and the classical Sard’s theorem. Finally the four equivalent properties are immediate
from Theorems 4.16 and 5.1.

Note that Theorem 5.2 with h = 0 and G = I reduces to Theorem 4.16. It is
interesting to reinterpret Theorem 5.2 in the convex setting. To this end, recall that
for any convex function f : Rn → R, the Fenchel conjugate f∗ : Rn → R is

f∗(u) := sup
x

{〈u, x〉 − f(x)},

and the relationship ∂f∗ = (∂f)−1 holds.
Fix now a linear mapping A : Rn → Rm and lsc convex functions f : Rn → R

and h : Rm → R. Within the Fenchel framework, we consider the family of primal
optimization problems given by

inf
x

f(x) + h(Ax + y) − 〈v, x〉,

and associate with them the dual problems

sup
u

−h∗(u) − f∗(v −A∗u) + 〈y, u〉.

Then the primal problem is feasible whenever y lies in the set

Y := domh−A(dom f),

and the dual is feasible whenever v lies in

V := dom f∗ + A∗(domh∗).
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Standard Fenchel duality then asserts that for y in the interior of Y , the primal and
dual optimal values are equal and the dual is attained when finite. Assuming in
addition that v lies in the interior of V , optimality is characterized by the generalized
equation [

v
y

]
∈
[
A∗u
−Ax

]
+
(
∂f × ∂h∗

)
(x, u).

This is precisely an instance of the variational inequality (5.3) in a convex setting.
Assuming now that f and h are semialgebraic, and applying Theorem 5.2, we deduce
that for generic parameters (v, y), if the primal and dual problems are feasible then
the interiority conditions hold, and both the primal and the dual admit at most one
minimizer. Moreover for any such minimizers x and u, strict complementarity holds
for the primal and the dual, identifiable manifolds exist for both problems, both
objectives grow quadratically around x and u, respectively, and the minimizers x and
u jointly vary analytically with the parameters (v, y).

Acknowledgment. We thank an anonymous referee for pointing out potential
avenues for future work in [25].
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