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CURVES OF DESCENT∗

D. DRUSVYATSKIY† , A. D. IOFFE‡ , AND A. S. LEWIS§

Abstract. Steepest descent is central in variational mathematics. We present a new transparent
existence proof for curves of near-maximal slope—an influential notion of steepest descent in a
nonsmooth setting. The existence theory is further amplified for semialgebraic functions, prototypical
nonpathological functions in nonsmooth optimization: such functions always admit nontrivial descent
curves emanating from any (even critical) nonminimizing point. We moreover show that curves
of near-maximal slope of semialgebraic functions have a more classical description as solutions of
subgradient dynamical systems.
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1. Introduction. The intuitive notion of steepest descent plays a central role in
theory and practice. So what are steepest descent curves in an entirely nonsmooth set-
ting? To facilitate the discussion, consider “the fastest instantaneous rate of decrease”
of a function f on a complete metric space (X , d), namely, the slope

|∇f |(x̄) := limsup
x→x̄
x �=x̄

(f(x̄) − f(x))+

d(x̄, x)
.

Here, we use the convention r+ := max{0, r}. The slope of a smooth function on Rn

simply coincides with the norm of the gradient, and hence the notation. For more
details on slope see, for example, [16]. Even though the definition is deceptively simple,
slope plays a decisive role in regularity theory and sensitivity analysis; see [3, 19].

One can readily verify for any 1-Lipschitz curve γ : (a, b) → X the upper bound
on the speed of descent:

(1.1) |∇(f ◦ γ)|(t) ≤ |∇f |(γ(t)) for a.e. t ∈ (a, b).

Supposing that f is continuous (for technical reasons), it is then natural to call γ
a steepest descent curve if f ◦ γ is nonincreasing and the reverse inequality holds in
(1.1). Such curves, up to a reparametrization and an integrability condition, are the
curves of maximal slope studied in [1, 15, 17, 28]. Evidently, the slope is not a lower-
semicontinuous function (lsc) of its argument and hence is highly unstable. Replacing
the slope |∇f | with its lower-semicontinuous envelope in the reverse inequality of (1.1)
defines near-steepest descent curves. See Definition 2.13 for a more precise statement.
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The question concerning existence of near-steepest descent curves is at the core
of the subject. Roughly speaking, there are two strategies in the literature for con-
structing such curves for a function f . The first one revolves around minimizing
f on an increasing sequence of balls around a point until the radius hits a certain
threshold; then one moves the center to the next iterate and repeats the procedure.
Passing to the limit as the thresholds tend to zero, under suitable conditions and a
reparametrization, yields a near-steepest descent curve [28, section 4]. The second
approach is based on De Georgi’s minimizing movements [15], having origins in the
work of Yosida, Brézis, and Moreau (see, for example, [9] and references therein).
There, one builds a piecewise constant curve by declaring the next iterate to be a
minimizer of the function f plus a scaling of the squared distance from the previous
iterate [1, Chapter 2]. The analysis, in both cases, is highly nontrivial and more-
over does not give an intuitive meaning to the parametrization of the curve used in
the construction. We note in passing that there is yet another approach based on
the techniques of differential inclusions [2]. This approach, however, requires strong
conditions (Lipschitzness and convexity-like properties) on f and anyway does not
extend to the metric setting. We will comment further on the relationship between
near-steepest descent curves and differential inclusions shortly.

In the current work, we propose an alternate transparent strategy for construct-
ing near-steepest descent curves. The key idea of our construction is to discretize
the range of f and then build a piecewise linear curve by “projecting” iterates onto
successive sublevel sets. Passing to the limit as the mesh of the partition tends to
zero, under reasonable conditions and a reparametrization, yields a near-steepest de-
scent curve. Moreover, the parametrization of the curve used in the construction is
entirely intuitive: the values of the function parametrize the curve. From a tech-
nical viewpoint, this type of a parametrization opens the door to the deep theory
of metric regularity [19, 31], yielding a simple and geometrically transparent proof.
This construction allows us to further amplify the existence theory for semialgebraic
functions—those functions on Rn whose epigraph can be written as a finite union
of sets, each defined by finitely many polynomial inequalities [13, 34]. We prove
that semialgebraic functions always admit near-steepest descent curves bypassing all
nonminimizing critical points—a result that is decisively false even for C∞-smooth
functions (see Example 3.4). It is worthwhile, in passing, to compare our construction
with De Georgi’s minimizing movements. The latter, being an implicit Euler scheme,
generates iterates that are also obtained through a projection, but implicitly so, in
contrast to our construction, where we explicitly choose onto which sublevel sets to
project. This seemingly minor distinction is key.

The question concerning when solutions of subgradient dynamical systems and
curves of near-maximal slope are one and the same has been studied as well. However,
a major standing assumption that has so far been needed to establish positive answers
in this direction is that the slope of the function f is itself an lsc function [1, 28]
and hence it coincides with the limiting slope—an assumption that many common
functions of nonsmooth optimization (e.g., f(x) = min{x, 0}) do not satisfy. In the
current work, we study this question in absence of such a continuity condition and
show that for semialgebraic functions that are locally Lipschitz continuous on their
domains, solutions of subgradient dynamical systems are one and the same as curves of
near-maximal slope. Moreover, using an argument based on the Kurdyka–�Lojasiewicz
inequality (K�L-inequality), in the spirit of [6, 7, 21, 24], we show that bounded curves
of near-maximal slope for semialgebraic functions have finite length. Consequently,
such curves defined on maximal domains converge to critical points.
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Rather than striving for maximal generality, we have tried to make the basic ideas
and techniques as clear as possible. In particular, all results pertaining to semialge-
braic functions remain true more generally for definable (e.g., globally subanalytic)
and tame functions; see [21, 34, 35] for the relevant definitions. The outline of the
manuscript is as follows. Section 2 is a short self-contained treatment of variational
analysis in metric spaces. In this section, we emphasize that the slope provides a
very precise way of quantifying error bounds (Lemma 2.5). In section 3 we prove
that curves of near-steepest descent exist under reasonable conditions. In section 4
we consider the relationship between curves of near-steepest descent and solutions
to subgradient dynamical systems in Euclidean spaces. Most of the results in this
section are not new; rather, our purpose is to paint a more complete picture and to
set the groundwork for section 5, where we consider descent curves for semialgebraic
functions.

2. Preliminaries: Variational analysis in metric spaces. Throughout this
section, we will let (X , d) be a complete metric space. We stress that completeness
of the metric space will be essential throughout. Consider the extended real line
R := R∪{−∞}∪{+∞}. We will always assume that extended-real-valued functions
are proper, meaning they are never {−∞} and are not always {+∞}. For a function
f : X → R, the domain of f is

dom f := {x ∈ X : f(x) < +∞},

and the epigraph of f is

epi f := {(x, r) ∈ X ×R : r ≥ f(x)}.

A function f : X → R is lsc at x̄ if the inequality liminfx→x̄ f(x) ≥ f(x̄) holds. For a
set Q ⊂ X and a point x ∈ X , the distance of x from Q is

d(x,Q) := inf
y∈Q

d(x, y),

and the metric projection of x onto Q is

PQ(x) := {y ∈ Q : d(x, y) = d(x,Q)}.

2.1. Slope and error bounds. A fundamental notion in local variational anal-
ysis is that of slope—the “fastest instantaneous rate of decrease” of a function. For
more details about slope and its relevance to the theory of metric regularity, see [3,19].

Definition 2.1 (slope). Consider a function f : X → R and a point x̄ ∈ X with
f(x̄) finite. The slope of f at x̄ is

|∇f |(x̄) := limsup
x→x̄
x �=x̄

(f(x̄) − f(x))+

d(x̄, x)
.

The limiting slope is

|∇f |(x̄) := liminf
x−→

f
x̄
|∇f |(x),

where the convergence x −→
f
x̄ means (x, f(x)) → (x̄, f(x̄)).
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The two slopes can easily differ. For example, for the function of one variable
f(x) = min{0, x}, we clearly have |∇f |(0) = 1, while on the other hand |∇f |(0) = 0.

Slope allows us to define generalized critical points.
Definition 2.2 (lower-critical points). Consider a function f : Rn → R. We

will call any point x̄ satisfying |∇f |(x̄) = 0 a lower-critical point of f .
For C1-smooth functions f on a Hilbert space, both |∇f |(x̄) and |∇f |(x̄) simply

coincide with the norm of the gradient of f at x̄, and hence the notation. In particular,
lower-critical points of such functions are critical points in the classical sense

Proposition 2.3 (slope of a composition). Consider an lsc function f : [a, b] →
R and a nondecreasing continuous function s : [c, d] → [a, b]. Suppose that s is differ-
entiable at a point t ∈ (c, d) with s′(t) �= 0. Then the equality

|∇(f ◦ s)|(t) = |∇f |(s(t)) · |s′(t)| holds.

Proof. First, since s is nondecreasing and continuous and satisfies s′(t) �= 0, we
deduce that s is locally open near t. Taking this into account, we deduce the chain of
equalities

|∇(f ◦ s)|(t) = limsup
τ→t

(f(s(t)) − f(s(τ)))+

|t− τ |
= limsup

τ→t

(f(s(t)) − f(s(τ)))+

|s(t) − s(τ)| · |s(t) − s(τ)|
|t− τ | = |∇f |(s(t)) · |s′(t)|,

thereby establishing the claimed result.
We record below the celebrated Ekeland’s variational principle.
Theorem 2.4 (Ekeland’s variational principle). Consider an lsc function g : X →

R that is bounded from below. Suppose that for some ε > 0 and x ∈ Rn, we have
g(x) ≤ inf g + ε. Then for any ρ > 0, there exists a point ū satisfying

• g(ū) ≤ g(x),
• d(ū, x) ≤ ρ−1ε, and
• g(u) + ρ d(u, ū) > g(ū) for all u ∈ X \ {ū}.

The following consequence of Ekeland’s variational principle will play a crucial
role in our work [19, Basic Lemma, Chapter 1]. We provide a proof for completeness.

Lemma 2.5 (error bound). Consider an lsc function f : X → R. Assume that
for some point x ∈ dom f , there are constants α < f(x) and r,K > 0 so that the
implication

α < f(u) ≤ f(x) and d(u, x) ≤ K =⇒ |∇f |(u) ≥ r holds.

If in addition the inequality f(x) − α < Kr is valid, then the sublevel set [f ≤ α] is
nonempty and we have the estimate d(x, [f ≤ α]) ≤ r−1(f(x) − α).

Proof. Define an lsc function g : X → R by setting g(u) := (f(u)−α)+, and choose
a real number ρ < r satisfying f(x)−α < Kρ. By Ekeland’s principle (Theorem 2.4),
there exists a point ū satisfying

g(ū) ≤ g(x), d(ū, x) ≤ ρ−1g(x) ≤ K

and

g(u) + ρ d(u, ū) ≥ g(ū) for all u.

Consequently we obtain the inequality |∇g|(ū) ≤ ρ. On the other hand, a simple
computation shows that this can happen only provided g(ū) = 0, for otherwise we



118 D. DRUSVYATSKIY, A. D. IOFFE, AND A. S. LEWIS

would have |∇g|(ū) = |∇f |(ū) ≥ r. Hence ū lies in the level set [f ≤ α], and we
obtain the estimate d(x, [f ≤ α]) ≤ ρ−1(f(x) − α). The result now follows by taking
ρ arbitrarily close to (and still smaller than) r.

2.2. Absolute continuity and the metric derivative. In this section, we
adhere closely to the notation and the development in [1].

Definition 2.6 (absolutely continuous curves). Consider a curve γ : (a, b) → X .
We will say that γ is absolutely continuous, denoted γ ∈ AC(a, b,X ), provided that
there exists an integrable function m : (a, b) → R satisfying

(2.1) d(γ(s), γ(t)) ≤
∫ t

s

m(τ) dτ whenever a < s ≤ t < b.

Every curve γ ∈ AC(a, b,X ) is uniformly continuous. Moreover, the right and
left limits of γ, denoted respectively by γ(a) and γ(b), exist. There is a canonical
choice for the integrand appearing in the definition of absolute continuity, namely,
the “metric derivative.”

Definition 2.7 (metric derivative). For any curve γ : [a, b] → X and any t ∈
(a, b), the quantity

‖γ̇(t)‖ := lim
s→t

d(γ(s), γ(t))

|s− t| ,

if it exists, is the metric derivative of γ at t. If this limit does exist at t, then we will
say that γ is metrically differentiable at t.

Some comments concerning our notation are in order, since it deviates slightly
from that used in the standard monograph on the subject [1]. The notation ‖γ̇(t)‖
is natural, since whenever γ is a differentiable curve into a Hilbert space, the metric
derivative is simply the norm of its derivative. This abuse of notation should not
cause confusion in what follows.

For any curve γ ∈ AC(a, b,X ), the metric derivative exists almost everywhere
on (a, b). Moreover the function t �→ ‖γ̇(t)‖ is integrable on (a, b) and is an admis-
sible integrand in inequality (2.1). In fact, as far as such integrands are concerned,
the metric derivative is in a sense minimal. Namely, for any admissible integrand
m : (a, b) → R for the right-hand side of (2.1), the inequality

‖γ̇(t)‖ ≤ m(t) holds for a.e. t ∈ (a, b).

See [1, Theorem 1.1.2] for more details. We can now define the length of any absolutely
continuous curve γ ∈ AC(a, b,X ) by the formula

length (γ) :=

∫ b

a

‖γ̇(τ)‖ dτ.

We adopt the following convention with respect to curve reparametrizations.
Definition 2.8 (curve reparametrization). Consider a curve γ : [a, b] → X .

Then any curve ω : [c, d] → X is a reparametrization of γ whenever there exists a
nondecreasing absolutely continuous function s : [c, d] → [a, b] with s(c) = a, s(d) = b,
and satisfying ω = γ ◦ s.

Absolutely continuous curves can always be parametrized by arclength. See, for
example, [1, Lemma 1.1.4] or [10, Proposition 2.5.9].

Theorem 2.9 (arclength parametrization). Consider an absolutely continuous
curve γ ∈ AC(a, b,X ), and denote its length by L = length (γ). Then there exists a
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nondecreasing absolutely continuous map s : [a, b] → [0, L] with s(a) = 0 and s(b) = L
and a 1-Lipschitz curve v : [0, L] → X satisfying

γ = v ◦ s and ‖v̇‖ = 1 a.e. in [0, L].

Proposition 2.10 (metric derivative of a composition). Consider a curve
γ : [0, L] → X and a continuous function s : [a, b] → [0, L]. Consider a point t ∈ (a, b),
so that s is differentiable at t and γ is metrically differentiable at s(t). Then the curve
γ ◦ s is metrically differentiable at t with metric derivative ‖γ̇(s(t))‖ · |s′(t)|.

Proof. Observe that for any sequence of points ti → t with ti �= t and s(ti) = s(t)
for each index i, we have

lim
i→∞

d(γ(s(ti)), γ(s(t)))

|ti − t| = ‖γ̇(s(t))‖ · |s′(t)|.

On the other hand, for any sequence ti → t with ti �= t and s(ti) �= s(t) for each index
i, we have

lim
i→∞

d(γ(s(ti)), γ(s(t)))

|ti − t| = lim
i→∞

d(γ(s(ti)), γ(s(t)))

|s(ti) − s(t)| · |s(ti) − s(t)|
|ti − t| = ‖γ̇(s(t))‖ · |s′(t)|.

The result follows.
The following is a Sard type theorem for real-valued functions of one variable.

See, for example, [36, Fundamental Lemma].
Theorem 2.11 (Sard theorem for functions of one variable). For any function

s : [a, b] → R, the set

{t ∈ R : ∃τ ∈ s−1(t) with s′(τ) = 0}
is Lebesgue null.

The following theorem provides a convenient way of determining when strictly
monotone, continuous functions are absolutely continuous [25].

Theorem 2.12 (inverses of absolutely continuous functions). Consider a contin-
uous, strictly increasing function s : [a, b] → R. Then the inverse s−1 : [s(a), s(b)] →
[a, b] is absolutely continuous if and only if the set

E := {t ∈ [a, b] : s′(t) = 0}
has Lebesgue measure zero.

2.3. Steepest descent curves. In this section we consider steepest descent
curves in a purely metric setting. To this end, consider an lsc function f : X → R and
a 1-Lipschitz continuous curve γ : [a, b] → X . There are two intuitive requirements
that we would like γ to satisfy in order to be called a steepest descent curve:

1. The composition f ◦ γ is nonincreasing on a full-measure subset of [a, b].
2. The instantaneous rate of decrease of f◦γ is almost always as great as possible.

To elaborate on the latter requirement, suppose that the composition f ◦ γ is indeed
nonincreasing on a full-measure subset of [a, b]. Then there exists a nonincreasing
function φ : [a, b] → R coinciding almost everywhere with f ◦ γ. Note that in partic-
ular, whenever f ◦ γ is continuous, we may simply take φ := f ◦ γ. Now taking into
account that γ is 1-Lipschitz continuous and that monotone functions are differen-
tiable a.e., one can readily verify

(2.2) |φ′(t)| ≤ |∇f |(γ(t)) for a.e. t ∈ [a, b].
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Requiring the reverse inequality to hold amounts to forcing the curve to achieve
fastest instantaneous rate of decrease. The discussion above motivates the following
definition.

Definition 2.13 (near-steepest descent curves). Consider an lsc function f : X →
R. Then a 1-Lipschitz curve γ : [a, b] → X is a steepest descent curve if f ◦γ coincides
a.e. with some nonincreasing function φ : [a, b] → X and the inequality

|φ′(t)| ≥ |∇f |(γ(t)) holds a.e. on [a, b].

If instead the weaker inequality

|φ′(t)| ≥ |∇f |(γ(t)) holds a.e. on [a, b],

then we will say that γ is a near-steepest descent curve.
Remark 2.14. It is easy to see that the defining inequalities of steepest and

near-steepest descent curves are independent of the particular function φ : [a, b] → X .
Namely, if those inequalities hold for some nondecreasing function agreeing a.e. with
f ◦ γ, then they hold for any other function agreeing a.e with f ◦ γ.

In principle, near-steepest descent curves may fall short of achieving true “steepest
descent” since the analogue of inequality (2.2) for the limiting slope may fail to hold in
general. Our work, however, will revolve around near-steepest descent curves since the
limiting slope is a much better behaved object, and anyway this is common practice
in the literature (see, for example, [1, 17, 28]). The following example illustrates the
difference between the two notions.

Example 2.15 (steepest descent versus near-steepest descent). Consider the func-
tion f : R2 → R defined by f(x, y) := −x + min(y, 0). Then the curve x(t) = (t, 0)
is a near-steepest descent curve but is not a steepest descent curve, as one can easily
verify.

It is often convenient to reparametrize near-steepest descent curves so that their
speed is given by the limiting slope. This motivates the following companion notion;
related concepts appear in [1, section 1.3], [14, 28].

Definition 2.16 (curve of near-maximal slope). Consider an lsc function f : X →
R. A curve γ : [a, b] → X is a curve of near-maximal slope if the following conditions
hold:

(a) γ is absolutely continuous,
(b) ‖γ̇(t)‖ = |∇f |(γ(t)) a.e. on [a, b],
(c) f ◦ γ coincides a.e. with some nonincreasing function φ : [a, b] → X with

φ′(t) ≤ −(|∇f |(γ(t))
)2

a.e. on [a, b].

The following proposition shows that, as alluded to above, near-steepest descent
curves and curves of near-maximal slope are the same up to reparametrization, pro-
vided that a minor integrability condition is satisfied.

Proposition 2.17 (curves of near-steepest descent and near-maximal slope).
Let f : X → R be an lsc function.

Consider a near-steepest descent curve γ : [a, b] → X satisfying ‖γ̇(t)‖ = 1 a.e. on
[a, b]. If (|∇f | ◦ γ)−1 is integrable, then there exists a reparametrization of γ that is a
curve of near-maximal slope.

Conversely, consider a curve of near-maximal slope γ : [a, b] → X , having finite
length. Then there exists a reparametrization of γ that is a near-steepest descent curve
satisfying ‖γ̇(t)‖ = 1 a.e. on [a, b].
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Proof. To see the validity of the first claim, let η :=
∫ b

a
1

|∇f |(γ(r)) dr and define

the function s : [a, b] → [0, η] by setting

s(t) :=

∫ t

a

1

|∇f |(γ(r))
dr.

Then s is a strictly increasing, absolutely continuous function. Moreover, by Theo-
rem 2.12, the inverse s−1 : [0, η] → [a, b] is absolutely continuous as well. Define now
the function ω : [0, η] → [a, b] by setting ω(τ) := γ(s−1(τ)). Clearly ω is absolutely
continuous, and using Propositions 2.10 and 2.3 we immediately deduce that ω is a
curve of near-maximal slope. The converse claim follows by similar means.

Our focus in the current work is on existence of curves of near-steepest descent.
As a byproduct of our arguments, the curves that we construct will in addition have
certain regularity properties. To facilitate the exposition, we introduce the following
notation.

Definition 2.18 (reliable descent). Given a function f : Rn → R, we will say
that there exists reliable descent from a point x̄ ∈ dom f if there exists a near-steepest
descent curve γ : [0, L] → X , for some L > 0, emanating from x̄ such that on a
full-measure subset of [0, L], the curve γ is moving at unit speed, the slope |∇f |(γ) is
finite, and f ◦γ is strictly decreasing. Such a near-steepest descent curve will be called
a reliable descent curve.

3. Existence of descent curves. In this section, we provide a natural and
transparent existence proof for near-steepest descent curves in complete locally convex
metric spaces. We begin with a few relevant definitions, adhering closely to the
notation of [23].

Definition 3.1 (metric segments). A subset S of a metric space X is a metric
segment between two points x and y in X if there exists a closed interval [a, b] and an
isometry ω : [a, b] → X satisfying ω([a, b]) = S, ω(a) = x, and ω(b) = y.

Definition 3.2 (convex metric spaces). We will say that X is a convex metric
space if for any distinct points x, y ∈ X there exists a metric segment between them.
We will call X a locally convex metric space if each point in X admits a neighborhood
that is a convex metric space in the induced metric.

Some notable examples of locally convex metric spaces are complete Riemannian
manifolds and, more generally, length spaces that are complete and locally compact
(see the Hopf–Rinow theorem). For more examples, we refer the reader to [18].

We now introduce the following very weak continuity condition, which has been
essential in the study of descent curves in metric spaces; see, e.g., [1, Theorem 2.3.1].

Definition 3.3 (continuity on slope-bounded sets). Consider a function f : X →
R. We will say that f is continuous on slope-bounded sets provided that for any point
x̄ ∈ dom f we have the implication

xi → x̄ with sup
i∈N

{|∇f |(xi), f(xi)} <∞ =⇒ f(xi) → f(x̄).

We now arrive at the main result of this section. To make the reading easier,
some comments are in order. To this end, consider a function f : X → R and a point
x̄. If the point x̄ is lower-critical for f , then the constant curve x(t) ≡ x̄ is trivially a
near-steepest descent curve. On the other hand, if x̄ is not a local minimizer, we can
hope for nontrivial near-steepest descent curves emanating from x̄. The situation is
interesting even when f is a C∞-smooth function on Rn. One special case stands out.
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If f is a Morse function at x̄, that is, the Hessian ∇2f(x̄) is nonsingular, then it is easy
to see that nontrivial steepest descent curves do exist. Indeed, due to the celebrated
Morse lemma one can obtain nontrivial descent by following (in the local coordinate
system) an eigenvector corresponding to a negative eigenvalue of the Hessian ∇2f(x̄).
For general C∞-smooth functions, possibly having a degenerate Hessian at the point
of criticality, the answer is decisively false!

Example 3.4 (nontrivial descent curves of smooth functions may fail to exist).

Consider the function f : R → R defined by f(x) := e−
1

|x| sin( 1
|x|). It is easy to see

that f is C∞-smooth and that it does not admit any nontrivial near-steepest descent
curve emanating from x̄ = 0, even though x̄ is not a local minimizer.

The following theorem shows that a nontrivial near-steepest descent curve ema-
nating from x̄ will exist provided that x̄ is not a local minimizer of f and that the
slope |∇f | is uniformly bounded away from zero on the set U ∩ [f < f(x̄)], where U is
some neighborhood of x̄. Clearly the latter condition holds in the case |∇f |(x̄) > 0.
The seemingly slight generality we obtain, on the other hand, will pay important
dividends in subsection 5.2 in connection with the K�L-inequality.

We should note that in the following theorem we will suppose tough compactness
assumptions relative to the metric topology. As is now standard, such compactness as-
sumptions can be sidestepped by instead introducing weaker topologies [1, section 2.1].
On the other hand, following this route would take us far afield and would lead to
technical details that may obscure the main proof ideas for the reader. Hence we do
not dwell on this issue further. We have, however, designed our proof so as to make
such an extension as easy as possible for interested readers.

Theorem 3.5 (existence of near-steepest descent curves). Consider an lsc func-
tion f : X → R on a complete locally convex metric space X , along with a point
x̄ ∈ dom f which is not a local minimizer of f . Suppose that the following are true:

1. f is continuous on slope-bounded sets and bounded closed subsets of sublevel
sets of f are compact.

2. There exists a neighborhood U of x̄ so that the slope |∇f | is uniformly bounded
away from zero on the set U ∩ [f < f(x̄)].

Then there exists reliable descent from x̄.
Proof. First, by restricting attention to a sufficiently small neighborhood of x̄ we

can clearly assume that X is a convex metric space. Using property 2 and lsc of f ,
we deduce that there exist constants α < f(x̄) and r, R > 0, so that the implication

α < f(u) < f(x̄) and d(u, x̄) < R =⇒ |∇f |(u) ≥ r

holds for any point u ∈ X . Define η := f(x̄)−α and C > 0 to be slightly smaller than
R. Increasing α we may enforce the inequality η < rC. Let 0 = τ0 < τ1 < · · · < τk = η
be a partition of [0, η] into k equal parts. We will adopt the notation

λ :=
τi+1 − τi

η
, αi = f(x̄) − τi, Li := [f ≤ αi].

With this partition, we will associate a certain curve uk(τ) for τ ∈ [0, η], naturally
obtained by concatenating metric segments between points xi, xi+1 lying on consec-
utive sublevel sets. See Figure 1 for an illustration. For notational convenience, we
will often suppress the index k in uk(τ). The construction is as follows. Set x0 := x̄
and let x1 be any point of L1 satisfying d(x̄, L1) ≤ d(x1, x̄) + 1

k . Observe that since
x̄ is not a local minimizer of f , the point x1 is well-defined for all sufficiently large
indices k. We will assume throughout the proof that k is chosen sufficiently large for
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Fig. 1. f(x, y) = max{x+ y, |x− y|}+ x(x+ 1) + y(y + 1) + 100.

this to be the case. We will now inductively define xj+1. It is important, however,
to keep in mind that the point x1 is rather exceptional, since we assume nothing
about the slope of f exactly at x̄. Nevertheless, define ρ := d(x0, x1) and observe that
since x̄ is not a local minimizer of f , the distance ρ tends to zero monotonically as
k tends to infinity. We will assume throughout that k is sufficiently large to ensure
ρ < C − r−1η, C + ρ < R, and ρ < (1 − λ)C.

We now proceed with the inductive definition of xj+1. To this end, suppose that
we have defined points xi for i = 1, . . . , j. Consider the quantity

rj := inf {|∇f |(y) : αj+1 < f(y) ≤ f(xj), d(y, xj) < λC}
and let xj+1 be any point satisfying

xj+1 ∈ Lj+1 and d(xj+1, xj) ≤ r−1
j (f(xj) − αj+1)+.

(In our setting, due to the compactness of bounded closed subsets of sublevel sets of
f , we may simply define xj+1 to be any closest point of Lj+1 to xj .)

Claim 3.6 (well-definedness). For all indices i = 1, . . . , k, the points xi are
well-defined and satisfy

(3.1) d(xi+1, xi) ≤ r−1
i (τi+1 − τi)

and

(3.2) ri ≥ r, d(xi, x̄) ≤ r−1τi + ρ.

Proof. The proof proceeds by induction. First, observe that due to our choice
of how large to make k, the point x1 is well-defined and inequalities (3.2) hold for
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i = 1. Proceeding to the inductive step, suppose that the points xi are well-defined for
indices i = 1, . . . , j, the inequalities (3.2) are valid for i = 1, . . . , j, and the inequality
(3.1) is valid for indices i satisfying 1 ≤ i ≤ j − 1.

Observe if the inequality f(xj) ≤ αj+1 were true, then we may set xj+1 := xj
and the inductive step would be true trivially. Hence suppose otherwise. We claim
that the conditions of Lemma 2.5 are satisfied with x = xj , α = αj+1, K = λC, and
with rj in place of r.

To this end, we show the following:
• f(xj) − αj+1 ≤ λrjC;
• αj+1 < f(y) ≤ f(xj) and d(y, xj) ≤ λC =⇒ |∇f |(y) ≥ rj .

Observe

f(xj) − (f(x̄) − τj+1) ≤ τj+1 − τj ≤ (τj+1 − τj)
rC

η
= λrC ≤ λrjC,

which is the first of the desired relations. The second relation follows immediately
from the definition of rj .

Applying Lemma 2.5, we conclude that the point xj+1 is well-defined and the
inequality d(xj+1, xj) ≤ r−1

j (f(xj) − αj+1)+ ≤ r−1
j (τj+1 − τj) holds. Consequently,

we obtain

d(xj+1, x̄) ≤ d(xj+1, xj) + d(xj , x̄) ≤ r−1
j (τj+1 − τj) + r−1τj + ρ ≤ r−1τj+1 + ρ.

Finally we claim that the inequality rj+1 ≥ r holds. To see this, consider a point
y satisfying f(x̄) − τj+2 < f(y) ≤ f(xj+1) and d(y, xj+1) < λC. Taking (3.2) into
account, along with the inequality r−1 ≤ C/η, we obtain

d(y, x̄) ≤ d(y, xj+1) + d(xj+1, x̄) ≤ τj+2 − τj+1

η
C +

τj+1

r
+ ρ <

τj+2

η
C + ρ < R.

Combining this with the obvious inequality f(x̄) > f(y) > f(x̄) − η, we deduce
|∇f |(y) ≥ r and consequently rj+1 ≥ r. This completes the induction.

For each index i = 0, . . . , k − 1, let ωi : [0, d(xi, xi+1)] → X be the isometry
parameterizing the metric segment between xi and xi+1. For reasons which will
become apparent momentarily, we now rescale the domain of ωi by instead declaring

ωi : [τi, τi+1] → X to be ωi(t) = ωi

(d(xi+1, xi)

τi+1 − τi
(t− τi)

)
.

Observe now that for any index i = 1, . . . , k − 1 and any s, t ∈ [τi, τi+1] with s < t,
we have

(3.3) d(ωi(t), ωi(s)) =
d(xi+1, xi)

τi+1 − τi
(t− s) ≤ r−1

i (t− s).

It follows that all the curves ωi, for i = 1, . . . , k − 1, are Lipschitz continuous with
a uniform modulus r−1. We may now define a curve uk : [0, η] → X by simply con-
catenating the domains of ωi for each index i = 0, . . . , k − 1. Each such curve uk is
Lipschitz continuous on [ρk, η] with modulus r−1 and the sequence of curves {uk} is
uniformly bounded. Moreover, since f is lsc and bounded subsets of sublevel sets of
f are compact, one can readily verify that the sequence {uk} is pointwise relatively
compact. The well-known theorem of Arzelà and Ascoli [22, section 7] then guaran-
tees that a certain subsequence of uk, which we continue to denote by uk, converges
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uniformly on compact subsets of (0, η] to some mapping x : (0, η] → X . We can then
clearly extend the domain of x to the closed interval [0, η] by declaring x(0) := x̄. It
follows that x : [0, η] → X is Lipschitz continuous with modulus r−1.

Observe that the metric derivative functions ‖u̇k(·)‖ are bounded in L2(a, η) for
any a ∈ (0, η). It follows that, up to a subsequence, the mappings ‖u̇k(·)‖ converge
weakly in L2(0, η) to some integrable mapping m : [0, η] → R satisfying

(3.4) d(x(s), x(t)) ≤
∫ t

s

m(τ) dτ whenever 0 < s ≤ t < η.

For what follows now, define the set of breakpoints

E :=
⋃
k∈N

⋃
i∈N∩[0,k]

{ iλk
η

}

and observe that it has zero measure in [0, η]. In addition, let D be the full-measure
subset of (0, η) on which all the curves uk and x admit a metric derivative.

Claim 3.7. For almost every τ ∈ [0, η] with ‖ẋ(τ)‖ �= 0, the following are true:
• f(x(τ)) = f(x̄) − τ ,
• ‖ẋ(τ)‖ ≤ 1

|∇f |(x(τ)) .

Proof. Fix a real τ ∈ D \ E with ‖ẋ(τ)‖ �= 0. Then using (3.3) we deduce that
for sufficiently large k, we have

(3.5) ‖u̇k(τ)‖ ≤ 1

r
(k)
ik

for some ik ∈ {0, . . . , k}, where the superscript (k) refers to partition of the interval
[0, η] into k equal pieces. Noting that weak convergence does not increase the norm
and using minimality of the metric derivative, we deduce

(3.6) liminf
k→∞

‖u̇k(τ)‖ ≥ m(τ) ≥ ‖ẋ(τ)‖ for a.e. τ ∈ [0, η].

Consequently there exists a subsequence of ‖u̇k(τ)‖, which we continue to denote by
‖u̇k(τ)‖, satisfying limk→∞ ‖u̇k(τ)‖ �= 0. Taking into account (3.5), we deduce that

r
(k)
ik

remain bounded. We may then choose points x
(k)
ik

, yk, and reals λk, τ
(k)
ik

with

τ ∈ (τ
(k)
ik
, τ

(k)
ik+1) satisfying

d(yk, x
(k)
ik

) < λkC, f(x̄) − τ
(k)
ik+1 < f(yk) ≤ f(x

(k)
ik

), x
(k)
ik

→ x(τ), τ
(k)
ik

→ τ,

and |∇f |(yk) ≤ r
(k)
ik

+ 1
k . Then since f is continuous on slope-bounded sets and the

quantity f(x
(k)
ik

) − (f(x̄) − τ
(k)
ik+1) tends to zero, we deduce

f(x(τ)) = lim
k→∞

f(yk) = lim
k→∞

f(x̄) − τ
(k)
ik+1 = f(x̄) − τ,

as claimed. Moreover

liminf
k→∞

r
(k)
ik

≥ liminf
k→∞

{
|∇f |(yk) − 1

k

}
≥ |∇f |(x(τ)).

Combining this with (3.6) and taking the limit in (3.5), we obtain

‖ẋ(τ)‖ ≤ 1

|∇f |(x(τ))
,

as claimed.
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Define now a strictly decreasing function φ : [0, η] → R by the formula φ(τ) =
f(x̄) − τ . In particular, it follows from Claim 3.7 that φ coincides with f ◦ x almost
everywhere on the set {τ ∈ (0, η) : ‖ẋ(τ)‖ �= 0}. Moreover, for almost every τ ∈ (0, η)
the implication

‖ẋ(τ)‖ �= 0 =⇒ |∇f |(x(τ)) <∞ and |φ′(τ)| ≥ |∇f |(x(τ)) · ‖ẋ(τ)‖
holds.

Now in light of Theorem 2.9, there exists a nondecreasing absolutely continuous
map s : [a, b] → [0, L] with s(a) = 0 and s(b) = L and a 1-Lipschitz curve γ : [0, L] → X
satisfying

x(τ) = (γ ◦ s)(τ) and ‖γ̇(t)‖ = 1 for a.e. t ∈ [0, L].

Define also the nondecreasing function τ : [0, L] → [0, η] by setting

τ(t) := min{τ : s(τ) = t},
and observe the equality (s ◦ τ)(t) = t. Define now the nonincreasing function
ψ : [0, L] → [0, η] by setting ψ(t) := φ(τ(t)).

It is easy to check that if s is differentiable at τ(t) with s′(τ(t)) �= 0, the function
τ(·) is continuous at t, and γ is metrically differentiable at t with ‖γ̇(t)‖ = 1, then we
have

‖ẋ(τ(t))‖ = s′(τ(t)) and τ ′(t) =
1

s′(τ(t))
,

and consequently

|∇f |(γ(t)) = |∇f |(x(τ(t))) ≤ |φ′(τ(t))| · 1

s′(τ(t))
= |ψ′(t)|.

It easily follows (in part using Theorem 2.11) that the collection of such real numbers
t has full measure in [0, L] and that ψ and f ◦γ coincide a.e. on [0, L]. This completes
the proof.

Remark 3.8 (strict descent under continuity). It is easy to see that if the function
f of Theorem 3.5 is continuous on its domain, then the near-steepest descent curve
γ constructed in that theorem has the property that the composition f ◦ γ is strictly
decreasing.

The following is now an easy consequence.
Corollary 3.9 (existence of curves of near-maximal slope). Consider an lsc

function f : X → R on a complete locally convex metric space X and a point x̄ ∈ X ,
with f finite at x̄. Suppose that f is continuous on slope-bounded sets and that bounded
closed subsets of sublevel sets of f are compact. Then there exists a curve of near-
maximal slope γ : [0, T ] → X , for some T > 0, starting at x̄.

Proof. If x̄ is a lower-critical point of f , then the constant curve x(t) ≡ x̄ is a curve
of near-maximal slope. Hence we may suppose that x̄ is not a lower-critical point of
f . The result is now immediate from Proposition 2.17 and Theorem 3.5.

Remark 3.10 (steepest descent versus near-steepest descent). In Example 2.15
we illustrated a near-steepest descent curve that fails to be a steepest descent curve.
On the other hand, the construction used in Theorem 3.5 would not produce such a
curve. This leads us to conjecture that our construction would always yield a true
steepest descent curve at least when applied to semialgebraic functions. This class of
functions is the focal point of section 5.
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4. Descent curves and subgradient dynamical systems. In this section,
we compare curves of near maximal slope to a more classical idea—solutions of sub-
gradient dynamical systems. To do so we recall a notion of a generalized gradient,
which in principle makes sense in Hilbert spaces. However, for the sake of simplicity
we stay within the setting of Euclidean spaces throughout the section. Some of the
arguments presented are not new. Rather we include them to paint a more complete
picture for the reader. Moreover, this section will set up some of the groundwork and
motivation for parts of section 5, which in contrast are entirely new.

4.1. Some elements of variational analysis. In this section, we summarize
some of the fundamental tools used in variational analysis and nonsmooth optimiza-
tion. We refer the reader to the monographs of Borwein and Zhu [8], Clarke et al. [11],
Mordukhovich [29], Penot [30], and Rockafellar and Wets [32], and to the survey of
Ioffe [19], for more details. Unless otherwise stated, we follow the terminology and
notation of [19] and [32].

Throughout this section, we will consider a real Euclidean space Rn with inner
product 〈·, ·〉. The symbol ‖·‖ will denote the corresponding norm on Rn. Henceforth,
the symbol o(‖x− x̄‖) will denote a term with the property

o(‖x− x̄‖)

‖x− x̄‖ → 0 when x→ x̄ with x �= x̄.

The symbols clQ, convQ, coneQ, and affQ will denote the topological closure, the
convex hull, the (nonconvex) conical hull, and the affine span of Q, respectively.
The symbol parQ will denote the parallel subspace of Q, namely, the set parQ :=
affQ − affQ. An open ball of radius ε around a point x̄ will be denoted by Bε(x̄),
while the open unit ball will be denoted by B. A primary variational-analytic method
for studying nonsmooth functions on Rn is by means of subdifferentials.

Definition 4.1 (subdifferentials). Consider a function f : Rn → R and a point
x̄ with f(x̄) finite.

1. The Fréchet subdifferential of f at x̄, denoted ∂̂f(x̄), consists of all vectors
v ∈ Rn satisfying

f(x) ≥ f(x̄) + 〈v, x − x̄〉 + o(‖x− x̄‖).

2. The limiting subdifferential of f at x̄, denoted ∂f(x̄), consists of all vec-

tors v ∈ Rn for which there exist sequences xi ∈ Rn and vi ∈ ∂̂f(xi) with
(xi, f(xi), vi) converging to (x̄, f(x̄), v).

3. The horizon subdifferential of f at x̄, denoted ∂∞f(x̄), consists of all vectors
v ∈ Rn for which there exists a sequence of real numbers τi ↓ 0 and a sequence
of points xi ∈ Rn, along with subgradients vi ∈ ∂̂f(xi), so that (xi, f(xi), τivi)
converge to (x̄, f(x̄), v).

4. The Clarke subdifferential of f at x̄, denoted ∂cf(x̄), is obtained by the con-
vexification

∂cf(x̄) := cl co [∂f(x̄) + ∂∞f(x̄)].

We say that f is subdifferentiable at x̄ whenever ∂f(x̄) is nonempty (equivalently,
when ∂cf(x̄) is nonempty).

In particular, every locally Lipschitz continuous function is subdifferentiable. For
x̄ such that f(x̄) is not finite, we follow the convention that ∂̂f(x̄) = ∂f(x̄) =
∂∞f(x̄) = ∂cf(x̄) = ∅.
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The subdifferentials ∂̂f(x̄), ∂f(x̄), and ∂cf(x̄) generalize the classical notion of
gradient. In particular, for C1-smooth functions f on Rn, these three subdifferentials
consist only of the gradient ∇f(x) for each x ∈ Rn. For convex f , these subdiffer-
entials coincide with the convex subdifferential. The horizon subdifferential ∂∞f(x̄)
plays an entirely different role; namely, it detects horizontal “normals” to the epi-
graph. In particular, an lsc function f : Rn → R is locally Lipschitz continuous
around x̄ if and only if we have ∂∞f(x̄) = {0}.

For a set Q ⊂ Rn, we define the indicator function of Q, denoted δQ, to be zero
on Q and plus infinity elsewhere. The geometric counterparts of subdifferentials are
normal cones.

Definition 4.2 (normal cones). Consider a set Q ⊂ Rn. Then the Fréchet,
limiting, and Clarke normal cones to Q at any point x̄ ∈ Rn are defined by N̂Q(x̄) :=

∂̂δ(x̄), NQ(x̄) := ∂δ(x̄), and N c
Q(x̄) := ∂cδ(x̄), respectively.

A particularly nice situation occurs when all the normal cones coincide.
Definition 4.3 (Clarke regularity of sets). A set Q ⊂ Rn is said to be Clarke

regular at a point x̄ ∈ Q if it is locally closed at x̄ and every limiting normal vector
to Q at x̄ is a Fréchet normal vector, that is, the equation NQ(x̄) = N̂Q(x̄) holds.

The functional version of Clarke regularity is as follows.
Definition 4.4 (subdifferential regularity). A function f : Rn → R is called

subdifferentially regular at x̄ if f(x̄) is finite and epi f is Clarke regular at (x̄, f(x̄))
as a subset of Rn ×R.

In particular, if f : Rn → R is subdifferentially regular at a point x̄ ∈ dom f ,
then equality ∂̂f(x̄) = ∂f(x̄) holds [32, Corollary 8.11]. Shortly, we will need the
following result describing normals to sublevel sets [32, Proposition 10.3]. We provide
an independent proof for completeness and ease of reference in future work. The
reader may safely skip it upon first reading.

Proposition 4.5 (normals to sublevel sets). Consider an lsc function f : Rn →
R and a point x̄ ∈ Rn with 0 /∈ ∂f(x̄). Then the inclusion

N[f≤f(x̄)](x̄) ⊂ (cone ∂f(x̄)) ∪ ∂∞f(x̄) holds.

Proof. Define the real number ᾱ := f(x̄) and the sets Lᾱ := {(x, α) : α ≤ ᾱ} and

Qᾱ := (epi f)
⋂

Lᾱ = {(x, α) : f(x) ≤ α ≤ ᾱ}.

We first show the implication

(4.1) (x∗, 0) ∈ NQᾱ(x̄, ᾱ) =⇒ x∗ ∈ (cone∂f(x̄))
⋃
∂∞f(x̄).

Indeed, consider a vector (x∗, 0) ∈ NQᾱ(x̄, ᾱ). Then fuzzy calculus [19, Chapter 2.1]

implies that there are sequences (x1k, α1k) ∈ epi f , (x∗1k, β1k) ∈ N̂epi f (x1k, α1k),

(x2k, α2k) ∈ Lᾱ, and (x∗2k, β2k) ∈ N̂Lᾱ(x2k, α2k) satisfying

(x1k, α1k) → (x̄, ᾱ), (x2k, α2k) → (x̄, ᾱ), x∗1k + x∗2k → x∗, β1k + β2k → 0.

Observe x∗2k = 0 and hence x∗1k → x∗. Furthermore, by the nature of epigraphs
we have β1k ≤ 0. If up to a subsequence we had β1k = 0, then (4.1) would follow
immediately. Consequently, we may suppose that the inequality β1k < 0 is valid.
Then we have |β1k|−1x∗1k ∈ ∂̂f(x1k). Since the norms of x∗1k are uniformly bounded
and we have 0 /∈ ∂f(x̄), the sequence β1k must be bounded. Consequently we may
assume that β1k converges to some β and (4.1) follows.
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Now consider a vector u∗ ∈ N̂[f≤ᾱ](u) for some u ∈ [f ≤ ᾱ]. Consequently the
inequality 〈u∗, h〉 ≤ o(‖h‖) holds whenever h satisfies f(u+h) ≤ ᾱ. The latter in turn
implies (u∗, 0) ∈ N̂Qᾱ(u, ᾱ). Together with (4.1), taking limits of Fréchet subgradients
and applying (4.1) completes the proof.

The following result, which follows from the proofs of [19, Propositions 1 and 2,
Chapter 3], establishes an elegant relationship between the slope and subdifferentials.

Proposition 4.6 (slope and subdifferentials). Consider an lsc function f : Rn →
R and a point x̄ ∈ Rn with f(x̄) finite. Then we have |∇f |(x̄) ≤ d(0, ∂̂f(x̄)), and
furthermore equality

|∇f |(x̄) = d(0, ∂f(x̄)) holds.

In particular, the two conditions |∇f |(x̄) = 0 and 0 ∈ ∂f(x̄) are equivalent.

Proof. The inequality |∇f |(x̄) ≤ d(0, ∂̂f(x̄)) is immediate from the definition of
the Fréchet subdifferential. Now define m = |∇f |(x̄). One may easily check that if
m is infinite, then the subdifferential ∂f(x̄) is empty, and therefore the result holds
trivially. Consequently we may suppose that m is finite.

Fix an arbitrary ε > 0, and let x be a point satisfying

‖x− x̄‖ < ε, |f(x) − f(x̄)| < ε, and |∇f |(x) < m+ ε.

Define the function g(u) := f(u) + (m+ ε)‖u− x‖. Observe that for all u sufficiently
close to x, we have g(u) ≥ f(x). We deduce (see, e.g., [32, Exercise 10.10])

0 ∈ ∂g(x) ⊂ ∂f(x) + (m+ ε)B.

Hence we obtain the inequality m+ε ≥ d(0, ∂f(x)). Letting ε tend to zero, we deduce
m ≥ d(0, ∂f(x̄)).

To see the reverse inequality, consider a vector v̄ ∈ ∂f(x̄) achieving d(0, ∂f(x̄)).

Then there exist sequences of points xi and vectors vi ∈ ∂̂f(xi) with (xi, f(xi), vi) →
(x̄, f(x̄), v̄). Observe that for each index i, we have ‖vi‖ ≥ |∇f |(xi). Letting i tend
to infinity, the result follows.

In particular, if f is subdifferentially regular at x̄, then the slope and the limiting
slope are one and the same, that is, the equation |∇f |(x̄) = |∇f |(x̄) holds. We
conclude this subsection with the following standard result of linear algebra.

Lemma 4.7 (result in linear algebra). Consider a subspace V of Rn. Then for
any vector b ∈ Rn, the equations

PV (b) = (b+ V ⊥) ∩ V = argmin
z∈b+V ⊥

‖z‖ hold.

Proof. Observe b = PV (b) + PV ⊥(b), and consequently the inclusion

PV (b) ∈ (b+ V ⊥) ∩ V holds.

The reverse inclusion follows from the trivial computation

z ∈ (b+ V ⊥) ∩ V =⇒ z − PV (b) ∈ V ∩ V ⊥ =⇒ z = PV (b).

Now observe that first order optimality conditions imply that the unique mini-
mizer z̄ of the problem

min
z∈b+V ⊥

‖z‖2

is characterized by the inclusion z̄ ∈ (b+V ⊥)∩ V , and hence the result follows.
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4.2. Main results. In this section, we consider curves of near-maximal slope in
Euclidean spaces. In this context, it is interesting to compare such curves to solutions
x : [0, η] → Rn of subgradient dynamical systems

ẋ(t) ∈ −∂f(x(t)) for a.e. t ∈ [0, η].

It turns out that the same construction as in the proof of Theorem 3.5 shows that
there exist near-steepest descent curves x so that essentially, up to rescaling, the
vector ẋ(t) lies in −∂f(x(t)) for a.e. t ∈ [0, η].

Theorem 4.8 (existence of near-steepest descent curves II). Consider an lsc
function f : Rn → R, along with a point x̄ in the domain of f . Suppose that f is
continuous on slope bounded sets. Then there exist L > 0 and a curve of near-maximal
slope x : [0, L] → X emanating from x̄ and satisfying

ẋ(t) ∈ −cl cone ∂cf(x(t)) for a.e. t ∈ [0, L].

Proof. We can clearly assume that zero is not a subgradient of f at x̄. We now
specialize the construction of Theorem 3.5 to the Euclidean setting. Namely, let uk
be defined as in that theorem, except in this case define uk(0) = x̄, and inductively
define uk(τi+1) to be any point belonging to the projection of uk(τi) onto the lower
level set [f ≤ f(x̄) − τi+1], provided that this set is nonempty. In particular, up to
a subsequence, uk converge uniformly on compact subsets to a Lipschitz continuous
curve x.

Observe that in light of Proposition 4.5, for any index k and any τ ∈ [τi, τi+1] (for
i = 1, . . . , k) we have u̇k(τ) ∈ −(cone ∂f(uk(τi+1))) ∪ ∂∞f(uk(τi+1)). Furthermore,
recall that restricting to a subsequence we may suppose that u̇k converges weakly to
ẋ(τ) in L2(0, η). Mazur’s lemma then implies that a sequence of convex combinations

of the form
∑N(k)

n=k α
k
nu̇n converges strongly to ẋ as k tends to ∞. Since convergence in

L2(0, η) implies almost everywhere pointwise convergence, we deduce that for almost
every τ ∈ [0, η], we have ∥∥∥∥∥∥

N(k)∑
n=k

αk
nu̇n(τ) − ẋ(τ)

∥∥∥∥∥∥ → 0.

Therefore if the inclusion

ẋ(τ) ∈ −cl conv
[(

cone ∂f(x(τ))
) ∪ ∂∞f(x(τ))

]

did not hold, then we would deduce that there exists a subsequence of vectors u̇kl
nl

(τ)

with liml→∞ u̇kl
nl

(τ) not lying in the set on the right-hand side of the inclusion above.
This immediately yields a contradiction. After the reparametrization performed in
the proof of Theorem 3.5, the curve γ is subdifferentiable almost everywhere on [0, L]
and consequently satisfies

γ̇(t) ∈ −cl cone ∂cf(γ(t)) for a.e. t ∈ [0, L],

as we needed to show.
The above theorem motivates the question of when curves of near-maximal slope

and solutions of subgradient dynamical systems are one and the same, that is, when
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the rescaling of the gradient ẋ in the previous theorem is not needed. The following
property turns out to be crucial.

Definition 4.9 (chain rule). Consider an lsc function f : Rn → R. We say
that |∇f | admits a chain rule if for every curve x ∈ AC(a, b,Rn) for which the
composition f ◦ x is nonincreasing and f is subdifferentiable almost everywhere along
x, the equation

(f ◦ x)′(t) = 〈∂f(x(t)), ẋ(t)〉 holds for a.e. t ∈ (a, b).

The following simple proposition shows that whenever |∇f | admits a chain rule,
solutions to subgradient dynamical systems and curves of near-maximal slope coincide.

Proposition 4.10 (subgradient systems and curves of near-maximal slope).
Consider an lsc function f : Rn → R and suppose that |∇f | admits a chain rule.
Then for any curve x ∈ AC(a, b,Rn) the following are equivalent:

1. x is a curve of near-maximal slope.
2. f ◦ x is nonincreasing and we have

(4.2) ẋ(t) ∈ −∂f(x(t)) a.e. on [a, b].

3. f ◦ x is nonincreasing and we have

(4.3) ẋ(t) ∈ −∂f(x(t)) and ‖ẋ(t)‖ = d(0, ∂f(x(t))) a.e. on [a, b].

Proof. We first prove the implication 1 ⇒ 3. To this end, suppose that x is a
curve of near-maximal slope. Then clearly f ◦ x is nonincreasing and we have

〈∂f(x(t)), ẋ(t)〉 = (f ◦ x)′(t) ≤ −(|∇f |(x(t))
)2

a.e. on [a, b].

Let v(t) ∈ ∂f(x(t)) be a vector of minimal norm. Then we have

〈∂f(x(t)), ẋ(t)〉 ≥ −‖v(t)‖ · ‖ẋ(t)‖ = −(|∇f |(x(t))
)2

with equality if and only if ẋ(t) and v(t) are collinear. We deduce ẋ(t) = −v(t), as
claimed.

The implication 3 ⇒ 2 is trivial. Hence we focus now on 2 ⇒ 1. To this end
suppose that 2 holds and observe

(4.4) 〈∂f(x(t)), ẋ(t)〉 = −‖ẋ(t)‖2 for a.e. t ∈ (a, b).

Given such t consider the affine subspaces

V = par ∂f(x(t)).

Then we have

aff ∂f(x(t)) = −ẋ(t) + V.

We claim now that the inclusion ẋ(t) ∈ V ⊥ holds. To see this, observe that for any
real λi and for vectors vi ∈ ∂f(x(t)), we have〈

ẋ(t),

k∑
i=1

λi(vi + ẋ(t))

〉
=

k∑
i=1

λi
[〈ẋ(t), vi〉 + ‖ẋ(t)‖2] = 0,
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where the latter equality follows from (4.4). Hence the inclusion

−ẋ(t) ∈ (−ẋ(t) + V ) ∩ V ⊥

holds. Consequently, using Lemma 4.7, we deduce that −ẋ(t) achieves the distance
of the affine space, aff ∂f(x(t)), to the origin. On the other hand, the inclusion
−ẋ(t) ∈ ∂f(x(t)) holds, and hence −ẋ(t) actually achieves the distance of ∂f(x(t))
to the origin. The result follows.

In light of the theorem above, it is interesting to understand for which functions
f the slope |∇f | admits a chain rule. Subdifferentially regular (in particular, all lsc
convex) functions furnish a simple example. The convex case can be found in [9,
Lemma 3.3, p. 73] (chain rule).

Lemma 4.11 (chain rule under subdifferential regularity). Consider a subdiffer-
entially regular function f : Rn → R. Then |∇f | admits a chain rule.

Proof. Consider a curve x : (a, b) → Rn. Suppose that for some real t ∈ (a, b)
both x and f ◦ x are differentiable at t and ∂f(x(t)) is nonempty. We then deduce

d(f ◦ x)

dt
(t) = lim

ε↓0
f(x(t+ ε)) − f(x(t))

ε

≥ 〈v, ẋ(t)〉 for any v ∈ ∂̂f(x(t).

Similarly we have

d(f ◦ x)

dt
(t) = lim

ε↓0
f(x(t− ε)) − f(x(t))

−ε
≤ 〈v, ẋ(t)〉 for any v ∈ ∂̂f(x(t)).

Hence the equation

d(f ◦ x)

dt
(t) = 〈∂̂f(x(t))ẋ(t)〉 holds,

and the result follows.
Subdifferentially regular functions are very special, however. In particular, many

nonpathological functions such as −‖ · ‖ are not subdifferentially regular. So it is nat-
ural to consider prototypical nonpathological functions appearing often in practice—
those that are semialgebraic. This is the focus of the following section.

5. Near-steepest descent curves of semialgebraic functions. A semialge-
braic set S ⊂ Rn is a finite union of sets of the form

{x ∈ Rn : P1(x) = 0, . . . , Pk(x) = 0, J1(x) < 0, . . . , Jl(x) < 0},

where P1, . . . , Pk and J1, . . . , Jl are polynomials in n variables. In other words, S is a
union of finitely many sets, each defined by finitely many polynomial equalities and
inequalities. A function f : Rn → R is semialgebraic if epi f ⊂ Rn+1 is a semialgebraic
set. For an extensive discussion on semialgebraic geometry, see the monographs of
Basu, Pollack, and Roy [4], van den Dries [35], and Shiota [33]. For a quick survey, see
the article of van den Dries and Miller [34] and the surveys of Coste [12, 13]. Unless
otherwise stated, we follow the notation of [13] and [34].



CURVES OF DESCENT 133

5.1. Semialgebraic descent and subgradient dynamical systems. The
main goal of this subsection is to establish an equivalence between curves of near-
maximal slope and solution of subgradient dynamical systems for lsc semialgebraic
functions that are locally Lipschitz continuous on their domains. To this end, we
analyze the chain rule for the slope in the context of semialgebraic functions. Before
we proceed, we need to recall the notion of tangent cones.

Definition 5.1 (tangent cone). Consider a set Q ⊂ Rn and a point x̄ ∈ Q.
Then the tangent cone to Q at x̄ is simply the set

TQ(x̄) :=
{

lim
i→∞

λi(xi − x̄) : λi ↑ ∞ and xi → x̄ in Q
}
.

We now record the following simple lemma, whose importance in the context of
semialgebraic geometry will become apparent shortly. We omit the proof since it is
rather standard.

Lemma 5.2 (generic tangency). Consider a set M ⊂ Rn and a path x : [0, η] →
Rn that is differentiable almost everywhere on [0, η]. Then for almost every t ∈ [0, η],
the implication

x(t) ∈M =⇒ ẋ(t) ∈ TM (x(t)) holds.

The following is a key property of semialgebraic functions that we will exploit [5,
Proposition 4].

Theorem 5.3 (projection formula). Consider an lsc semialgebraic function
f : Rn → R. Then there exists a partition of dom f into finitely many C1-manifolds
{Mi} so that f restricted to each manifold Mi is C1-smooth. Moreover for any point
x lying in a manifold Mi, the inclusion

∂cf(x) ⊂ ∇g(x) +NMi(x) holds,

where g : Rn → R is any C1-smooth function agreeing with f on a neighborhood of x
in Mi.

Corollary 5.4 (semialgebraic chain rule for the slope). Consider an lsc semi-
algebraic function f : Rn → R that is locally Lipschitz continuous on its domain.
Consider also a curve γ ∈ AC(a, b,Rn) whose image is contained in the domain of f .
Then equality

(f ◦ γ)′(t) = 〈∂f(γ(t)), ẋ(t)〉 = 〈∂cf(γ(t)), ẋ(t)〉

holds for almost every t ∈ [a, b]. In particular, the slope |∇f | admits a chain rule.
Proof. Consider the partition of dom f into finitely many C1-manifolds {Mi},

guaranteed to exist by Theorem 5.3. We first record some preliminary observations.
Clearly both x and f ◦ x are differentiable at a.e. t ∈ (0, T ). Furthermore, in light of
Lemma 5.2, for any index i and for a.e. t ∈ (0, η) the implication

x(t) ∈Mi =⇒ ẋ(t) ∈ TMi(x(t)) holds.

Now suppose that for such t, the point x(t) lies in a manifold Mi and let g : Rn → R be
a C1-smooth function agreeing with f on a neighborhood of x(t) in Mi. Lipschitzness
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of f on its domain then easily implies

d(f ◦ x)

dt
(t) = lim

ε↓0
f(x(t+ ε)) − f(x(t))

ε

= lim
ε↓0

f(PMi(x(t+ ε))) − f(x(t))

ε

= lim
ε↓0

g(PMi(x(t+ ε))) − g(x(t))

ε

=
d

dt
g ◦ PMi ◦ x(t) = 〈∇g(x(t)), ẋ(t)〉

= 〈∇g(x(t)) +NMi(x(t)), ẋ(t)〉.

The result follows.
A noteworthy point about the corollary above is the appearance of the Clarke

subdifferential in the chain rule. As a result, we can even strengthen Proposition 4.10
in the context of lsc semialgebraic functions f : Rn → R that are locally Lipschitz
continuous on their domains. The proof is analogous to that of Proposition 4.10.

Proposition 5.5 (semialgebraic equivalence). Consider an lsc semialgebraic
function f : Rn → R that is locally Lipschitz continuous on its domain. Then for any
curve x ∈ AC(a, b,Rn) the following are equivalent:

1. x is a curve of near-maximal slope.
2. f ◦ x is nonincreasing and we have

ẋ ∈ −∂f(x) a.e. on [a, b].

3. f ◦ x is nonincreasing and we have

ẋ ∈ −∂f(x), ‖ẋ‖ = d(0, ∂f(x)), and ‖ẋ‖ = d(0, ∂cf(x)) a.e. on [a, b].

5.2. Semialgebraic descent: Existence, length, and convergence. In this
subsection, we will be interested in existence of near-steepest descent curves emanating
from nonminimizing points. This question was already addressed in Theorem 3.5
under a seemingly stringent condition, which will now come into focus. To this end,
we first observe that the pathological function f in Example 3.4 is not analytic, and
this is no accident. We will see shortly that analytic (and semi-algebraic) functions
f : Rn → R do admit nontrivial near-steepest descent curves emanating from any
point x̄ that is not a local minimizer. The key to our development is the K�L-inequality
[5, 7, 24], generalizing the �Lojasiewicz inequality for analytic functions [26, 27].

Definition 5.6 (K�L-inequality).

• A function f : Rn → R is said to satisfy the upper K�L-inequality if for
any bounded open set U ⊂ Rn and any real τ , there exists ρ > 0 and a
nonnegative continuous function ψ : [τ, τ + ρ) → R, which is C1-smooth and
strictly increasing on (τ, τ + ρ), and such that the inequality

|∇(ψ ◦ f)|(x) ≥ 1

holds for all x ∈ U with τ < f(x) < τ + ρ.
• A function f : Rn → R is said to satisfy the lower K�L-inequality if for any

bounded open set U ⊂ Rn and any real τ , there exists ρ > 0 and a nonnega-
tive continuous function ψ : (τ − ρ, τ ] → R, which is C1-smooth and strictly
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increasing on (τ − ρ, τ), and such that the inequality

|∇(ψ ◦ f)|(x) ≥ 1

holds for all x ∈ U with τ − ρ < f(x) < τ .
In particular, all analytic and all semialgebraic functions satisfy both the upper

and lower K�L-inequalities [5, Theorem 14]. The following existence result is now
immediate.

Theorem 5.7 (K�L-inequality and existence of near-steepest descent curves).
Consider an lsc function f : Rn → R satisfying the lower K�L-inequality, along with
a point x̄ ∈ dom f that is not a local minimizer of f . Suppose moreover that f is
continuous on slope-bounded sets. Then there exists reliable descent from x̄.

Proof. Let U be any bounded open neighborhood of x̄. Since f satisfies the lower
K�L-inequality, we deduce that there exists a real ρ > 0 and a nonnegative continuous
function ψ : (f(x̄) − ρ, f(x̄)] → R, which is C1-smooth and strictly increasing on
(f(x̄) − ρ, f(x̄)), and such that the inequality

|∇(ψ ◦ f)|(x) ≥ 1

holds for all x ∈ U with f(x̄) − ρ < f(x) < f(x̄). Since f is lsc, there exists ε > 0 so
that for each x ∈ Bε(x̄) we have f(x) > f(x̄) − ρ. Define a function h : Rn → R by
setting h(x) = (ψ ◦ f)(x) + δBε(x̄)

(x) + δ[f≤f(x̄)](x). Theorem 3.5 then immediately

implies that there exists a reliable descent curve γ : [0, L] → Rn emanating from x̄
By decreasing L, we may assume without loss of generality that the image of γ

is contained in Bε(x̄). Let θ : [0, L] → R be a nondecreasing function coinciding a.e.
with h ◦ γ. We then deduce ψ−1 ◦ θ is a nondecreasing function coinciding a.e. with
f ◦ γ. Moreover for a.e. t ∈ [0, L] we have

|(ψ−1 ◦ θ)′(t)| =
1

ψ′(f(γ(t)))
|θ′(t)| ≥ 1

ψ′(f(γ(t)))
|∇(ψ ◦ f)|(γ(t)) = |∇f |(γ(t)).

The result follows immediately.
Theorem 5.8 (lengths of near-steepest descent curves). Consider an lsc function

f : Rn → R satisfying the upper K�L-inequality. Then any bounded near-steepest
descent curve γ : [0,∞) → Rn, satisfying |∇f |(γ(t)) �= 0 a.e. on [0,∞), has finite
length.

Proof. Consider a near-steepest descent curve γ : [0,∞) → Rn and let U be
an open bounded set containing the image of γ. Then there exists a nonincreasing
function φ : [0,∞) → X coinciding with f ◦ γ on a full-measure subset M ⊂ [0,∞)
and so that the inequality |φ′(t)| ≥ |∇f |(γ(t)) holds on M . Let τ be the infimum of φ
on M . Clearly then since f is lsc and proper, we have τ > −∞. Moreover τ is never
attained on M , since |∇f |(γ(t)) �= 0 almost everywhere. By the upper K�L-inequality,
there exists ρ > 0 and a nonnegative continuous function ψ : [τ, τ + ρ) → R, which is
C1-smooth and strictly increasing on (τ, τ + ρ), and such that the inequality

|∇(ψ ◦ f)|(x) ≥ 1

holds for all x ∈ U with τ < f(x) < τ + ρ. We deduce that there exists T ∈ [0,∞) so
that the image γ[T,∞) lies in the sublevel set [f < τ + ρ]. We deduce∫ ∞

0

‖γ̇(r)‖ dr ≤ T +

∫ ∞

T

|∇(ψ ◦ f)|(γ(r)) dr ≤ T −
∫ ∞

T

(ψ ◦ φ)′(r) dr

≤ T + ψ(φ(T )) − ψ(τ).

The result follows.
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The following is now immediate
Corollary 5.9 (convergence to local minimizers). Consider an lsc function

f : Rn → R satisfying the upper and lower K�L-inequalities, along with a point x̄ ∈
dom f that is not a local minimizer of f . Suppose moreover that f is continuous on
slope-bounded sets. Then there exists a reliable descent curve γ : [0, L] → Rn, for
some L > 0, emanating from x̄, so that either γ is unbounded or L is finite and γ
converges to a local minimizer of f .

Proof. This follows immediately by extending a reliable descent curve γ : [0, L] →
Rn emanating from x̄ to have a maximal domain of definition using Zorn’s lemma,
along with Theorems 5.7 and 5.8. We omit the details for the sake of brevity.

In conclusion, we show that curves of near-maximal slope of semialgebraic func-
tions have finite length. The proof is almost identical to the proof of [21, Theorem 7.1];
hence we only provide a sketch.

Theorem 5.10 (lengths of curves of near-maximal slope). Consider an lsc, semi-
algebraic function f : Rn → R, and let U be a bounded subset of Rn. Then there exists
a number N > 0 such that the length of any curve of near-maximal slope for f lying
in U does not exceed N .

Proof. Let x : [0, T ) → Rn be a curve of near-maximal slope for f and let ψ be any
strictly increasing C1-smooth function on an interval containing the image of f ◦x. It
is then easy to see that, up to a reparametrization, x is a curve of near-maximal slope
for the composite function ψ ◦ f . In particular, we may assume that f is bounded
on U , since otherwise we may, for example, replace f by ψ ◦ f where ψ(t) = t√

1+t2
.

Define the function

ξ(s) = inf{|∇f |(x) : x ∈ U, f(x) = s}.
Standard arguments show that ξ is semialgebraic. Consequently, with an excep-

tion of finitely many points, the domain of ξ is a union of finitely many open intervals
(αi, βi), with ξ continuous and either strictly monotone or constant on each such
interval. Define for each index i the quantity

ci = inf{ξ(s) : s ∈ (αi, βi)}.
We first claim that ξ is strictly positive on each interval (αi, βi). This is clear for
indices i with ci > 0. On the other hand if we have ci = 0, then by Sard’s theorem [20]
the function ξ is strictly positive on (αi, βi) as well. Define ζi and ηi by

ζ = inf{t : f(x(t)) = αi} and η = sup{t : f(x(t)) = βi},
and let li be the length of x(t) between ζi and ηi. Then we have

li =

∫ ηi

ζi

‖ẋ(t)‖dt =

∫ ηi

ζi

|∇f |(x(t))dt ≤
(

(ηi − ζi)

∫ ηi

ζi

|∇f |(x(t))2dt

) 1
2

.

On the other hand, observe∫ ηi

ζi

|∇f |(x(t))2dt = f(x(ηi)) − f(x(ζi)) = βi − αi.

Finally in the case ci > 0 we have li ≥ ci(ηi − ζi), which combined with the two
equations above yields the bound

li ≤ βi − αi

ci
.
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If the equation ci = 0 holds, then by the upper K�L-inequality we can find a
continuous function ξi : [αi, αi + ρ) → R, for some ρ > 0, where ξ is strictly positive
and C1-smooth on (αi, αi + ρ) and satisfying |∇(ξi ◦ f)|(y) ≥ 1 for any y ∈ U with
αi < f(y) < αi + ρ. Since ξi is strictly increasing on (αi, αi + ρ), it is not difficult
to check that we may extend ξi to a continuous function on [αi, βi] and so that
this extension is C1-smooth and strictly increasing on (αi, βi) with the inequality
|∇(ξi ◦ f)|(y) ≥ 1 being valid for any y ∈ U with αi < f(y) < βi.

Then as we have seen before, up to a reparametrization, the curve x(t) for t ∈
[ζi, ηi] is a curve of near maximal slope for the function ξi ◦ f . Then as above, we
obtain the bound li ≤ ξi(βi) − ξi(αi). We conclude that the length of the curve x(t)
is bounded by a constant that depends only on f and on U , thereby completing the
proof.

The following consequence is now immediate.
Corollary 5.11 (convergence of curves of near-maximal slope). Consider an

lsc, semialgebraic function f : Rn → R. Then any curve of near-maximal slope for f
that is bounded and has a maximal domain of definition converges to a lower-critical
point of f .
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[1] L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Space of
Probability Measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag,
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