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1. Introduction. Variational analysis, a subject that has been vigorously developing for the past 40 years,
has proven itself to be extremely effective at describing nonsmooth phenomenon. The Clarke subdifferential
(or generalized gradient) and the limiting subdifferential of a function are the earliest and most widely used
constructions of the subject. A key distinction between these two notions is that, in contrast to the limiting
subdifferential, the Clarke subdifferential is always convex. From a computational point of view, the convexity of
the Clarke subdifferential is a great virtue. To illustrate, by the classical Rademacher theorem, a locally Lipschitz
continuous function f on an open subset U of Rn is differentiable almost everywhere on U , in the sense of
Lebesgue measure. Clarke, in Clarke [5], showed that for such functions, the Clarke subdifferential admits the
simple presentation

¡cf 4x̄5= conv
{

lim
i→�

ïf 4xi52 xi
ì

→ x̄

}

1 (LipR)

where x̄ is any point of U and ì is any full measure subset of U . Such a formula holds great computational
promise as gradients are often cheap to compute. For example, using (LipR), Burke, Lewis, and Overton developed
an effective computational scheme for approximating the Clarke subdifferential by sampling gradients (Burke
et al. [3]); motivated by this idea, they also developed a robust optimization algorithm (Burke et al. [4]).

Burke et al. [3] further extended Clarke’s result to the class of finite-valued, continuous functions f 2 U →R,
defined on an open subset U of Rn, which are absolutely continuous on lines, and directionally Lipschitzian; the
latter means that the Clarke normal cone to the epigraph of f is pointed. Under these assumptions on f , they
derived the representation

¡cf 4x̄5=
⋂

�>0

cl conv4ïf 4ì∩B�4x̄5551 (ACLR)

where B�4x̄5 is an open ball of radius � around x̄ and ì is any full measure subset of U ; they extended their
computational scheme to this more general setting. One can easily see that this formula generalizes Clarke’s result,
since locally Lipschitz functions are absolutely continuous on lines, and for such functions (ACLR) reduce to
(LipR). The pointedness of the Clarke normal cone is a common theoretical assumption. For instance, closed
convex sets with nonempty interior have this property. Some results related to (ACLR) appear in Colombo
et al. [7].

In optimization theory, one is often interested in extended real-valued functions (i.e., functions that are allowed
to take on the value +�), so as to model constraints, for instance. Results above are not applicable in such
instances. An early predecessor of (LipR) and (ACLR) rectifies this problem, at least when convexity is present.
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Rockafellar [27, Theorem 25.6] showed that for any closed convex function f 2 Rn →R∪ 8+�9, whose domain
dom f has a nonempty interior, the convex subdifferential has the form

¡f 4x̄5= conv
{

lim
i→�

ïf 4xi52 xi → x̄

}

+Ndom f 4x̄51 (CoR)

where x̄ is any point in the domain of f and Ndom f 4x̄5 is the normal cone to the domain of f at x̄.
Our goal is to provide an intuitive and geometric proof of a representation formula unifying (LipR), (ACLR),

and (CoR). To do so, we will impose a certain structural assumption on the functions f that we consider. Namely,
we will assume that the domain of f can be locally stratified into a finite collection of smooth manifolds, so that f
is smooth on each such manifold. Many functions of practical importance in optimization and in nonsmooth
analysis have this property. All semi-algebraic functions (i.e., those functions whose graphs can be described as a
union of finitely many sets, each defined by finitely many polynomial inequalities), and more generally, tame
functions fall within this class (Ioffe [17]). We will show (Theorem 3.10) that for a directionally Lipschitzian,
stratifiable function f 2 Rn →R∪ 8+�9, that is continuous on its domain (for simplicity), the Clarke subdifferential
admits the intuitive form

¡cf 4x̄5= conv
{

lim
i→�

ïf 4xi52 xi
ì
−→ x̄

}

+ coco
{

lim
i→�
ti↓0

tiïf 4xi52 xi
ì
−→ x̄

}

+N c
dom f 4x̄51 (1)

or equivalently,
¡cf 4x̄5=

⋂

�>0

cl conv4ïf 4ì∩B�4x̄555+N c
dom f 4x̄51

where ì is any dense subset of dom f and coco denotes the convex conical hull. (In contrast to the aforementioned
results, we do not require ì to have full measure.)

This is significant both from theoretical and computational perspectives. Proofs of (LipR) and (ACLR) are based
largely on Fubini’s theorem and analysis of directional derivatives. Although the arguments are elegant, they do not
shed light on the geometry driving such representations to hold. Similarly, Rockafellar’s argument of (CoR) relies
heavily on the well-oiled machinery of convex analysis. Consequently, a simple unified geometric argument is
extremely desirable. From a practical point of view, representation (1) decouples the behavior of the function from
the geometry of the domain. Consequently, when the domain is a simple set (polyhedral perhaps) and the behavior
of the function on the interior of the domain is complex, our result provides a convenient method of calculating the
Clarke subdifferential purely in terms of limits of gradients and the normal cone to the domain. This information is
often readily available. Furthermore, using (1), the functions we consider in the current paper become amenable to
the techniques developed in Burke et al. [3].

Whereas (1) deals with pointwise estimation of the Clarke subdifferential, our second result addresses the
geometry of subdifferential graphs, as a whole. In particular, we consider the size of subdifferential graphs, a
feature that may have important algorithmic applications. For instance, Robinson [26, 25] shows computational
promise for functions defined on Rn whose subdifferential graphs are locally homeomorphic to an open subset of
Rn. Because of the results of Minty [20] and Poliquin and Rockafellar [24], Robinson’s techniques are applicable
for convex, and more generally, for prox-regular functions. Trying to understand the size of subdifferential graphs
in the absence of convexity (or monotonicity), Drusvyatskiy et al. [12] were led to consider the semi-algebraic
setting. They proved that the limiting subdifferential graph of a closed, proper, semi-algebraic function on Rn has
uniform local dimension n. Applications to sensitivity analysis were also discussed. We show how the techniques
developed in the current paper drastically simplify the proof of this striking fact. Remarkably, this dimensional
uniformity does not hold for the Clarke subdifferential graph.

The rest of the paper is organized as follows. In §2, we establish notation and recall some basic facts from
variational analysis. In §3, we derive a characterization formula for the Clarke subdifferential of a directionally
Lipschitzian, stratifiable function that has a certain continuity property on its domain, and in §4 we relate our
results to the gradient sampling framework. In §5, we prove the theorem concerning the local dimension of
semi-algebraic subdifferential graphs. We have designed this last section to be entirely independent of the previous
sections (except for §2), since it does require a short foray into semi-algebraic geometry.

2. Preliminary results. In this section, we summarize some of the fundamental tools used in variational
analysis and nonsmooth optimization. We refer the reader to the monographs (Borwein and Zhu [1], Clarke
et al. [6], Mordukhovich [21], Penot [22], and Rockafellar and Wets [29]), for more details. Unless otherwise
stated, we follow the terminology and notation of Rockafellar and Wets [29].
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The functions we consider will take their values in the extended real line R̄ 2=R∪ 8−�1�9. We say that an
extended-real-valued function is proper if it is never −� and is not always +�. For a function f 2 Rn → R̄, the
domain of f is

dom f 2= 8x ∈Rn2 f 4x5 <+�91

and the epigraph of f is
epi f 2= 84x1 r5 ∈Rn

×R2 r ≥ f 4x590

Throughout this work, we will only use Euclidean norms. Hence for a point x ∈Rn, the symbol �x� will
denote the standard Euclidean norm of x. Unless we state otherwise, the topology on Rn that we consider is
induced by this norm. Given a set Q⊂Rn, the notation xi

Q

→ x̄ will mean that the sequence xi converges to
x̄ and all the points xi that lie in Q. We let “o4�x− x̄�5 for x ∈Q” be shorthand for a function that satisfies
o4�x− x̄�5/�x− x̄� → 0 whenever x

Q

→ x̄ with x 6= x̄.
A function f 2 Rn → R̄ is locally Lipschitz continuous around a point x̄ relative to a set Q ⊂Rn containing x̄, if

f 4x̄5 is finite and there exists a real number � ∈ 601+�5 with

�f 4x5− f 4y5� ≤ ��x− y�1 for all x1 y ∈Q near x̄0

If there exists an open neighborhood Q of x̄ so that the above conditions hold, then we simply say that f is locally
Lipschitz continuous at x̄.

A set-valued mapping F from Rn to Rm, denoted by F 2 Rn ⇒Rm, is a mapping from Rn to the power set of Rm.
Hence for each point x ∈Rn, F 4x5 is a subset of Rm. For a set-valued mapping F 2 Rn ⇒Rm, the domain of F is

dom F 2= 8x ∈Rn2 F 4x5 6= �91

and the graph of F is
gph F 2= 84x1 y5 ∈Rn

×Rm2 y ∈ F 4x590

The outer limit of F at x̄ is

Lim sup
x→x̄

F 4x5 2= 8v ∈Rm2 ∃xi → x̄1∃vi → v with vi ∈ F 4xi590

The mapping F is locally bounded near x̄ if the image F 4V 5⊂Rm is bounded, for some neighborhood V of x̄. The
following definition extends the classical notion of continuity to set-valued mappings.

Definition 2.1 (Continuity). Consider a set-valued mapping F 2 Rn ⇒Rm and a point x̄ ∈Rn.
(i) F is outer semicontinuous at x̄ if for any sequence of points xi ∈Rn converging to x̄ and any sequence of

vectors vi ∈ F 4xi5 converging to v̄, we must have v̄ ∈ F 4x̄5.
(ii) F is inner semicontinuous at x̄ if for any sequence of points xi converging to x̄ and any vector v̄ ∈ F 4x̄5,

there exist vectors vi ∈ F 4xi5 converging to v̄.
If both properties hold, then we say that F is continuous at x̄.

We let intQ, clQ, convQ, and cocoQ, denote the interior, closure, convex hull, and convex conical hull of a
set Q, respectively. A cone Q is said to be pointed if it contains no lines. An open ball of radius r around a
point x̄ ∈Rn will be denoted by Br4x̄5. We let B and B̄ be the open and closed unit balls, respectively. The
following is a standard result on preservation of continuity of set-valued mappings under a pointwise convex
conical hull operation. We provide a proof for completeness.

Lemma 2.2 (Preservation of Continuity). Consider a set-valued mapping G2 Rn ⇒Rm that is outer-
semicontinuous at a point x̄ ∈Rn. Suppose G is locally bounded near x̄, the set cocoG4x̄5 is pointed, and
0 yG4x̄5. Then the mapping

x 7→ F 4x5 2= cocoG4x5

is outer-semicontinuous at x̄.

Proof. Consider a sequence 4xi1 vi5→ 4x̄1 v̄5, with vi ∈ F 4xi5 for each index i. By Carathéodory’s theorem, we
deduce

vi =
m
∑

j=1

�i
jy

i
j1

for some multipliers �i
j ≥ 0 and vectors yij ∈G4xi5, where j = 11 : : : 1m.
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Restricting to a subsequence, we may assume that there exist nonzero vectors yj ∈G4x̄5 satisfying

yj = lim
i→�

yij1 for each index j0

Note that in light of the assumption 0 yG4x̄5, none of the vectors yj are zero. We claim that the sequence of
multipliers �i

j is bounded. Indeed suppose this is not the case and let mi 2= maxj �
i
j . Then up to a subsequence,

there exist multipliers �j , not all zero, such that

�i
j

mi

→ �j as i → �1 and 0 =

m
∑

j=1

�jyj1

contradicting the fact that F 4x̄5 is pointed. We conclude that the multipliers �i
j are bounded.

Then up to a subsequence, we have

v̄ = lim
i→�

m
∑

j=1

�i
jy

i
j =

m
∑

j=1

�jyj ∈ F 4x̄51

for some real numbers �j ≥ 0. We conclude that F is outer-semicontinuous at x̄. �
The distance of a point x to a set Q is

dQ4x5 2= inf
y∈Q

�x− y�1

and the projection of x onto Q is
PQ4x5 2= 8y ∈Q2 �x− y� = dQ4x590

We now consider normal cones, which are fundamental objects in variational geometry.

Definition 2.3 (Proximal Normals). Consider a set Q ⊂Rn and a point x̄ ∈Q. The proximal normal cone
to Q at x̄, denoted N P

Q 4x̄5, consists of all v ∈Rn satisfying x̄ ∈ PQ4x̄+ 41/r5v5 for some r > 0.

Geometrically, a vector v 6= 0 is a proximal normal to Q at x̄ precisely when there exists a ball touching Q at x̄
such that v points from x̄ towards the center of the ball. Furthermore, this condition amounts to

�v1 x− x̄� ≤O4�x− x̄�25 as x → x̄ in Q0

Relaxing the inequality above, one obtains the following notion.

Definition 2.4 (Frechét Normals). Consider a set Q ⊂Rn and a point x̄ ∈Q. The Frechét normal cone to
Q at x̄, denoted N̂Q4x̄5, consists of all vectors v ∈Rn such that

�v1 x− x̄� ≤ o4�x− x̄�5 as x → x̄ in Q0

Note that both N P
Q 4x̄5 and N̂Q4x̄5 are convex cones, while N̂Q4x̄5 is also closed. Evidently, the set-valued

mapping x 7→ N̂Q4x5 is generally not outer-semicontinuous, and hence is not robust relative to perturbations in x.
To ensure that this desirable property will hold, the following definition is introduced.

Definition 2.5 (Limiting Normals). Consider a set Q ⊂Rn and a point x̄ ∈Q. The limiting normal cone to
Q at x̄, denoted NQ4x̄5, consists of all vectors v ∈Rn such that there are sequences xi

Q

→ x̄ and vi → v with
vi ∈ N̂Q4xi5.

The limiting normal cone, as defined above, consists of limits of Frechét normals. In fact, the same object arises
if we only take limits of proximal normals (Rockafellar and Wets [29, Exercise 6.18]). Convexing the limiting
normal cone leads to the following definition.

Definition 2.6 (Clarke Normals). Consider a set Q ⊂Rn and a point x̄ ∈Q. The Clarke normal cone to
Q at x̄ is

N c
Q4x̄5 2= cl convNQ4x̄50

Given any set Q⊂Rn and a mapping F 2 Q→ Q̃, where Q̃⊂Rm, we say that F is Cp-smooth 4p ≥ 25 if for
each point x̄ ∈Q, there is a neighborhood U of x̄ and a Cp mapping F̂ 2 Rn →Rm that agrees with F on Q∩U .
Henceforth, to simplify notation, the word smooth will mean C2-smooth.
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Definition 2.7 (Smooth Manifolds). We say that a set M in Rn is a C2-submanifold of dimension r if for
each point x̄ ∈M , there is an open neighborhood U around x̄ and a mapping F 2 Rn →Rn−r that is C2-smooth
with ïF 4x̄5 of full rank, satisfying M ∩U = 8x ∈U2 F 4x5= 09.

Lee [18] provide a good reference on smooth manifold theory.

Theorem 2.8 (Rockafellar and Wets [29], Example 6.8). Consider a C2-manifold M ⊂ Rn. Then at
every point x ∈M , the normal cone NM4x5 is equal to the normal space to M at x, in the sense of differential
geometry.

In fact, the following stronger characterization holds:

Theorem 2.9 (Prox-Normal Neighborhood). Consider a C2-manifold M ⊂Rn and a point x̄ ∈M . Then
there exists an open neighborhood U of x̄, such that

(i) the projection map PM is single-valued on U ,
(ii) for any two points x ∈M ∩U and v ∈U , the equivalence,

v ∈ x+NM4x5 ⇔ x = PM4v51

holds.

Following the notation of Hare and Lewis [13], we call the set U that is guaranteed to exist by Theorem 2.9,
a prox-normal neighborhood of M at x̄. For more details about Theorem 2.9, see Rockafellar and Wets [29,
Exercise 13.38], Clarke et al. [6, Proposition 1.9]. Note that the theorem above holds for all prox-regular sets M
(Poliquin and Rockafellar [24]).

Armed with the aforementioned facts from variational geometry, we can study variational properties of functions
via their subdifferential mappings.

Definition 2.10 (Subdifferentials). Consider a function f 2 Rn → R̄ and a point x̄ ∈Rn, with f 4x̄5 finite.
The limiting subdifferential of f at x̄ is defined by

¡f 4x̄5= 8v ∈Rn2 4v1−15 ∈Nepi f 4x̄1 f 4x̄5590

Proximal, Frechét, and Clarke subdifferentials are defined analogously.

For x̄ such that f 4x̄5 is not finite, we follow the convention that ¡Pf 4x̄5= ¡̂f 4x̄5= ¡f 4x̄5= ¡cf 4x̄5= �.
The subdifferentials defined above fail to capture the horizontal normals to the epigraph. Hence, to obtain a

more complete picture, we consider the following:

Definition 2.11 (Horizon Subdifferential). For a function f 2 Rn → R̄ that is finite at a point x̄, the
horizon subdifferential is given by

¡�f 4x̄5= 8v ∈Rn2 4v105 ∈Nepi f 4x̄1 f 4x̄5590

For a set Q ⊂Rn, we define �Q2 R
n → R̄ to be a function that is 0 on Q and +� elsewhere. We call �Q the

indicator function of Q. Then for a point x̄, we have NQ4x̄5= ¡�Q4x̄5, with analogous statements holding for the
other subdifferentials.

Often we work with discontinuous functions f 2 Rn → R̄. For such functions, it is useful to consider f -attentive
convergence of a sequence xi to a point x̄, denoted xi −→

f
x̄. In this notation we have

xi −→
f
x̄ ⇐⇒ xi → x̄ and f 4xi5→ f 4x̄50

If in addition we have a set Q ⊂Rn, then xi
Q
−→
f

x̄ will mean that xi converges f -attentively to x̄ and the points xi

all lie in Q. It is immediate that the mappings ¡f and ¡�f are outer-semicontinuous with respect to f -attentive
convergence x −→

f
x̄.

Consider a function f 2 Rn → R̄ that is locally lower semi-continuous at a point x̄, with f 4x̄5 finite. Then f is
locally Lipschitz continuous around x̄ if and only if the horizon subdifferential is trivial, that is the condition
¡�f 4x̄5= 809 holds (Rockafellar and Wets [29, Theorem 9.13]). Weakening the latter condition to require ¡�f 4x̄5
to simply be pointed, we arrive at the following central notion (Rockafellar and Wets [29, Exercise 9.42]):

Definition 2.12 (epi-Lipschitzian Sets and Directionally Lipschitzian Functions). (i) A setQ ⊂Rn

is epi-Lipschitzian at one of its points x̄ if Q is locally closed at x̄ and the normal cone NQ4x̄5 is pointed.
(ii) A function f 2 Rn → R̄, that is finite at x̄, is directionally Lipschitzian at x̄ if f is locally lower-semicontinuous

at x̄ and the cone ¡�f 4x̄5 is pointed.
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Rockafellar [28, Section 4] proved that an epi-Lipschitzian set in Rn, up to a rotation, locally coincides with an
epigraph of a Lipschitz continuous function defined on Rn−1. Note also that the Clarke normal cone mapping of an
epi-Lipschitzian set is outer-semicontinuous (Clarke et al. [6, Proposition 6.8]).

It is easy to see that a function f 2 Rn → R̄ is directionally Lipschitzian at x̄ if and only if the epigraph epi f is
epi-Lipschitzian at 4x̄1 f 4x̄55. Furthermore, for a set Q that is locally closed at x̄, the limiting normal cone NQ4x̄5 is
pointed if and only if the Clarke normal cone N c

Q4x̄5 is pointed (Rockafellar and Wets [29, Exercise 9.42]).
Consider the two functions

f14x5= x and f24x5=

{

x if x ≤ 0

x+ 1 if x > 0

defined on the real line. Clearly both f1 and f2 are directionally Lipschitzian, and have the same derivatives at
each point of differentiability. However ¡cf1405 6= ¡cf2405. Roughly speaking, this situation arises because some
normal cones to the epigraph of a function f , namely at points 4x1 r5 with r > f 4x5, may not correspond to any
subdifferential. Consequently, if we are to derive a characterization of the Clarke subdifferential purely in terms of
gradients and the normal cone to the domain, we must eliminate the situation above. Evidently, assumption of
continuity of the function on the domain would work. However, such an assumption would immediately eliminate
many interesting convex functions from consideration. Rather than doing so, we identify a new condition that
arises naturally as a byproduct of our arguments. We give this property a name.

Definition 2.13 (Vertical Continuity). We say that a function f 2 Rn → R̄ is vertically continuous at a
point x̄ ∈ dom f if the equation

Lim sup
x→x̄1 r→f 4x̄5

r>f 4x5

Nepi f 4x1 r5=Ndom f 4x̄5× 8091 (2)

holds.

To put this condition in perspective, we record the following observations:

Proposition 2.14 (Properties of Vertically Continuous Functions). Consider a proper function
f 2 Rn → R̄ that is locally lower-semicontinuous at a point x̄, with f 4x̄5 finite.

(i) Suppose that whenever a pair 4x1 r5 ∈ epi f , with r > f 4x5, is near 4x̄1 f 4x̄55 we have

Nepi f 4x1 r5=Ndom f 4x5× 8090

Then f is vertically continuous at x̄.
(ii) Suppose that x̄ lies in the interior of dom f and that f is vertically continuous at x̄. Then f is continuous

at x̄, in the usual sense.
(iii) Suppose that f is continuous on a neighborhood of x̄, relative to the domain of f . Then f is vertically

continuous at all points of dom f near x̄.
(iv) If f is convex, then f is vertically continuous at every point x̄ in dom f .
(v) Suppose that f is amenable at x̄ in the sense of Poliquin and Rockafellar [23]; that is, f is finite at x̄ and

there exists a neighborhood V of x̄ so that f can be written as a composition f = g � F , for a C1 mapping
F 2 V →Rm and a proper, lower-semicontinuous, convex function g2 Rm → R̄, so that the qualification condition

Ndom g4F 4x̄55∩ kerïF 4x̄5∗ = 8091 (3)

is satisfied. Then f is vertically continuous at x̄.

Proof. Claim (i) is immediate from outer-semicontinuity of the normal cone map Ndom f .
To see (ii), suppose that f is vertically continuous at x̄ ∈ int dom f . Because the normal cone to the domain of f

at x̄ consists of the zero vector, we deduce Nepi f 4x̄1 f 4x̄5+ 1/n5= 809, for all sufficiently large integers n. By
Rockafellar and Wets [29, Exercise 6.19], we deduce that each such point 4x̄1 f 4x̄5+ 1/n5 lies in the interior of the
epigraph epi f . Consequently for any sequence xi → x̄, we have

lim sup
i→�

f 4xi5≤ f 4x̄5+
1
n
1

for all large indices n. Letting n tend to infinity, we deduce that f is upper-semicontinuous at x̄. The result follows.
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To see (iii), suppose that f is continuous at x ∈ dom f , relative to the domain of f . Then for any real r > f 4x5
there exists an � > 0 so that the epigraph epi f coincides with the product set, dom f × 6r − �1 r + �7, locally
around 4x1 r5. In fact, this follows just from upper-semicontinuity of f at x, relative to dom f . We deduce
Nepi f 4x1 r5=Ndom f 4x5× 809. The result follows by (i).

To see (iv), consider a pair 4x̄1 r5 with r > f 4x̄5 and observe

4v1�5 ∈Nepi f 4x̄1 r5 ⇐⇒ �4v1�51 4x̄1 r5� ≥ �4v1�51 4x′1 r ′5� for all 4x′1 r ′5 ∈ epi f

⇐⇒ �= 0 and v ∈Ndom f 4x̄50

Appealing to (i), we obtain the result.
The proof of (v) follows from a standard nonsmooth chain rule. We outline the argument below. Without loss of

generality, we can assume that the representation f = g � F holds on all of Rn. Observe

epi f = 84x1 r5 ∈Rn+12 G4x1 r5 ∈ epig91

for the mapping G2 Rn+1 →Rm+1 defined by G4x1 r5= 4F 4x51 r5. We use the chain rule from Rockafellar and
Wets [29, Theorem 6.14] to compute the normal cone to epi f . To this end, consider a pair 4x1 r5 ∈ epi f and a
vector 4y1�5 ∈Nepig4G4x1 r55. We have

0 = ïG4x1 r5∗4y1�5 ⇐⇒ �= 0 and ïF 4x5∗y = 0

⇐⇒ y ∈Ndom g4F 4x55 and ïF 4x5∗y = 0

⇐⇒ y = 01

where the last equivalence follows from the qualification condition (3). Applying the chain rule (Rockafellar and
Wets [29, Theorem 6.14]), we deduce

Nepi f 4x1 r5= ïG4x1 r5∗Nepig4G4x1 r551

for all pairs 4x1 r5 ∈ epi f . In particular, if we have r > f 4x5, or equivalently r > g4F 4x55, we deduce

Nepi f 4x1 r5= ïF 4x5∗Ndom g4F 4x55× 8090

The right hand side coincides with Ndom f 4x5× 809 by Poliquin and Rockafellar [23, Theorem 3.3]. The result
follows by appealing to (i). �

As can be seen from the proposition above, vertical continuity bridges the gap between continuity of the
function on the interior of the domain and continuity on the whole domain; hence, the name. In summary, all
convex and amenable functions have this property, as do functions that are continuous on their domains. An
illustrative example is provided by the proper, lower semi-continuous, convex (directionally Lipschitzian) function
f on R2, defined by

f 4x1 y5=











y2/2x if x > 0

0 if x = 01 y = 0

� otherwise

This function is discontinuous at the origin despite being vertically continuous there.
In the sequel, we will need the following basic result.

Proposition 2.15. Consider a set M ⊂Rn and a function f 2 Rn → R̄ that is finite-valued and smooth on M .
Then, at any point x̄ ∈M , we have

¡̂f 4x̄5⊂ ïg4x̄5+NM4x̄51

where g2 Rn →R is any smooth function agreeing with f on M on a neighborhood of x̄.

Proof. Define a function h2 Rn → R̄ agreeing with f on M and equaling plus infinity elsewhere. It is standard
to determine that the chain of inclusions,

¡̂f 4x̄5⊂ ¡̂h4x̄5= ¡̂4g4·5+ �M4·554x̄5⊂ ïg4x̄5+NM4x̄51

holds. �
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3. Characterization of the Clarke subdifferential. Directionally Lipschitzian functions play an important
role in optimization and are close relatives of locally Lipschitz functions (Burke et al. [3], Rockafellar and
Wets [29]). Indeed, Rockafellar showed that epi-Lipschitzian sets, up to a change of coordinates, are epigraphs of
Lipschitz functions (Rockafellar [28, Section 4]).

As was mentioned in the introduction, a key feature of Clarke’s construction is that the Clarke subdifferential
of a locally Lipschitz function f , on Rn, can be described purely in terms of gradient information. It is then
reasonable to hope that the same property holds for continuous directionally Lipschitzian functions, although this is
too good to be true. Though such functions are differentiable almost everywhere (Borwein et al. [2]), their gradients
may fail to generate the entire Clarke subdifferential. A simple example is furnished by the classical ternary Cantor
function, i.e., a nondecreasing, continuous, and therefore directionally Lipschitzian function, with zero derivative at
each point of differentiability. The Clarke subdifferential of this function does not identically consist of the zero
vector (Borwein and Zhu [1, Exercise 3.5.5]), and consequently cannot be recovered from classical derivatives.
This example notwithstanding, one does not expect the Cantor function to arise often in practice.

Nonsmoothness arises naturally in many applications, but not pathologically so. On the contrary, nonsmoothness
is usually highly structured. Often such structure manifests itself through the existence of a stratification. In the
current work, we consider so-called stratifiable functions. Roughly speaking, domains of such function can be
decomposed into smooth manifolds (called strata), which fit together in a regular way, and so that the function is
smooth on each such stratum. In particular, this rich class of functions includes all semi-algebraic, and more
generally, all o-minimally defined functions. See for example van den Dries and Miller [30]. We now make this
notion precise.

Definition 3.1 (Locally Finite Stratifications). Consider a set Q in Rn. A locally finite stratification of
Q is a partition of Q into disjoint manifolds Mi (called strata) satisfying

• (frontier condition) for each index i, the closure of Mi in Q is the union of some Mj ’s, and
• (local finiteness) each point x ∈Q has a neighborhood that intersects only finitely many strata.

We say that a set Q ⊂Rn is stratifiable if it admits a locally finite stratification.

Observe that due to the frontier condition, a stratum Mi intersects the closure of another stratum Mj if and only
if the inclusion Mi ⊂ clMj holds. Consequently, given a locally finite stratification of a set Q into manifolds 8Mi9,
we can impose a natural partial order on the strata, namely

Mi �Mj ⇔ Mi ⊂ clMj 0

A good example to keep in mind is the partition of a convex polyhedron into its open faces.

Definition 3.2 (Stratifiable Functions). A function f 2 Rn → R̄ is stratifiable if there exists a locally
finite stratification of dom f so that f is smooth on each stratum.

The following result nicely illustrates the geometric insight one obtains by working with stratifications explicitly.

Proposition 3.3 (Dense Differentiability). Consider a proper stratifiable function f 2 Rn → R̄ that is
directionally Lipschitzian at all points of dom f near x̄, and let ì be any dense subset of dom f . Then the set
ì∩ domïf is dense in the domain of f , in the f -attentive sense, locally near x̄.

Proof. Consider a locally finite stratification of dom f into manifolds Mi so that f is smooth on each
stratum. Suppose for the sake of contradiction that there exists a point x ∈ dom f arbitrarily close to x̄ and an
f -attentive neighborhood V = 8y ∈Rn2 �y−x�< �1 �f 4y5− f 4x5�< �9 so that V ∩ì does not intersect any strata of
dimension n. Shrinking V , we may assume that V intersects only finitely many strata, for example 8Mj9 for
j ∈ J 2= 811 : : : 1 k9, and that the inclusion x ∈ clMj holds for each index j ∈ J . Note that since f is continuous on
each stratum, the set V is a union of open subsets of the strata Mj for j ∈ J .

Now among the strata Mj with j ∈ J , choose a stratum M that is maximal with respect to the partial order �.
Clearly, we have

M ∩ clMj = �1 for each j ∈ J with Mj 6=M0

Now let y be any point of V ∩M and observe that there exists a neighborhood Y of y so that the functions f and
f + �M coincide on Y ∩M . We deduce that ¡f 4y5 is a nontrivial affine subspace. (Indeed in terms of any smooth
function g2 Rn →R agreeing with f on Y ∩M , we have ¡f 4y5= ¡4g+�M54y5= ïg4y5+NM4y5.) Since f is
directionally Lipschitzian at all points in dom f near x̄, and in particular at y, we have arrived at a contradiction.
Thus ì∩ domïf is dense (in the f -attentive sense) in the domain of f , near x̄. �
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In this section, we will derive a characterization formula for the Clarke subdifferential of a stratifiable, vertically
continuous, directionally Lipschitzian function f 2 Rn → R̄ . This formula will depend only on the gradients of f
and on the normal cone to the domain. Note that the characterization formulawe obtain is independent of any
particular stratification of dom f ; one only needs to know that f is stratifiable to apply our result. The argument
we present is entirely constructive and motivated by the following fact.

Proposition 3.4. Consider a closed, convex cone Q⊂Rn, which is neither Rn nor a half-space. Then the
equality,

Q = coco4bdQ50

holds.

Hence in light of Proposition 3.4, to obtain a representation formula for the Clarke subdifferential, it is sufficient
to study the (relative) boundary structure of the Clarke normal cone. This is precisely the route we take.1

Lemma 3.5 (Frechét Accessibility). Consider a closed set Q⊂Rn, a C2-manifold M ⊂Q, and a point
x̄ ∈M . Recall that the inclusion N̂Q4x̄5⊂NM4x̄5 holds. Suppose that a vector v̄ ∈ N̂Q4x̄5 lies in the boundary of
N̂Q4x̄5, relative to the linear space NM 4x̄5. Then there exists a sequence 4xi1 vi5→ 4x̄1 v̄5, with vi ∈N P

Q 4xi5, so that
all points xi lie outside of M .

Proof. Choose a vector w̄ ∈NM4x̄5 so as to guarantee

v̄+ tw̄ y N̂Q4x̄51 for all t > 00

Consider the vectors
y4t5 2= x̄+ t4v̄+ tw̄51 (4)

and observe y4t5y x̄+ N̂Q4x̄5 for every t > 0. Consider a selection of the projection operator,

x4t5 ∈ PQ4y4t550

Clearly, y4t5→ x̄ and x4t5→ x̄, as t → 0. Observe

y4t5− x4t5

t
∈N P

Q 4x4t551

x4t5 6= x̄1

(5)

for every t.
We claim that the points x4t5 all lie outside of M for all sufficiently small t > 0. Indeed, if this were not the

case, then for sufficiently small t, the points x4t5 and y4t5 would lie in the prox-normal neighborhood of M near x̄,
and we would deduce

x4t5= PM4y4t55= x̄1

contradicting (5).
Thus all that is left is to show the convergence, 4y4t5− x4t55/t → v̄. To this end, observe that from (4), we have

y4t5− x̄

t
→ v̄0 (6)

Hence it suffices to argue 4x4t5− x̄5/t → 0. By definition of x4t5, we have

�y4t5− x̄� ≥ �4y4t5− x̄5+ 4x̄− x4t55�0 (7)

Squaring and simplifying the inequality above, we obtain

〈

y4t5− x̄

t
1
x4t5− x̄

t

〉

≥
1
2

∣

∣

∣

∣

x4t5− x̄

t

∣

∣

∣

∣

2

0 (8)

1 The idea to study the boundary structure of the Clarke normal cone to establish a convenient representation for the Clarke subdifferential is by
no means new. For instance the same idea was used by Rockaffelar to establish the representation formula for the convex subdifferential
(Rockafellar [27, Theorem 25.6]). While working on this paper, the authors became aware that the same strategy was also used to prove a
representation formula for the subdifferential of finite-valued, continuous functions whose epigraph has positive reach (Marigonda and
Colombo [19, Theorem 4.9], Colombo et al. [7, Theorem 2]). In particular, Proposition 3.4 also appears as Colombo et al. [7, Proposition 3].
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From (6) and (7), we deduce that the vectors 4x4t5− x̄5/t are bounded as t → 0. Consider any limit point
� ∈Rn. Taking the limit in (8), we obtain

�v̄1 �� ≥
1
2 ���

20 (9)

Since v̄ is a Frechét normal, we deduce

�v̄1 x4t5− x̄� ≤ o4�x4t5− x̄�50

It immediately follows that
�v̄1 �� ≤ 01

and in light of (9), we obtain � = 0. Hence

y4t5− x4t5

t
→ v̄1

as we claimed. �

Remark 3.6. We note, in passing, that an analogue of Lemma 3.5 (with an identical proof) holds when M is
simply prox-regular, in the sense of Poliquin and Rockafellar [24], around x̄. In particular, the lemma is valid
when M is a convex set.

The combination of Lemma 3.5 and Proposition 3.4 yields dividends even in the simplest case when the
manifold M of Lemma 3.5 is a singleton set. We should emphasize that in the following proposition, we do not
even assume that the function in question is directionally Lipschitzian or stratifiable.

Proposition 3.7 (Isolated Singularity). Consider a continuous function f 2 U →R, defined on an open
set U ⊂Rn. Suppose that f is differentiable on U\8x̄9 for some point x̄ ∈U , and that ¡f 4x̄5 6= �. Then

¡cf 4x̄5= cl
(

conv
{

lim
i→�

ïf 4xi52 xi → x̄

}

+ coco
{

lim
i→�
ti↓0

tiïf 4xi52 xi → x̄

})

1

under the convention that conv � = 809.

Proof. Define the two sets

E 2=

{

lim
i→�

ïf 4xi52 xi → x̄

}

1 H 2=

{

lim
i→�
ti↓0

tiïf 4xi52 xi → x̄

}

1

and consider the epigraph Q 2= epi f and the singleton set M 2= 84x̄1 f 4x̄559.
By Lemma 3.5 and continuity of f , we have

bd N̂Q4x̄1 f 4x̄55⊂ coco4E × 8−195∪ 4H × 80950 (10)

Case 1. Suppose N̂Q4x̄1 f 4x̄55 is not equal to Rn × 601−�5. Then from Proposition 3.4 and (10), we deduce

N c
Q4x̄1 f 4x̄55= cl coco4E × 8−195∪ 4H × 80950 (11)

From (11), we see that an inclusion 4v1−15∈N c
Q4x̄1 f 4x̄55 holds if and only if for every � > 0, there exist

vectors yi ∈E ∪H , and real numbers �i > 0, for 1 ≤ i ≤ n+ 1, satisfying
∣

∣

∣

∣

v−

(

∑

i2 yi∈E

�iyi +
∑

i2 yi∈H

�iyi

)

∣

∣

∣

∣

< �1

1 =
∑

i2 yi∈E

�i

Thus ¡cf 4x̄5= cl4convE + cocoH5, as we claimed.
Case 2. Now suppose N̂Q4x̄1 f 4x̄55=Rn × 601−�5. Then from (10), we deduce H =Rn and ¡cf 4x̄5=Rn =

convE + cocoH , under the convention conv � = 809. �
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As an illustration, consider the following simple example.

Example 3.8. Consider the function f 4x1 y5 2= 4
√

x4 + y2 on R2. Clearly f is differentiable on R2\8401059.
The gradient has the form

ïf 4x1 y5=
1

4x4 + y253/4

(

x3

1
2y

)

0

From Proposition 3.7, we obtain

¡cf 4x̄5= cl
(

conv
{

lim
i→�

ïf 4xi52 xi → x̄

}

+ coco
{

lim
i→�
ti↓0

tiïf 4xi52 xi → x̄

})

1

Observe that the vectors ïf 4x105 are equal to 4±1105, and the vectors 2
√

�y�ïf 401±y5 are equal to 401±15,
whenever x 6= 0 6= y. Thus we obtain

6−1117× 809⊂ conv
{

lim
i→�

ïf 4xi52 xi → x̄

}

0

809×R ⊂ coco
{

lim
i→�
ti↓0

tiïf 4xi52 xi → x̄

}

0

Consequently, the inclusion
6−1117×R ⊂ ¡cf 40105

holds. The absolute value of the first coordinate of ïf 4x1 y5 is always bounded by 1, which implies the reverse
inclusion above. Thus we have exact equality ¡cf 40105= 6−1117×R.

We record the following observation for ease of reference.

Corollary 3.9. Consider a closed, convex cone Q ⊂ Rn with nonempty interior. Suppose that bdQ is
contained in a proper linear subspace. Then Q is either all of Rn or a half-space.

Proof. Clearly if Q were neither Rn or a half-space, then by Proposition 3.4, we would deduce that
Q = coco4bdQ5 has an empty interior, which is a contradiction. �

Armed with Proposition 3.4 and Lemma 3.5, we can now easily prove the main result of this section.

Theorem 3.10 (Characterization). Consider a proper, stratifiable function f 2 Rn → R̄ that is finite at x̄.
Suppose that f is vertically continuous and directionally Lipschitzian at all points of dom f near x̄. Then for any
dense subset ì⊂ dom f , we have

N c
epi f 4x̄1 f 4x̄55= coco

{

lim
i→�

4ïf 4xi51−15
√

1 + �ïf 4xi5�
2 xi

ì
−→
f
x̄

}

+ 4N c
dom f 4x̄5× 80950 (12)

Consequently, the Clarke subdifferential admits the presentation

¡cf 4x̄5= conv
{

lim
i→�

ïf 4xi52 xi
ì
−→
f
x̄

}

+ coco
{

lim
i→�
ti↓0

tiïf 4xi52 xi
ì
−→
f
x̄

}

+N c
dom f 4x̄50

Proof. We first prove (12). Observe that since f is vertically continuous at x̄, we have N c
dom f 4x̄5× 809⊂

N c
epi f 4x̄1 f 4x̄55, and hence the inclusion ⊃ holds. Therefore we must establish the reverse inclusion. To this

effect, intersecting the domain of f with a small open ball around x̄, we may assume that f is directionally
Lipschitzian and vertically continuous at each point x ∈ dom f . For notational convenience, for a vector v ∈Rn, let
u

v 2= 4v1−15/
√

1 + �v�2. Define the set-valued mapping

F 4x5 2= coco
({

lim
i→�

[

ïf 4xi5 2 xi
ì
−→
f
x

}

∪ 4Ndom f 4x5∩B5× 809
)

1 (13)

By Proposition 3.3, the set 8limi→�

[

ïf 4xi5 2 xi
ì
−→
f

x9 is nonempty. Furthermore, from the established inclusion ⊃,

we see that Ndom f 4x5 is pointed and hence the set cocoNdom f 4x5 is closed for all x ∈ dom f . Consequently, we
deduce

F 4x5= coco
{

lim
i→�

[

ïf 4xi5 2 xi
ì
−→
f
x

}

+ 4N c
dom f 4x5× 80951

Combining (13) with Lemma 2.2, we see that F is outer-semicontinuous with respect to f -attentive convergence.
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Now consider a stratification of dom f into manifolds 8Mi9 having the property that f is smooth on each
stratum Mi. Restricting the domain of f , we may assume that the stratification 8Mi9 consists of only finitely many
sets. We prove the theorem by induction on the dimension of the strata Mi in which the point x̄ lies.

Clearly, the result holds for all strata of dimension n, since f is smooth on such strata and ì is dense in dom f .
As an inductive hypothesis, suppose that the claim holds for all strata that are strictly greater in the partial order �

than a certain stratum M and let x̄ be an arbitrary point of M .
Since f is smooth on M , we deduce that gph f �M is a smooth manifold. Then by Lemma 3.5, for every

vector 0 6= v ∈ rb N̂epi f 4x̄1 f 4x̄55, there exists a sequence 4xl1 rl1 vl5→ 4x̄1 f 4x̄51 v5, with vl ∈ N̂epi f 4xl1 rl5 and
4xl1 rl5y gph f �M . Suppose that there exists a subsequence satisfying rl 6= f 4xl5 for each index l. Then since f is
vertically continuous at x̄, we obtain

v = lim
l→�

vl ⊂ Lim sup
l→�

Nepi f 4xl1 rl5⊂Ndom f 4x̄5× 809⊂ F 4x̄50

On the other hand, if rl = f 4xl5 for all large indices i, then restricting to a subsequence, we may assume that all
the points xl lie in a a stratum M ′ with M ′ �M . The inductive hypothesis and f -attentive outer-semicontinuity
of F yield the inclusion v ∈ F 4x̄5.

Thus we have established the inclusion,

rb N̂epi f 4x̄1 f 4x̄55⊂ F 4x̄50

Since ¡�f 4x̄5 is pointed, we deduce that the cone N̂epi f 4x̄5 is neither a linear subspace nor a half-subspace.
Consequently by Lemma 2.2, we deduce

N̂epi f 4x̄1 f 4x̄55= coco rb N̂epi f 4x̄1 f 4x̄55⊂ F 4x̄50 (14)

In fact, we have shown that (14) holds for all points x̄ ∈M .
Finally consider a limiting normal v ∈Nepi f 4x̄5. Then there exists a sequence 4xl1 rl1 vl5→ 4x̄1 f 4x̄51 v5, with

vl ∈ N̂epi f 4xl1 rl5. It follows from (14), the inductive hypothesis, and f -attentive outer-semicontinuity of F that the
inclusion v ∈ F 4x̄5 holds. Thus the induction is complete, as is the proof of (12).

To finish the proof of the theorem, define the two sets

E 2=

{

lim
i→�

ïf 4xi52 xi
ì
−→
f
x̄

}

1 H 2=

{

lim
i→�
ti↓0

tiïf 4xi52 xi
ì
−→
f
x̄

}

0 (15)

Observe

coco
{

lim
i→�

[

ïf 4xi5 2 xi
ì
−→
f
x̄

}

= coco4E × 8−195∪ 4H × 80950

Thus an inclusion 4v1−15 ∈N c
Q4x̄1 f 4x̄55 holds if and only if there exist vectors yi ∈E ∪H and y ∈N c

dom f 4x̄5,
and real numbers �i > 0, for 1 ≤ i ≤ n+ 1, satisfying

v =
∑

i2 yi∈E

�iyi +
∑

i2 yi∈H

�iyi + y1

1 =
∑

i2 yi∈E

�i

The result follows. �
Remark 3.11. Further applicability is illustrated by Corollary 3.17.

Remark 3.12. Note that a characterization in a similar spirit to Theorem 3.10 for the limiting subdifferential
¡f seems to be out of reach, at least to the best of our knowledge. Indeed we cannot distinguish the limits
of gradients of the two functions � · � and −�·� at points tending to the origin, even though the limiting
subdifferentials of these functions are very different at zero.

Recovering representation (ACLR) of the introduction, in the setting of stratifiable functions, is now an easy task.

Corollary 3.13. Consider a proper, stratifiable function f 2 Rn → R̄, that is finite at x̄. Suppose that f is
directionally Lipschitzian at all points of dom f near x̄, and is continuous near x̄ relative to the domain of f . Then
we have

¡cf 4x̄5=
⋂

�>0

cl conv4ïf 4ì∩B�4x̄555+N c
dom f 4x̄51

where ì is any dense subset of dom f .
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Proof. Since the cone N c
epi f 4x̄1 f 4x̄55 is pointed, one can easily verify, much along the lines of Lemma 2.2,

that the equation

⋂

�>0

cl coco
{

4ïf 4x51−15
√

1 + �ïf 4x5�
2 x ∈ì∩B�4x̄5

}

= coco
{

lim
i→�

4ïf 4xi51−15
√

1 + �ïf 4xi5�
2 xi

ì
→ x̄

}

1

holds. The result follows by an application of Theorem 3.10. We leave the details to the reader. �

Our next goal is to recover the representation of the convex subdifferential (CoR) of the introduction in the
stratifiable setting. In fact, we will consider the more general case of amenable functions. Recall that a proper,
lower-semicontinuous, convex function is directionally Lipschitzian at some point if and only if its domain has a
nonempty interior. A completely analogous situation occurs for amenable functions.

Lemma 3.14. Consider a function f 2 Rn → R̄ that is amenable at x̄. Let V be a neighborhood of x̄ so that f
can be written as a composition f = g � F , for a C1 mapping F 2 V →Rm and a proper, lower-semicontinuous,
convex function g2 Rm → R̄, so that the qualification condition

Ndom g4F 4x̄55∩ kerïF 4x̄5∗ = 8091

is satisfied. Then there exists a neighborhood U of x̄ so that
(i) F 4U ∩ int dom f 5⊂ int dom g,

(ii) U ∩ F −14int dom g5⊂ int dom f .
Furthermore f is directionally Lipschitzian at x̄ if and only if x̄ lies in cl4int dom f 5.

Proof. First, recall a few useful formulas. To this end, Poliquin and Rockafellar [23, Theorem 3.3] shows that
there exists a neighborhood U of x̄ so that for all points x ∈U ∩ dom f , we have

809 = Ndom g4F 4x55∩ kerïF 4x5∗1 (16)

¡f 4x5 = ïF 4x5∗¡g4F 4x551 (17)

Ndom f 4x5 = ïF 4x5∗Ndom g4F 4x550 (18)

Furthermore a computation in the proof of Proposition 2.14 (item (v)) shows that for any x ∈U ∩ dom f and any
r > f 4x5, we have

Nepi f 4x1 r5= ïF 4x5∗Ndom g4F 4x55× 8090 (19)

Observe that for any x ∈U ∩ int dom f , we have

0 =Ndom f 4x5= ïF 4x5∗Ndom g4F 4x551

and consequently Ndom g4F 4x55= 0. We conclude F 4x5 ∈ int dom g, thus establishing (i).
Now consider a point x ∈ U ∩F −14int dom g5. Using (19), we deduce Nepi f 4x1 r5= 0 for any r > f 4x5. Hence by

Rockafellar and Wets [29, Exercise 6.19], we conclude 4x1 r5∈ int epi f and consequently x ∈ int dom f , thus
establishing (ii).

By Rockafellar and Wets [29, Exercise 10.25(a)], we have ¡�f 4x̄5=Ndom f 4x̄5, and in light of (16) and (18) one
can readily verify that the cone Ndom f 4x̄5 is pointed if and only if Ndom g4F 4x̄55 is pointed.

Now suppose that x̄ lies in cl4int dom f 5. Then by (i) the domain dom g has a nonempty interior and consequently
Ndom g4F 4x̄55 is pointed, as is Ndom f 4x̄5.

Conversely suppose that f is directionally Lipschitzian at x̄. Then Ndom g4F 4x̄55 is pointed, and consequently
dom g has a nonempty interior. Observe since F is continuous, the set F −14int dom g5⊂ dom f is open. Hence it
is sufficient to argue that this set contains x̄ in its closure. Suppose, however, that this is not the case. Then there
exists a neighborhood U of x̄ so that the image F 4U5 does not intersect int dom g. It follows that the range of the
linearised mapping w 7→ F 4x̄5+ïF 4x̄5w can be separated from dom g, thus contradicting 4165. See Rockafellar and
Wets [29, Theorem 10.6] for a more detailed explanation of this latter assertion. �

We can now easily recover, in the stratifiable setting, representation (CoR) of the introduction. In fact, an
entirely analogous formula holds more generally for amenable functions. Note that the Clarke subdifferential and
the limiting subdifferential coincide for amenable functions (Poliquin and Rockafellar [23, Theorem 3.1]).
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Corollary 3.15. Consider a proper stratifiable function, f 2 Rn → R̄, that is amenable at a point x̄, so that x̄
lies in the closure of the interior of dom f . Let ì be any dense subset of dom f . Then the subdifferential admits
the presentation

¡f 4x̄5= conv
{

lim
i→�

ïf 4xi52 xi
ì

→ x̄

}

+Ndom f 4x̄50

Proof. By Rockafellar and Wets [29, Exercise 10.25], we have ¡�f 4x̄5=Ndom f 4x̄5. Thus we have

coco
{

lim
i→�
ti↓0

tiïf 4xi52 xi
ì
−→
f
x̄

}

⊂Ndom f 4x̄50

Observe that f is amenable, directionally Lipschitzian (Lemma 3.14), and vertically continuous (Proposition 2.14)
at each point of dom f near x̄. Applying Theorem 3.10, we deduce

¡f 4x̄5= conv
{

lim
i→�

ïf 4xi52 xi
ì
−→
f
x̄

}

+Ndom f 4x̄50

Since the subdifferential ¡f of an amenable function is outer-semicontinuous, the result follows. �

A natural question arises. Does the corollary above hold more generally without the stratifiability assumption?
The answer is yes. This is immediate, in light of (CoR), for the subclass of lower-C2 functions (i.e., those
functions that are locally representable as a difference of convex functions and convex quadratics). A first attempt
at a proof for general amenable functions might be to consider the representation f = g � F and the chain rule

¡f 4x5= ïF 4x̄5∗¡g4F 4x̄550

One may then try to use Rockafellar’s representation formula (CoR) for the convex subdifferential

¡g4F 4x̄55= conv
{

lim
i→�

ïg4yi52 yi → F 4x̄5

}

to deduce the result. However, we immediately run into trouble since F may easily fail to be surjective onto a
neighborhood of F 4x̄5 in dom g. Hence a different more sophisticated proof technique is required. For completeness,
below we present an argument that is a natural extension of the proof of Rockafellar [27, Theorem 25.6]. It is
furthermore instructive to emphasize how the stratifiability assumption allowed us in Corollary 3.15 to bypass
essentially all the technical details of the argument below.

Theorem 3.16. Consider a function f 2 Rn → R̄ that is amenable at a point x̄ lying in cl4int dom f 5. Then the
subdifferential admits the presentation

¡f 4x̄5= conv
{

lim
i→�

ïf 4xi52 xi
ì

→ x̄

}

+Ndom f 4x̄51

where ì is any full-measure subset of dom f .

Proof. Recall that f is Clarke regular at x̄, and therefore ¡�f 4x̄5=Ndom f 4x̄5 is the recession cone of ¡f 4x̄5.
Combining this with the fact that the map ¡f is outer-semicontinuous at x̄, we immediately deduce the inclusion
of ⊃.

We now argue the reverse inclusion. To this end, let V be a neighborhood of x̄ so that f can be written as a
composition f = g � F , for a C1 mapping F 2 V →Rm and a proper, lower-semicontinuous, convex function
g2 Rm → R̄, so that the qualification condition

Ndom g4F 4x̄55∩ kerïF 4x̄5∗ = 8091

is satisfied. Since f is directionally Lipschitzian at x̄, the subdifferential ¡f 4x5 is the sum of the convex hull of its
extreme points and the recession cone Ndom f 4x̄5. Furthermore every extreme point is a limit of exposed points.
Thus

¡f 4x̄5= conv4clE5+Ndom f 4x̄51

where E is the set of all exposed point of ¡f 4x̄5.
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Hence, to prove the needed inclusion, it suffices to argue the inclusion

E ⊂ conv
{

lim
i→�

ïf 4xi52 xi
ì

→ x̄

}

0

Note that, since f is directionally Lipschitzian at x̄, the set on the right hand side is closed.
To this end, let v̄ be an arbitrary exposed point of ¡f 4x̄5. By definition, there exists a vector ā ∈Rn with �ā� = 1

and satisfying
�ā1 v̄�> �ā1 v� for all v ∈ ¡f 4x̄5 with v 6= v̄0

Since Ndom f 4x̄5 is the recession cone of ¡f 4x̄5, from the above we deduce

�ā1 z�< 0 for all 0 6= z ∈Ndom f 4x̄51

and consequently
�ïF 4x̄5ā1w�< 0 for all 0 6=w ∈Ndom g4F 4x̄550

Consider the half-line 8F 4x̄5+ tïF 4x̄5ā2 t ≥ 09. We claim that this half-line cannot be separated from dom g.
Otherwise there would exist a nonzero vector w̄ ∈Ndom g4x̄5 so that for all t > 0 and all x ∈ dom g we have

�x1 w̄� ≤ �F 4x̄5+ tïF 4x̄5ā1 w̄�< �F 4x̄51 w̄�1

which is a contradiction. Hence by Rockafellar [27, Theorem 11.3], this half-line must meet the interior of dom g.
By convexity then, there exists a real number �> 0 satisfying

8F 4x̄5+ tïF 4x̄5ā2 0 < t ≤ �9⊂ int4dom g50

Consequently the points F 4x̄+ tā5 lie in int dom g for all sufficiently small t > 0. By Lemma 3.14, we deduce
that there exists a real number �> 0 so that

8x̄+ tā2 0 < t ≤ �9⊂ int4dom f 50

Hence f is Lipschitz continuous at each point x̄+ tā (for 0 < t ≤ �). Thus, from (LipR) we obtain

¡f 4x̄+ tā5= conv
{

lim
j→�

ïf 4xj52 xj
ì

→ x̄+ tā

}

0 (20)

Now choose a sequence ti → 0 and observe that by Rockafellar [27, Theorem 24.6], for any � > 0 we have

¡g4F 4x̄+ tiā55 ⊂ arg max
v∈¡g4F 4x̄55

�ïF 4x̄5ā1 v� + �B1

= arg max
v∈¡g4F 4x̄55

�ā1 ïF 4x̄5∗v� + �B1

for all large i. We deduce,

ïF 4x̄5∗¡g4F 4x̄+ tiā55⊂ arg max
w∈¡f 4x̄5

�ā1w� + �B= v̄+ �B0

Thus there exists a sequence wi ∈ ¡g4F 4x̄+ tiā55 with ïF 4x̄5∗wi → v̄. Consequently the vectors ïF 4x̄+ tiā5
∗wi ∈

¡f 4x̄+ tiā5 converge to v̄. The result now easily follows from (20) and the fact that f is directionally Lipschitzian
at x̄. �

The following is a further illustration of the applicability of our results to a wide arena of situations.

Corollary 3.17. Consider a proper stratifiable function f 2 Rn → R̄ that is locally Lipschitz continuous at a
point x̄, relative to dom f . Suppose furthermore that dom f is an epi-Lipschitzian set at x̄. Then the formula

¡f 4x̄5= conv
{

lim
i→�

ïf 4xi52 xi
ì

→ x̄

}

+N c
dom f 4x̄51

holds, where ì is any dense subset of dom f .
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Proof. Since f is locally Lipschitz, near x̄ relative to dom f , there exists a globally Lipschitz function
f̃ 2 Rn →R agreeing with f on dom f near x̄. Hence, we have

f 4x5= f̃ 4x5+ �dom f 4x51 locally near x̄0

Combining this with Rockafellar and Wets [29, Exercise 10.10], we deduce

¡�f 4x5⊂Ndom f 4x51 for x near x̄0

We conclude that f is directionally Lipschitzian at all points of dom f near x̄. Furthermore, since the gradients of f̃
are bounded near x̄ so are the gradients of f . The result follows immediately by an application of Proposition 2.14
and Theorem 3.10. �

4. Comments on random sampling. Consider a proper, stratifiable function f 2 Rn → R̄, that is finite at x̄,
directionally Lipschitzian at all points of dom f near x̄, and is continuous near x̄ relative to the domain of f .
Let us suppose that the normal cone Ndom f 4x̄5 is known exactly. Our interest lies in approximating the Clarke
subdifferential ¡cf 4x̄5. In light of Corollary 3.13, one can quickly modify the method considered in Burke et al. [3]
to achieve this goal. We now describe this procedure in more detail.

Fix a certain radius �> 0 and a sample space å= B�4x̄5 along with an associated probability measure that
is absolutely continuous with respect to the Lebesgue measure � on Rn. We assume that the corresponding
density � is strictly positive almost everywhere on å. Observe that the set å∩ domïf has a nonempty interior,
and consequently has positive probability. We can consider a sequence of independent trials with outcomes xi ∈å
for i = 1121 : : : , and form trial sets

Ck = conv8ïf 4xi52 xi ∈å∩ domïf 11 ≤ i ≤ k90

One may then hope that the sets Dk 2=Ck +N c
dom f 4x̄5 approximate the Clarke subdifferential ¡cf 4x̄5 well, as k

tends to infinity. One can rigorously verify this via some modifications of arguments made in Burke et al. [3]. The
starting point is the following result. We omit the proof as it is identical to the argument in Burke et al. [3,
Theorem 2.1].

Theorem 4.1 (Limiting Approximation). Consider a function f 2 Rn → R̄ and a point x̄ ∈ dom f . Suppose
that f is continuously differentiable on an open set dense in dom f . Then for any sampling radius �, we have

cl
�
⋃

k=1

Ck = cl convïf 4B�4x̄551 almost surely0

The following theorem establishes that cl
⋃�

k=1 Dk is almost surely an outer approximation of ¡cf 4x̄5.

Theorem 4.2 (Outer Approximation). Consider a proper, stratifiable function f 2 Rn → R̄ that is finite
at x̄. Suppose that f is directionally Lipschitzian at all points of dom f near x̄, and is continuous near x̄ relative
to the domain of f . Then

¡cf 4x̄5⊂ cl
�
⋃

k=1

Dk1 almost surely0

Proof. This is immediate from Theorem 4.1 and Corollary 3.13. �
On the other hand, the following lemma shows that cl

⋃�

k=1 Dk is not too much bigger than ¡cf 4x̄5, as long as
the radius is sufficiently small and we restrict ourselves to considering only bounded subsets of Rn.

Lemma 4.3 (Truncated Inner Approximation). Consider a proper, stratifiable function f 2 Rn → R̄ that is
finite at x̄. Suppose that f is directionally Lipschitzian at all points of dom f near x̄, and is continuous near x̄
relative to the domain of f . Then for any compact subset â ⊂Rn and a real number � > 0 we have, for any
sufficiently small sampling radius,

â ∩ cl
�
⋃

k=1

Dk ⊂ â ∩ ¡cf 4x̄5+ �B1 almost surely0

If, in addition, f is Lipschitz continuous on its domain, then for any real number � > 0 we have, for any sufficiently
small sampling radius,

cl
�
⋃

k=1

Dk ⊂ ¡cf 4x̄5+ �B1 almost surely0
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Proof. Since f is directionally Lipschitzian at x̄, one can easily determine that the mapping ¡cf is outer-
semicontinuous at x̄. Consequently the truncated mapping x 7→ â ∩ ¡cf 4x5 is upper-semicontinuous at x̄. We
conclude that there exists a real number �> 0 such that

â ∩ ¡cf 4x̄+ �B5⊂ â ∩ ¡cf 4x̄5+ �B0

Observe that cl
⋃�

k=1 Dk is almost surely contained in â ∩ cl conv ¡cf 4x̄+ �B5, and hence the result follows.
Now suppose that f is Lipschitz continuous on its domain. Then, one can verify that there exists a real number

�> 0 satisfying
ïf 4B�4x̄55⊂ ¡cf 4x̄5+ �B0

Since cl
⋃�

k=1 Dk is almost surely contained in cl conv4ïf 4B�4x̄55+Ndom f 4x̄55, the result follows. �
In particular, the distance of a fixed vector v to cl

⋃�

k=1 Dk can be made arbitrarily close to the distance of v to
¡cf 4x̄5.

Theorem 4.4 (Distance Approximation). Consider a proper, stratifiable function f 2 Rn → R̄ that is finite
at x̄. Suppose that f is directionally Lipschitzian at all points of dom f near x̄, and is continuous near x̄ relative to
the domain of f . Then for any vector v ∈Rn and a real � > 0 we have, for any sufficiently small sampling radius,

dist
(

v1 cl
�
⋃

k=1

Dk

)

≥ dist4v1 ¡cf 4x̄55− �1 almost surely1

and consequently
lim
k→�

�dist4v1 clDk5− dist4v1 ¡cf 4x̄55�< �1 almost surely0

Proof. Let � 2= dist4v1 ¡cf 4x̄55 and â = B̄�4v5. Then by Lemma 4.3, we have for any sufficiently small radius,

â ∩ cl
�
⋃

k=1

Dk ⊂ â ∩ ¡cf 4x̄5+ �B1 almost surely0

The result readily follows from the inclusion above and Theorem 4.2. �
A natural test for optimality, using the sampling scheme, is to determine whether the inclusion

0 ∈Dk1

holds. According to Theorem 4.2, if x̄ is a Clarke critical point, then dist401Dk5 → 0 almost surely. On
the other hand, if x̄ is not Clarke-critical, then by Theorem 4.4, for any sufficiently small radius, we have
limk→� dist401 clDk5 > 0. Hence, the test 0 ∈Dk will not generate a false positive.

From a computational point of view, there is a difficulty we have not addressed. Suppose that for each radius �,
the trial points xi are sampled with uniform distribution on the ball B�4x̄5. As the sampling radius decreases to zero,
the proportion of points xi discarded (i.e., those that lie outside of the domain) to those that are inside the domain
might become arbitrarily large, with positive probability. This, for instance, could happen if the domain was the set
84x1 y5 ∈R22 �y� ≤ x210 ≤ x9. This pathology, however, does not occur in the directionally Lipschitzian setting.

Proposition 4.5 (Domain of a Continuous Directionally Lipschitzian Function). Consider a proper
function f 2 Rn → R̄, that is finite at x̄. Suppose that f is directionally Lipschitzian at x̄ and is continuous at x̄,
relative to dom f . Then the domain of f is epi-Lipschitzian at x̄.

Proof. By continuity of f , the domain of f is locally closed near x̄. Now observe that for each real number r
satisfying r > f 4x̄5, we have Nepi f 4x̄1 r5=Ndom f 4x̄5× 809. Consequently the inclusion

Ndom f 4x̄5× 809⊂Nepi f 4x̄1 f 4x̄551

holds. We conclude that the normal cone Ndom f 4x̄5 is pointed, and hence the domain of f is an epi-Lipschitzian set
at x̄. �

The lower Lebesgue density of a set Q ⊂Rn at a point x̄ is

Dens−4Q1 x̄5 2= lim inf
�→0

�4Q∩B�4x̄55

�4B�4x̄55
1

where we recall that � denotes the Lebesgue measure on Rn.
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Proposition 4.6 (Density of epi-Lipschitzian Sets). Consider a set Q ⊂Rn that is epi-Lipschitzian at a
point x̄. Then we have

Dens−4Q1 x̄5 > 00

Proof. Since Q is epi-Lipschitzian at x̄, we may assume that Q is an epigraph of a Lipschitz continuous
function f 2 Rn−1 →R, with x̄ = 40105 (See for example Rockafellar [28, Section 4]). We deduce f 4x5≤ ��x� for
some constant �> 0 and for all points in x ∈Rn−1. Consequently, epi f contains a convex cone with a nonempty
interior, a set that has strictly positive Lebesgue density. �

The sampling scheme outlined in this section is effective whenever gradients are cheap to compute and the
normal cone to the domain at the point of interest is known in advance. Now suppose that the normal cone is
unknown to us, but nevertheless we can test whether a point is in the domain and we can easily project onto the
domain. Then a slight modification of the sampling scheme can still be effective at approximating the Clarke
subdifferential. Namely, during our sampling scheme, rather than discarding points lying outside of the domain, we
may use these points to approximate the normal cone by projecting onto the domain. See Hare and Lewis [14] for
more details. Using this information along with the sampled gradients, we may still hope to approximate the whole
Clarke subdifferential effectively. We, however, do not pursue this further in our work.

5. Local dimension of semi-algebraic subdifferential graphs. In this section, we apply our methods to
study the size of subdifferential graphs of semi-algebraic functions. We first establish notation and record some
preliminary facts from semi-algebraic geometry.

5.1. Semi-algebraic geometry. A semi-algebraic set S ⊂Rn is a finite union of sets of the form

8x ∈Rn2 P14x5= 01 : : : 1 Pk4x5= 01Q14x5 < 01 : : : 1Ql4x5 < 091

where P11 : : : 1 Pk and Q11 : : : 1Ql are polynomials in n variables. In other words, S is a union of finitely many
sets, each defined by finitely many polynomial equalities and inequalities. A map F 2 Rn ⇒Rm is said to be
semi-algebraic if gph F ⊂Rn+m is a semi-algebraic set. Semi-algebraic sets enjoy many nice structural properties.
Unless otherwise stated, we follow the notation of Coste [9], and van den Dries and Miller [30].

A fundamental fact about semi-algebraic sets is provided by the Tarski-Seidenberg Theorem (Coste [9,
Theorem 2.3]). In generally, it states that a linear projection of a semi-algebraic set remains semi-algebraic. From
this result, it follows that a great many constructions preserve semi-algebraicity. In particular, for a semi-algebraic
function f 2 Rn → R̄, the set-valued mappings ¡Pf , ¡̂f , ¡f , and ¡cf are semi-algebraic. See for example Ioffe [17,
Proposition 3.1].

Definition 5.1 (Compatibility). Given finite collections 8Bi9 and 8Cj9 of subsets of Rn, we say that 8Bi9 is
compatible with 8Cj9 if for all Bi and Cj , either Bi ∩Cj = � or Bi ⊂Cj .

Definition 5.2 (Stratifications). Consider a set Q in Rn. A stratification of Q is a finite partition of Q
into disjoint, connected, manifolds Mi (called strata), with the property that for each index i, the intersection of the
closure of Mi with Q is the union of some Mj ’s.

Remarkably, semi-algebraic sets always admit stratifications. Indeed, the following stronger result holds.

Proposition 5.3 (van den Dries and Miller [30], Theorem 4.8). Consider a semi-algebraic function
f 2 Rn → R̄. Then there exists a stratification A of dom f so that f is smooth on each stratum Mi ∈A. Furthermore,
if B is some other stratification of dom f , we can ensure that A is compatible with B.

Definition 5.4 (Dimension). Let Q ⊂ Rn be a nonempty semi-algebraic set. Then the dimension of Q,
denoted dimQ, is the maximal dimension of a stratum in any stratification of Q. We adopt the convention that
dim � = −�.

It can be easily shown that the dimension does not depend on the particular stratification. Observe that the
dimension of a semi-algebraic set only depends on the maximal dimensional manifold in a stratification. Hence,
dimension is a crude measure of the size of the semi-algebraic set. This motivates a localized notion of dimension.

Definition 5.5 (Local Dimension). Consider a semi-algebraic set Q⊂Rn and a point x̄ ∈Q. We let the
local dimension of Q at x̄ be

dimQ4x̄5 2= inf
�>0

dim4Q∩B�4x̄550

Clearly, there exists a real number �̄ > 0 such that for every real number 0 < � < �̄, we have dimQ4x̄5 =

dim4Q∩B�4x̄55.
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There is a straightforward connection between local dimension and the dimension of strata. This is the content
of the following proposition.

Proposition 5.6 (Drusvyatskiy et al. [12], Proposition 3.4). Consider a semi-algebraic set Q ⊂Rn and
a point x̄ ∈Q. Let 8Mi9 be any stratification of Q. Then we have the identity

dimQ4x̄5= max
i
8dimMi2 x̄ ∈ clMi90

Definition 5.7 (Maximal Strata). Given a stratification 8Mi9 of a semi-algebraic set Q ⊂Rn, a stratum M
is maximal if it is not contained in the closure of any other stratum.

Using the defining property of a stratification, we can equivalently say that given a stratification 8Mi9 of a
semi-algebraic set Q⊂Rn, a stratum Mi is maximal if and only if it is disjoint from the closure of any other
stratum.

Proposition 5.8 (Drusvyatskiy et al. [12], Proposition 3.7). Consider a stratification 8Mi9 of a semi-
algebraic set Q⊂Rn. Then given any point x̄ ∈Q, there exists a maximal stratum M satisfying x̄ ∈ clM and
dimM = dimQ4x̄5.

Semi-algebraic methods have recently found great uses in set-valued analysis. See for example Daniilidis and
Pang [10], Drusvyatskiy and Lewis [11], Ioffe [15, 16, 17]. Particularly useful for us is the fact that semi-algebraic
set-valued mappings are generically inner-semicontinuous.

Proposition 5.9 (Drusvyatskiy and Lewis [11], Proposition 2.28, 2.30). Consider a semi-algebraic, set-
valued mapping G2 Rn ⇒Rm. Then there exists a stratification of domG into finitely many semi-algebraic
manifolds 8Mi9 such that on each stratum Mi, the mapping G is inner-semicontinuous and the dimension of
the images F 4x5 is constant. If in addition F is closed-valued, we can ensure that the restriction G�Mi

is also
outer-semicontinuous for each index i.

For a more refined result along the lines of Proposition 5.9, see Daniilidis and Pang [10, Theorem 28]. The
following result is standard.

Proposition 5.10 (Coste [8], Theorem 3.18). Consider a semi-algebraic, set-valued mapping F 2 Rn ⇒Rm.
Suppose there exists an integer k such that F 4x5 is k-dimensional for each point x ∈ dom F . Then the equality,

dim gph F = dim dom F + k1

holds.

We will need a version of Proposition 5.10 that pertains to local dimension.

Proposition 5.11. Consider a semialgebraic mapping F 2 Rn ⇒ Rm that is inner-semicontinuous on its
domain. Suppose that there exist constants k and l such that for each pair 4x1 v5 ∈ gph F , we have

dimdom F x = k1 dimF 4x5 v = l0

Then gph F has local dimension k+ l around every pair 4x1 v5 ∈ gph F .

Proof. Let �2 Rn ×Rm →Rn be the canonical projection onto Rn. Consider any stratification A of gph F and
let M ∈A be any maximal stratum. Clearly

dimM ≤ dim gph F ≤ k+ l0

Consider an arbitrary point x ∈�4M5. Since M is maximal, the set M ∩ 48x9×Rm5 is open relative to gph F ∩

48x9×Rm5. Furthermore, since dimF 4x5 v = l for each vector v ∈ F 4x5, it easily follows that dimM ∩ 48x9×Rm5= l.
We now claim that dim�4M5= k. Indeed suppose this is not the case, that is suppose that the strict inequality

dim�4M5< k holds. Since dimdom F x = k, we deduce that there exists a sequence xi → x̄, with xi ∈ dom F and
xi y�4M5 for each index i. Since F is inner-semicontinuous on M , we deduce

M ∩ 48x9×Rm5⊂ Lim sup
i→�

8xi9× F 4xi51

which contradicts maximality of M . Consequently, using Proposition 5.10, we deduce dimM = k+ l. Since M was
an arbitrary maximal stratum, the result follows by an application of Proposition 5.8. �
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5.2. Local dimension of semi-algebraic subdifferential graphs. We begin with a definition.

Definition 5.12 (Subjets). For a function f 2 Rn → R̄, the limiting subjet is given by

6¡f 7 2= 84x1 f 4x51 v52 v ∈ ¡f 4x590

Subjets corresponding to the other subdifferentials are defined analogously.

Much like f -attentive convergence, subjets are useful for keeping track of variational information in the absence
of continuity. In this section, we build on the following theorem. This result and its consequences for generic
semi-algebraic optimization problems are discussed extensively in Drusvyatskiy and Lewis [11].

Theorem 5.13 (Drusvyatskiy and Lewis [11], Theorem 3.6). Let f 2 Rn → R̄ be a proper semi-algebraic
function. Then the subjets 6¡Pf 7, 6¡̂f 7, 6¡f 7 and 6¡cf 7 have dimension exactly n.

An immediate question arises: Can the four subjets have local dimension smaller than n at some of their points?
In a recent paper (Drusvyatskiy et al. [12]) showed that this may easily happen for 6¡cf 7. Remarkably the authors
showed that the subjets 6¡Pf 7, 6¡̂f 7, and 6¡f 7 of a lower-semicontinuous, semi-algebraic function f 2 Rn → R̄ do
have uniform local dimension n. The significance of this result and the relation to Minty’s theorem were also
discussed. In this section, we provide a much simplified proof of this rather striking fact (Theorem 5.16). The main
tool we use is the following accessibility lemma, which is a special case of Lemma 3.5. Because the proof is much
simpler than that of Lemma 3.5, we include the full argument below.

Lemma 5.14 (Accessibility). Consider a closed set Q ⊂Rn, a manifold M ⊂Q, and a point x̄ ∈M . Recall
that the inclusion N P

Q 4x̄5⊂NM 4x̄5 holds. Suppose that a proximal normal vector v̄ ∈N P
Q 4x̄5 lies in the boundary of

N P
Q 4x̄5, relative to the linear space NM 4x̄5. Then there exist sequences xi → x̄ and vi → v̄, with vi ∈N P

Q 4xi5, and so
that all the points xi lie outside M .

Proof. There exists a real number �> 0 so that x̄+�v̄ lies in the prox-normal neighborhood W of M at x̄
and such that the equality PQ4x̄+�v̄5= x̄ holds. Consider any sequence vi ∈Rn satisfying

vi → v̄1 vi ∈NM4x̄51 vi yN P
Q 4x̄50

Choose arbitrary points xi ∈ PQ4x̄+�vi5. We have

4x̄− xi5+�vi ∈N P
Q 4xi50

We deduce xi 6= x̄. Clearly, the sequence xi converges to x̄. We claim xi yM for all sufficiently large indices i. If it
were otherwise, then for large i, the points x̄+�vi would lie in W and we would have xi ∈ PM4x̄+�vi5= x̄,
which is a contradiction. Thus we have obtained a sequence 4xi1 41/�54x̄− xi5+ vi5 ∈ gphN P

Q , with xi yM , and
satisfying 4xi1 41/�54x̄− xi5+ vi55→ 4x̄1 v̄5. �

The following is now immediate.

Corollary 5.15. Consider a lower semicontinuous function f 2 Rn → R̄, a manifold M ⊂Rn, and a point
x̄ ∈M . Suppose that f is smooth on M and the strict inequality dim ¡Pf 4x̄5 < dimNM4x̄5 holds. Then for every
vector v̄ ∈ ¡Pf 4x̄5, there exist sequences 4xi1 f 4xi51 vi5→ 4x̄1 f 4x̄51 v̄5, with vi ∈ ¡Pf 4xi5, and so that all the points xi
lie outside M .

Proof. From the strict inequality dim ¡Pf 4x̄5 < dimNM4x̄5, it is clear that the normal cone N P
epi f 4x̄1 f 4x̄55 has

empty interior relative to the normal space Ngph4x̄1 f 4x̄55. An application of Lemma 5.14 completes the proof. �
We can now prove the main result of this section.

Theorem 5.16. Consider a lower-semicontinuous, semi-algebraic function f 2 Rn → R̄. Then the subjets 6¡Pf 7,
6¡̂f 7, and 6¡f 7 have constant local dimension n around each of their points.

Proof. We first prove the theorem for the subjet 6¡Pf 7. Consider the semi-algebraic set-valued mapping

F 4x5 2= 8f 4x59× ¡Pf 4x51

whose graph is precisely 6¡Pf 7. By Propositions 5.3 and 5.9, we may stratify the domain of F into finitely many
semi-algebraic manifolds 8Mi9, so that on each stratum Mi, the mapping F is inner-semicontinuous, the images F 4x5
have constant dimension, and f is smooth. Consider a triple 4x1 f 4x51 v5 ∈ 6¡Pf 7. We prove the theorem by induction
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on the dimension of the strata M in which the point x lies. Clearly the result holds for the strata of dimension n, if
there are any. As an inductive hypothesis, assume that the theorem holds for all points 4x1 f 4x51 v5 ∈ 6¡Pf 7 with x
lying in strata of dimension at least k, for some integer k ≥ 1.

Now consider a stratum M of dimension k− 1 and a point x ∈M . If dim F 4x5= n− dimM , then, recalling
that F is inner-semicontinuous on M and applying Proposition 5.11, we see that the set gphF �M has local
dimension n around 4x1 f 4x51 v5 for any v ∈ ¡Pf 4x5. The result follows in this case.

Now suppose dim F 4x5 < n− dimM . Then, by Corollary 5.15, for such a vector v, there exists a sequence
4xi1 f 4xi51 vi5 → 4x1 f 4x51 v5 satisfying 4xi1 f 4xi51 vi5 ∈ 6¡Pf 7 and xi y M for each index i. Restricting to a
subsequence, we may assume that all the points xi lie in a stratum K satisfying dimK ≥ k. By the inductive
hypothesis, we deduce

dim6¡P f 7
4x1 f 4x51 v5≥ lim sup

i→�

dim6¡P f 7
4xi1 f 4xi51 vi5= n0

This completes the proof of the inductive step and of the theorem for the subjet 6¡Pf 7.
Now observe that 6¡Pf 7 is dense in 6¡̂f 7 and in 6¡f 7. It follows that 6¡̂f 7 and 6¡f 7 also have local dimension n

around each of their points. �

Surprisingly Theorem 5.16 may fail in the Clarke case, even for Lipschitz continuous functions.

Example 5.17. Consider the function f 2 R3 →R1 defined by

f 4x1 y1 z5=











min8x1 y1 z29 if 4x1 y1 z5 ∈R3
+

min8−x1−y1 z29 if 4x1 y1 z5 ∈R3
−

0 otherwise.

Let x̄ ∈Rn be the origin and let â 2= conv841101051 40111051 40101059. One can determine that the local dimension
of gph ¡cf at 4x̄1 v̄5 is two for any vector v̄ ∈ 4conv4â ∪−â55\4â ∪−â5. For more details see Drusvyatskiy
et al. [12, Example 3.11].
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