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ORTHOGONAL INVARIANCE AND IDENTIFIABILITY∗

A. DANIILIDIS† , D. DRUSVYATSKIY‡ , AND A. S. LEWIS§

Abstract. Matrix variables are ubiquitous in modern optimization, in part because variational
properties of useful matrix functions often expedite standard optimization algorithms. Convexity is
one important such property: permutation-invariant convex functions of the eigenvalues of a sym-
metric matrix are convex, leading to the wide applicability of semidefinite programming algorithms.
We prove the analogous result for the property of “identifiability,” a notion central to many active-
set-type optimization algorithms.
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1. Introduction. The explosion of interest over recent years in semidefinite
programming—optimization involving semidefinite matrix variables—derives strongly
from the convexity of many important functions of the eigenvalues of a symmetric
matrix. This convexity underpins the success of semidefinite programming algorithms.

To be more specific, consider spectral functions. These are functions F , defined
on the space of symmetric matrices Sn, that depend on matrices only through their
eigenvalues, that is, functions that are invariant under the action of the orthogonal
group by conjugation. Spectral functions can always be written as the composition
F = f ◦ λ, where f is a permutation-invariant function on Rn, and λ is the mapping
assigning to each matrix X ∈ Sn the vector of its eigenvalues (λ1(X), . . . , λn(X))
in nonincreasing order; see [3, section 5.2]. Notable examples of functions fitting in
this category are X �→ λ1(X) and X �→∑n

i=1 |λi(X)|. Though the spectral mapping
λ is not straightforward in behavior (being, in particular, nonsmooth), the spectral
function F inherits convexity from the underlying function f [22, 14], a fact closely
related to von Neumann’s theorem on unitarily invariant matrix norms [35].

Convexity opens to matrix optimization a wide arena of algorithms. We study
here another variational concept underpinning a broad range of optimization algo-
rithms of “active set” type: the idea of “identifiability.” To introduce this notion,
for simplicity consider a minimizer x̄ ∈ Rn for a continuous but nonsmooth convex
function f . We say that a sequence xi → x̄ “approaches criticality” if each point xi

minimizes a perturbed function f + 〈yi, ·〉 for vectors yi → 0 in Rn. We call a set
M ⊂ Rn “identifiable” if every sequence approaching criticality eventually lies in M .
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The active-set philosophy in optimization amounts to “identifying” such a set M that
is also a manifold on which the restriction f |M is smooth, and then applying smooth
techniques to minimize the restriction.

Our aim here is to show how this identifiability approach “lifts” through the spec-
tral mapping λ, in much the same way as we observed above for convexity. Specifically,
given a matrix X̄ ∈ Sn, we show that, if, around the vector λ(X̄), the function f is
“locally symmetric” (meaning locally invariant under permutations fixing that vec-
tor), and if an identifiable set M for f is also locally symmetric, then the inverse
image λ−1(M) is identifiable at X̄ for the spectral function f ◦ λ. Furthermore, we
show that smoothness of the restriction f |M lifts to smoothness of (f ◦ λ)|λ−1(M).

The existence of an identifiable manifold is equivalent to the notion of partial
smoothness discussed at length in [23, 20, 36, 16]. The property holds very com-
monly: in particular, it is generic in convex semialgebraic optimization [2]. More
concretely, when minimizing a polyhedral function f , an identifiable manifold always
exists. Since many common spectral functions (like the two examples above) can be
written in the composite form f ◦ λ, where f is a permutation-invariant polyhedral
function, they are amenable to optimization using active-set techniques, via identifia-
bility. One immediate application is to nonlinear eigenvalue optimization problems of
the form minx λ1

(
C(x)

)
, where C(·) is a smoothly parametrized symmetric matrix.

The problem of estimating the corresponding identifiable manifold is discussed in [26,
Example 4.5].

We also develop parallel results for orthogonally invariant functions of nonsym-
metric matrices, the role of eigenvalues being taken by singular values. An interest-
ing application is the approach to low-rank solutions X to a linear matrix equation
A(X) = b via nuclear norm regularization:

min
X
‖A(X)− b‖2 + ρ‖X‖∗.

Since the nuclear norm ‖ ·‖∗ is a polyhedral function (namely the l1 norm) of the vec-
tor of singular values, this objective function always has an identifiable manifold M .
A simple proximal minimization algorithm (requiring only a singular value decompo-
sition at each iteration) generates iterates that must eventually lie on M , opening the
possibility of acceleration techniques: for further discussion, see [25].

Our result sits in a broader context. In the language above, the transfer principle
asserts that the spectral function F = f ◦ λ inherits many geometric (more generally
variational analytic) properties of f , or, equivalently, F inherits many properties of
its restriction to diagonal matrices. For example, when f is a permutation-invariant
norm, then F is an orthogonally invariant norm on the space of symmetric matrices—
a special case of von Neumann’s theorem on unitarily invariant matrix norms [35].
The collection of properties known to satisfy this principle is striking: prox-regularity
[9], Clarke-regularity [24, 22], smoothness [22, 21, 32, 10, 34, 33], algebraicity [10],
and stratifiability [15, Theorem 4.8]. In this work, as we have explained, we add
identifiability (and partial smoothness) to the list (Proposition 3.15 and Theorem
3.19).

One of our intermediary theorems is of particular interest. We observe that
the main result of [30] immediately implies that a permutation-invariant set M is
a Cp manifold if and only if the spectral set λ−1(M) is a Cp manifold (for any
p = 2, . . . ,∞, ω); see Theorem 2.7. This nicely complements and simplifies the recent
results of [10, 11, 12].
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The outline of the manuscript is as follows. In section 2 we establish some basic
notation and discuss the spectral lifting property for smooth functions and manifolds.
In section 3 we prove the lifting property for identifiable sets and partly smooth
manifolds, while in section 4 we explore duality theory of partly smooth manifolds.
Section 5 illustrates how our results have natural analogues for nonsymmetric matri-
ces.

2. Spectral functions and lifts of manifolds.

2.1. Notation. Throughout, the symbol E will denote a Euclidean space (by
which we mean a finite-dimensional real inner-product space). The functions that we
will be considering will take their values in the extended real line R := R∪{−∞,∞}.
We will always assume that the functions under consideration are proper, meaning
they are never {−∞} and are not always {+∞}. For a set Q ⊂ E, the indicator
function δQ : E→ R is a function that takes the value 0 on Q and +∞ outside of Q.
An open ball of radius ε around a point x̄ will be denoted by Bε(x̄), while the open
unit ball will be denoted by B.

To simplify notation, real-analytic functions on E will be called Cω-smooth. Given
any set Q ⊂ E and a mapping F : Q→ Q̃, where Q̃ is a subset of some other Euclidean
space H, we say that F is Cp-smooth (for p = 2, . . . ,∞, ω) if for each point x̄ ∈ Q,

there is a neighborhood U of x̄ and a Cp-smooth mapping F̂ : E → H that agrees
with F on Q ∩ U . A subset M ⊂ E, where E is d-dimensional, is a Cp manifold of
dimension r if for each point x̄ ∈M , there is an open neighborhood U around x̄ and
a mapping F from E to a (d−r)-dimensional Euclidean space so that F is Cp-smooth
with the derivative ∇F (x̄) having full rank and we have M ∩U = {x ∈ U : F (x) = 0}.
In this case, the range of the adjoint of ∇F (x̄) is the normal space to M at x̄ and will
be denoted by NM (x̄).

Two particular realizations of E will be important for us, namely Rn and the
space Sn of n × n-symmetric matrices. Throughout, we will fix an orthogonal basis
of Rn, along with an inner product 〈·, ·〉. The corresponding norm will be written as
‖ ·‖. The group of permutations of coordinates of Rn will be denoted by Σn, while an
application of a permutation σ ∈ Σn to a point x ∈ Rn will simply be written as σx.
We denote by Rn

≥ the set of all points x ∈ Rn with x1 ≥ x2 ≥ · · · ≥ xn. A function

f : Rn → R is said to be symmetric if we have f(x) = f(σx) for every x ∈ Rn and
every σ ∈ Σn.

The vector space of real n × n-symmetric matrices Sn will always be endowed
with the trace inner product 〈X,Y 〉 = tr (XY ), while the associated norm (Frobenius
norm) will be denoted by ‖·‖F . The group of orthogonal n×nmatrices will be denoted
by On. Note that the group of permutations Σn naturally embeds in On. The action
of On by conjugation on Sn will be written as U.X := UTXU , for matrices U ∈ On

and X ∈ Sn. A function F : Sn → R is said to be spectral if we have F (X) = F (U.X)
for every X ∈ Sn and every U ∈ On.

2.2. Smooth transfer principle. We can now consider the spectral mapping
λ : Sn → Rn, which simply maps symmetric matrices to the vector of their eigenvalues
in nonincreasing order. Then a function on Sn is spectral if and only if it can be
written as a composition f ◦ λ, for some symmetric function f : Rn → R. (See, for
example [22, Proposition 4].) As was mentioned in the introduction, the transfer
principle asserts that a number of variational-analytic properties hold for the spectral
function f ◦ λ if and only if they hold for f . Evidently, analogous results are valid
even when f is only locally symmetric (to be defined below). The proofs follow by
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a reduction to the symmetric case by simple symmetrization arguments, and hence
we will omit details in the current paper. The goal of the current section is to note
that the transfer principle, in particular, holds for smooth functions and for smooth
manifolds.

For each point x ∈ Rn, we consider the stabilizer

Fix(x) := {σ ∈ Σn : σx = x}.
The following notion, borrowed from [10], will be key for us.

Definition 2.1 (local symmetry). A function f : Rn → R is locally symmetric
at a point x̄ ∈ Rn if we have f(x) = f(σx) for all points x near x̄ and all permutations
σ ∈ Fix(x̄).

A set Q ⊂ Rn is symmetric (respectively, locally symmetric) if the indicator
function δQ is symmetric (respectively, locally symmetric). The following shows that
smooth functions satisfy the transfer principle [33, 34].

Theorem 2.2 (transfer principle for smooth functions). Consider a function
f : Rn → R and a matrix X ∈ Sn. Suppose that f is locally symmetric around
x̄ := λ(X). Then f is Cp-smooth around x̄ (for p = 2, . . . ,∞, ω ) if and only if the
spectral function f ◦ λ is Cp-smooth around X.

Shortly, we will need a slightly strengthened version of Theorem 2.2, where
smoothness is considered only relative to a certain locally symmetric subset. We
record it now.

Corollary 2.3 (transfer principle for restricted smooth functions). Consider a
function f : Rn → R, a matrix X ∈ Sn, and a set M ⊂ Rn containing x̄ := λ(X).
Suppose that f and M are locally symmetric around x̄. Then the restriction of f to
M is Cp-smooth (p = 2, . . . ,∞, ω) around x̄ if and only if the restriction of f ◦ λ to
λ−1(M) is Cp-smooth around X.

Proof. Suppose that the restriction of f to M is Cp-smooth around x̄. Then
there exists a Cp-smooth function f̃ , defined on Rn, and agreeing with f on M near
x̄. Consider then the symmetrized function

f̃sym(x) :=
1

|Fix(x̄)|
∑

σ∈Fix(x̄)
f̃(σx),

where |Fix(x̄)| denotes the cardinality of the set Fix(x̄). Clearly f̃sym is Cp-smooth,
locally symmetric around x̄, and moreover it agrees with f onM near x̄. Finally, using
Theorem 2.2, we deduce that the spectral function f̃sym ◦ λ is Cp-smooth around X
and it agrees with f ◦ λ on λ−1(M) near X. This proves the forward implication of
the corollary.

To see the converse, define F := f ◦ λ, and suppose that the restriction of F to
λ−1(M) is Cp-smooth around X. Then there exists a Cp-smooth function F̃ , defined
on Sn, and agreeing with F on λ−1(M) near X. Consider then the function

F̃sym(X) :=
1

|On|
∑

U∈On

F̃ (U.X),

where |On| denotes the cardinality of the set On. Clearly F̃sym is Cp-smooth, spectral,

and it agrees with F on λ−1(M) near X. Since F̃sym is spectral, we deduce that there

is a symmetric function f̃ on Rn satisfying F̃sym = f̃ ◦ λ. Theorem 2.2 then implies

that f̃ is Cp-smooth. Hence to complete the proof, all we have to do is verify that
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f̃ agrees with f on M near x̄. To this end, consider a point x ∈ M near x̄ and
choose a permutation σ ∈ Fix(x̄) satisfying σx ∈ Rn

≥. Let U ∈ On be such that

X = UT (Diag x̄)U . Then we have

f̃(x) = f̃(σx) = F̃sym

(
UT (Diagx)U

)
= F

(
UT (Diag x)U

)
= f(σx) = f(x),

as claimed.
Our next goal is to observe that smooth manifolds also satisfy the transfer prin-

ciple. One path to such a result proceeds by “lifting the defining equations”; see
[10, 11, 12]. This strategy, however, encounters serious difficulties. An alternate idea,
which we pursue here, is to instead consider the distance function. To this end, recall
that the distance of a point x to a set Q ⊂ E is simply

dQ(x) := inf {‖x− y‖ : y ∈ Q},
whereas the metric projection of x onto Q is defined by

PQ(x) := {y ∈ Q : ‖x− y‖ = dQ(x)}.
The following theorem provides a key link between the order of smoothness of a set
and that of the squared distance function [30].1

Theorem 2.4 (smoothness of sets and the distance function). Consider a set
Q ⊂ E that is locally closed around a point x̄ ∈ Q. Then Q is a Cp manifold near x̄
(for p = 2, . . . ,∞, ω) if and only if the function d2Q is Cp-smooth near x̄.

Remark 2.5. It is quite illuminating to outline the proof of Theorem 2.4. If Q is
a Cp manifold near x̄, then it is easy to see, using the implicit function theorem, that
the projection PQ is Cp−1 smooth near x̄, and consequently that d2Q is Cp-smooth

near x̄. The converse is slightly more delicate. If d2Q is Cp-smooth near x̄, then

the projection PQ is Cp−1 smooth near x̄. Moreover, one can then show that PQ has
constant rank on a neighborhood of x̄ and therefore that Q is a Cp−1 manifold near x̄.
Now, carefully writing out the definition of PQ in terms of the Cp−1-smooth defining
equations of M , one easily sees that the defining equations are in fact Cp-smooth.

Finally, the following theorem shows that distance functions interact well with
the eigenvalue mapping [9, Proposition 2.3, Theorem 2.4].

Theorem 2.6 (distance functions and the spectral mapping). Consider a matrix
X ∈ Sn and a set Q ⊂ Rn that is locally symmetric around the point x̄ := λ(X). Then
the function dQ is locally symmetric near x̄ and the distance to the spectral set λ−1(Q)
satisfies

dλ−1(Q) = dQ ◦ λ locally around X.

Combining the previous two theorems, the following is immediate.
Theorem 2.7 (transfer principle for smooth manifolds). Consider a matrix

X ∈ Sn and a set M ⊂ Rn that is locally closed and locally symmetric around
x̄ := λ(X). Then M is a Cp manifold around x̄ (for p = 2, . . . ,∞, ω) if and only if
the spectral set λ−1(M) is a Cp manifold around X.

Proof. By Theorem 2.4, the set M is a Cp manifold around x̄ if and only if the
function d2M is Cp-smooth near x̄. On the other hand, by Theorems 2.2 and 2.6,
the latter occurs if and only if the function d2M ◦ λ = d2λ−1(M) is C

p-smooth near X.
Applying Theorem 2.4 once again, the result follows.

1The original version of the current manuscript included a proof of this theorem. During the
reviewing process, however, we became aware of [30] where the same result had appeared earlier.
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2.3. Dimension of the lifted manifold. The proof of Theorem 2.7 is very
short (in light of Theorem 2.4), unlike the involved proof of [10]. One shortcoming,
however, is that it does not a priori yield information about the dimension of the lifted
manifold λ−1(M). In this section, we outline how we can use the fact that λ−1(M)
is a manifold to establish a formula between the dimensions of M and λ−1(M). This
section can safely be skipped upon first reading.

We adhere closely to the notation and some of the combinatorial arguments of
[10]. With any point x ∈ Rn we associate a partition Px = {I1, . . . , Iρ} of the set
{1, . . . , n}, whose elements are defined as follows:

i, j ∈ I� ⇐⇒ xi = xj .

It follows readily that for x ∈ Rn
≥ there exists a sequence

1 = i0 ≤ i1 < · · · < iρ = n

such that

I� = {i�−1, . . . , i� − 1} for each � ∈ {1, . . . , ρ}.
For any such partition P we set

ΔP := {x ∈ Rn
≥ : Px = P}.

As explained in [10, section 2.2], the set of all such ΔP ’s defines an affine stratification
of Rn

≥. Observe further that for every point x ∈ Rn
≥ we have

λ−1(x) = {UT (Diag x)U : U ∈ On}.
Let On

X := {U ∈ On : UTXU = X} denote the stabilizer of X , which is a C∞

manifold of dimension

dimOn
X = dim

⎛⎝ ∏
1≤�≤ρ

O|I�|

⎞⎠ =
∑

1≤�≤ρ

|I�| (|I�| − 1)

2
,

as one can easily check. Since the orbit λ−1(x) is isomorphic to On/On
X , it follows

that it is a submanifold of Sn. A computation, which can be found in [10], then yields
the equation

dim λ−1(x) = dimOn − dimOn
X =

∑
1≤i<j≤ρ

|Ii| |Ij |.

Consider now any locally symmetric manifold M of dimension d. There is no loss
of generality to assume that M is connected and has nonempty intersection with Rn

≥.
Let us further denote by Δ∗ an affine stratum of the aforementioned stratification
of Rn

≥ with the property that its dimension is maximal among all of the strata Δ
enjoying a nonempty intersection with M . It follows that there exists a point x̄ ∈
M ∩Δ∗ and δ > 0 satisfying M ∩B(x̄, δ) ⊂ Δ∗ (see [10, section 3] for details). Since
dim λ−1(M) = dim λ−1(M ∩B(x̄, δ)) and since λ−1(M ∩ B(x̄, δ)) is a fibration, we
obtain

(2.1) dim λ−1(M) = dim M +
∑

1≤i<j≤ρ∗

|I∗i | |I∗j |,
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where P∗ = {I∗1 , . . . , I∗ρ} is the partition associated to x̄ (or, equivalently, to any
x ∈ Δ∗).

Remark 2.8. It’s worth pointing out that it is possible to have strata Δ1 �= Δ2 of
Rn

≥ of the same dimension, but giving rise to stabilizers of different dimension for their
elements. The argument above shows that a connected locally symmetric manifold
cannot intersect simultaneously with these strata. This also follows implicitly from
the forthcoming Lemma 4.4, asserting the connectedness of λ−1(M), whenever M is
connected.

3. Spectral lifts of identifiable sets and partly smooth manifolds. We
begin this section by summarizing some of the basic tools used in variational analysis
and nonsmooth optimization. We refer the reader to the monographs of Borwein and
Zhu [4], Clarke et al. [8], Mordukhovich [27], and Rockafellar and Wets [31] for more
details. We adhere closely to the terminology and notation of [31].

3.1. Variational analysis of spectral functions. For a function f : E → R,
the domain of f is

dom f := {x ∈ E : f(x) < +∞},
and the epigraph of f is

epi f := {(x, r) ∈ E×R : r ≥ f(x)}.
We will say that f is lower semicontinuous (lsc) at a point x̄ provided that the
inequality liminfx→x̄ f(x) ≥ f(x̄) holds. If f is lsc at every point, then we will simply
say that f is lsc. For any set Q, the symbols clQ, convQ, and affQ will denote the
topological closure, the convex hull, and the affine span ofQ, respectively. The symbol
parQ will denote the parallel subspace of Q, namely the set parQ := (affQ)−Q. For
convex sets Q ⊂ E, the symbols riQ and rbQ will denote the relative interior and
the relative boundary of Q, respectively.

Subdifferentials are the primary variation-analytic tools for studying general non-
smooth functions f on E.

Definition 3.1 (subdifferentials). Consider a function f : E → R and a point
x̄ with f(x̄) finite.

(i) The Fréchet subdifferential of f at x̄, denoted ∂̂f(x̄), consists of all vectors
v ∈ E satisfying

f(x) ≥ f(x̄) + 〈v, x − x̄〉+ o(‖x− x̄‖).
(ii) The limiting subdifferential of f at x̄, denoted ∂f(x̄), consists of all vec-

tors v ∈ E for which there exist sequences xi ∈ E and vi ∈ ∂̂f(xi) with
(xi, f(xi), vi)→ (x̄, f(x̄), v).

We now recall from [22, Proposition 2] the following lemma, which shows that
subdifferentials behave as one would expect in the presence of symmetry.

Lemma 3.2 (subdifferentials under symmetry). Consider a function f : Rn → R
and a point x̄ ∈ Rn. Then the equation

∂f(σx) = σ∂f(x) holds for any σ ∈ Fix(x̄) and all x near x̄.

Similarly, in terms of the spectral function F := f ◦ λ, we have

∂F (U.X) = U.(∂F (X)) for any U ∈ Onand any X ∈ Sn.
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Remark 3.3. In particular, if f : Rn → R is locally symmetric around x̄, then the
sets ∂̂f(x̄), ri ∂̂f(x̄), rb ∂̂f(x̄), aff ∂̂f(x̄), and par ∂̂f(x̄) are invariant under the action
of the group Fix(x̄).

The following result is the cornerstone for the variational theory of spectral map-
pings [22, Theorem 6].

Theorem 3.4 (subdifferential under local symmetry). Consider an lsc function
f : Rn → R and a matrix X ∈ Sn, and suppose that f is locally symmetric at λ(X).
Then we have

∂(f ◦ λ)(X) = {UT (Diag v)U : v ∈ ∂f(λ(X)) and U ∈ On
X},

where

On
X = {U ∈ On : X = UT (Diagλ(X))U}.

It is often useful to require a certain uniformity of the subgradients of the function.
This is the content of the following definition [29, Definition 1.1].

Definition 3.5 (prox-regularity). A function f : E → R is called prox-regular
at x̄ for v̄, with v̄ ∈ ∂f(x̄), if f is locally lsc at x̄ and there exist ε > 0 and ρ > 0 so
that the inequality

f(y) ≥ f(x) + 〈v, y − x〉 − ρ

2
‖y − x‖2

holds whenever x, y ∈ Bε(x̄), v ∈ Bε(v̄) ∩ ∂f(x), and f(x) < f(x̄) + ε. The function
f is called prox-regular at x̄, if it is finite at x̄ and f is prox-regular at x̄ for every
subgradient v ∈ ∂f(x̄).

In particular C2-smooth functions and lsc, convex functions are prox-regular at
each of their points [31, Example 13.30, Proposition 13.34]. In contrast, the negative
norm function x �→ −‖x‖ is not prox-regular at the origin. The following theorem
shows that prox-regularity also satisfies the transfer principle [9, Theorem 4.2].

Theorem 3.6 (directional prox-regularity under spectral lifts). Consider an lsc
function f : Rn → R and a symmetric matrix X. Suppose that f is locally symmetric
around x̄ := λ(X). Then f is prox-regular at x̄ if and only if f ◦ λ is prox-regular at
X.

The following standard result of linear algebra will be important for us [22, Propo-
sition 3].

Lemma 3.7 (simultaneous conjugacy). Consider vectors x, y, u, v ∈ Rn. Then
there exists an orthogonal matrix U ∈ On with

Diag x = UT (Diagu)U and Diag y = UT (Diag v)U,

if and only if there exists a permutation σ ∈ Σn with x = σu and y = σv.
The following is a simple consequence.
Corollary 3.8 (conjugations and permutations). Consider vectors v1, v2 ∈ Rn

and a matrix X ∈ Sn. Suppose that for some U1, U2 ∈ On
X we have

UT
1 (Diag v1)U1 = UT

2 (Diag v2)U2.

Then there exists a permutation σ ∈ Fix(λ(X)) satisfying σv1 = v2.
Proof. Observe

(U1U
T
2 )TDiag v1(U1U

T
2 ) = Diag v2,

(U1U
T
2 )TDiagλ(X)(U1U

T
2 ) = Diagλ(X).

The result follows by an application of Lemma 3.7.
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3.2. Main results. In this section, we consider partly smooth sets, introduced
in [23]. This notion generalizes the idea of active manifolds of classical nonlinear
programming to an entirely representation-independent setting.

Definition 3.9 (partial smoothness). Consider a function f : E→ R and a set
M ⊂ E containing a point x̄. Then f is Cp-partly smooth (p = 2, . . . ,∞, ω) at x̄
relative to M if the following hold:

(i) (Smoothness) M is a Cp manifold around x̄ and f restricted to M is Cp-
smooth near x̄,

(ii) (Regularity) f is prox-regular at x̄,
(iii) (Sharpness) the affine span of ∂f is a translate of the normal space NM (x),
(iv) (Continuity) ∂f restricted to M is continuous at x̄.

When the above properties hold, we call M the partly smooth manifold of f at x̄.
Remark 3.10. Though the original definition of partial smoothness replaces the

prox-regularity condition by Clarke-regularity, we feel that the prox-regularity is es-
sential for the theory. In particular, without it, partly smooth manifolds are not even
guaranteed to be locally unique and the basic property of identifiability may fail [20,
section 7].

Some comments are in order. First, the continuity property of ∂f is meant in
the Painlevé–Kuratowski sense. See, for example, [31, Definition 5.4]. The exact
details of this notion will not be needed in our work, and hence we do not dwell on
it further. Geometrically, partly smooth manifolds have a characteristic property in
that the epigraph of f looks “valley-like” along the graph of f

∣∣
M
. See Figure 1 for an

illustration.

Fig. 1. The partly smooth manifold M for f(x, y) := |x|(1− |x|) + y2.

It is reassuring to know that partly smooth manifolds are locally unique. This is
the content of the following theorem [20, Corollary 4.2].

Theorem 3.11 (local uniqueness of partly smooth manifolds). Consider a func-
tion f : E → R that is C2-partly smooth at x̄ relative to two manifolds M1 and M2.
Then there exists a neighborhood U of x̄ satisfying U ∩M1 = U ∩M2.

Our goal in this section is to prove that partly smooth manifolds satisfy the trans-
fer principle. However, proving this directly is rather difficult. This is in large part
because the continuity of the subdifferential mapping ∂(f ◦λ) seems to be intrinsically
tied to continuity properties of the mapping

X �→ On
X = {U ∈ On : X = UT (Diagλ(X))U},
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which are rather difficult to understand.
We, however, will side-step this problem entirely by instead focusing on a property

that is seemingly different from partial smoothness—finite identification. This notion
is of significant independent interest. It has been implicitly considered by a number of
authors in connection with the possibility to accelerate various first-order numerical
methods [36, 17, 7, 6, 5, 18, 1, 19, 13], and has explicitly been studied in [16] for its
own sake.

Definition 3.12 (identifiable sets). Consider a function f : E → R, a point
x̄ ∈ Rn, and a subgradient v̄ ∈ ∂f(x̄). A set M ⊂ dom f is identifiable at x̄ for v̄ if
for any sequences (xi, f(xi), vi) → (x̄, f(x̄), v̄), with vi ∈ ∂f(xi), the points xi must
all lie in M for all sufficiently large indices i.

Remark 3.13. It is important to note that identifiable sets are not required to be
smooth manifolds. Indeed, as we will see shortly, identifiability is a more basic notion
than partial smoothness.

The relationship between partial smoothness and finite identification is easy to
explain. Indeed, as the following theorem shows, partial smoothness is in a sense just
a “uniform” version of identifiability [16, Proposition 9.4].

Proposition 3.14 (partial smoothness and identifiability). Consider an lsc
function f : E → R that is prox-regular at a point x̄. Let M ⊂ dom f be a Cp

manifold (p = 2, . . . ,∞, ω) containing x̄, with the restriction f
∣∣
M

being Cp-smooth
near x̄. Then the following are equivalent:

1. f is Cp-partly smooth at x̄ relative to M ,
2. M is an identifiable set (relative to f) at x̄ for every subgradient v̄ ∈ ri∂f(x̄).

In light of the theorem above, our strategy for proving the transfer principle for
partly smooth sets is two-fold: first, prove the analogous result for identifiable sets
and then gain a better understanding of the relationship between the sets ri ∂f(λ(X))
and ri ∂(f ◦ λ)(X).

Proposition 3.15 (spectral lifts of identifiable sets). Consider an lsc function
f : Rn → R and a symmetric matrix X ∈ Sn. Suppose that f is locally symmetric
around x̄ := λ(X) and consider a subset M ⊂ Rn that is locally symmetric around x̄.
Then M is identifiable (relative to f) at x̄ for v̄ ∈ ∂f(x̄), if and only if λ−1(M) is
identifiable (relative to f ◦λ) at X for UT (Diag v̄)U ∈ ∂(f ◦λ)(X), where U ∈ On

X
is

arbitrary.

Proof. We first prove the forward implication. Fix a subgradient

V := U
T
(Diag v̄)U ∈ ∂(f ◦ λ)(X)

for an arbitrary transformation U ∈ On
X

(see Theorem 3.4). For convenience, let

F := f ◦ λ and consider a sequence (Xi, F (Xi), Vi) → (X,F (X), V ). Our goal is to
show that for all large indices i, the inclusion λ(Xi) ∈ M holds. To this end, there
exist matrices Ui ∈ On

Xi
and subgradients vi ∈ ∂f(λ(Xi)) with

UT
i (Diagλ(Xi))Ui = Xi and UT

i (Diag vi)Ui = Vi.

Restricting to a subsequence, we may assume that there exists a matrix Ũ ∈ On
X

sat-

isfying Ui → Ũ , and consequently there exists a subgradient ṽ ∈ ∂f(λ(X)) satisfying
vi → ṽ. Hence we obtain

ŨT (Diagλ(X))Ũ = X and ŨT (Diag ṽ)Ũ = V = U
T
(Diag v̄)U.
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By Corollary 3.8, there exists a permutation σ ∈ Fix(x̄) with σṽ = v̄. Observe
(λ(Xi), f(λ(Xi)), vi) → (x̄, f(x̄), ṽ). Observe that since M is identifiable at x̄ for v̄
and f is locally symmetric around x̄, the set σ−1M is identifiable (relative to f) at x̄
for ṽ. Consequently, for all large indices i, the inclusion λ(Xi) ∈ σ−1M holds. Since
M is locally symmetric at x̄, we deduce that all the points λ(Xi) eventually lie in M .

To see the reverse implication, fix an orthogonal matrix U ∈ O
n

X and define V :=

U
T
(Diag v̄)U ∈ ∂(f ◦ λ)(X). Consider a sequence (xi, f(xi), vi) → (x̄, f(x̄), v̄) with

vi ∈ ∂f(xi). It is not difficult to see then that there exist permutations σi ∈ Fix(x̄)
satisfying σixi ∈ Rn

≥. Restricting to a subsequence, we may suppose that σi are equal
to a fixed σ ∈ Fix(x̄). Define

Xi := U
T
(Diagσxi)U and Vi := U

T
(Diagσvi)U.

Letting Aσ−1 ∈ On denote the matrix representing the permutation σ−1, we have

Xi := (U
T
Aσ−1U)T

[
U

T
(Diagxi)U

]
U

T
Aσ−1U and

Vi := (U
T
Aσ−1U)T [U

T
(Diag vi)U ]U

T
Aσ−1U.

We deduce Xi → (U
T
Aσ−1U)TX(U

T
Aσ−1U) and Vi → (U

T
Aσ−1U)TV (U

T
Aσ−1U).

On the other hand, observe X = (U
T
Aσ−1U)TX(U

T
Aσ−1U). Moreover, we have

(U
T
Aσ−1U)TV (U

T
Aσ−1U) = V by Lemma 3.2. Since λ−1(M) is identifiable (relative

to F ) at X for V , we deduce that the matrices Xi lie in λ−1(M) for all sufficiently
large indices i. Since M is locally symmetric around x̄, the proof is complete.

Using the results of section 2, we can now describe in a natural way the affine
span, relative interior, and relative boundary of the Fréchet subdifferential. We begin
with a lemma.

Lemma 3.16 (affine generation). Consider a matrix X ∈ Sn and suppose that
the point x := λ(X) lies in an affine subspace V ⊂ Rn that is invariant under the
action of Fix(x). Then the set

{UT (Diag v)U : v ∈ V and U ∈ On
X},

is an affine subspace of Sn.
Proof. Define the set L := (parV)⊥. Observe that the set L ∩ V consists of a

single vector; call this vector w. Since both L and V are invariant under the action
of Fix(x), we deduce σw = w for all σ ∈ Fix(x).

Now define a function g : Rn → R by declaring

g(y) = 〈w, y〉+ δx+L(y),

and note that the equation

∂̂g(x) := w +Nx+L(x) = V holds.

Observe that for any permutation σ ∈ Fix(x), we have

g(σy) = 〈w, σy〉 + δx+L(σy) = 〈σ−1w, y〉+ δx+σ−1L(y) = g(y).

Consequently, g is locally symmetric at x. Observe

(g ◦ λ)(Y ) = 〈w, λ(Y )〉+ δλ−1(x+L)(Y ).
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It is immediate from Theorems 2.2 and 2.7, that the function Y �→ 〈w, λ(Y )〉 is C∞-
smooth around X and that λ−1(x + L) is a C∞ manifold around X . Consequently,

∂̂(g ◦ λ)(X) is an affine subspace of Sn. On the other hand, we have

∂̂(g ◦ λ)(X) = {UT (Diag v)U : v ∈ V and U ∈ On
X},

thereby completing the proof.
Proposition 3.17 (affine span of the spectral Fréchet subdifferential). Consider

a function f : Rn → R and a matrix X ∈ Sn. Suppose that f is locally symmetric at
λ(X). Then we have

aff ∂̂(f ◦ λ)(X) = {UT (Diag v)U : v ∈ aff ∂̂f(λ(X)) and U ∈ On
X},(3.1)

rb ∂̂(f ◦ λ)(X) = {UT (Diag v)U : v ∈ rb ∂̂f(λ(X)) and U ∈ On
X},(3.2)

ri ∂̂(f ◦ λ)(X) = {UT (Diag v)U : v ∈ ri ∂̂f(λ(X)) and U ∈ On
X}.(3.3)

Proof. Throughout the proof, let x := λ(X). We prove the formulas in the order
that they are stated. To this end, observe that the inclusion ⊃ in (3.1) is immediate.
Furthermore, the inclusion

∂̂(f ◦ λ)(X) ⊂ {UT (Diag v)U : v ∈ aff ∂̂f(λ(X)) and U ∈ On
X}

clearly holds. Hence to establish the reverse inclusion in (3.1), it is sufficient to show
that the set

{UT (Diag v)U : v ∈ aff ∂̂f(λ(X)) and U ∈ On
X}

is an affine subspace; but this is immediate from Remark 3.3 and Lemma 3.16. Hence
(3.1) holds.

We now prove (3.2). Consider a matrix UT (Diag v)U ∈ rb ∂̂(f ◦ λ)(X) with

U ∈ On
X and v ∈ ∂̂f(λ(X)). Our goal is to show the stronger inclusion v ∈ rb ∂̂f(x).

Observe from (3.1), there exists a sequence UT
i (Diag vi)Ui → UT (Diag v)U with Ui ∈

On
X , vi ∈ aff ∂̂f(x), and vi /∈ ∂̂f(x). Restricting to a subsequence, we may assume

that there exists a matrix Ũ ∈ On
X with Ui → Ũ and a vector ṽ ∈ aff ∂̂f(x) with

vi → ṽ. Hence the equation

ŨT (Diag ṽ)Ũ = UT (Diag v)U holds.

Consequently, by Corollary 3.8, there exists a permutation σ ∈ Fix(x) satisfying

σṽ = v. Since ∂̂f(x) is invariant under the action of Fix(x), it follows that ṽ lies in

rb ∂̂f(x), and consequently from Remark 3.3 we deduce v ∈ rb ∂̂f(x). This establishes

the inclusion⊂ of (3.2). To see the reverse inclusion, consider a sequence vi ∈ aff ∂̂f(x)

converging to v ∈ ∂̂f(x) with vi /∈ ∂̂f(x) for each index i. Fix an arbitrary matrix

U ∈ On
X and observe that the matrices UT (Diag vi)U lie in aff ∂̂(f◦λ)(X) and converge

to UT (Diag v)U . We now claim that the matrices UT (Diag vi)U all lie outside of

∂̂(f ◦ λ)(X). Indeed suppose this is not the case. Then there exist matrices Ũi ∈ On
X

and subgradients ṽi ∈ ∂̂f(x) satisfying

UT (Diag vi)U = ŨT
i (Diag ṽi)Ũi.

An application of Corollary 3.8 and Remark 3.3 then yields a contradiction. Therefore,
the inclusion UT (Diag v)U ∈ rb ∂̂(f ◦ λ)(X) holds, and the validity of (3.2) follows.
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Finally, we aim to prove (3.3). Observe that the inclusion ⊂ of (3.3) is immediate
from (3.2). To see the reverse inclusion, consider a matrix UT (Diag v)U for some

U ∈ On
X and v ∈ ri ∂̂f(x). Again, an easy application of Corollary 3.8 and Remark 3.3

yields the inclusion UT (Diag v)U ∈ ri ∂̂(f ◦λ)(X). We conclude that (3.3) holds.
Lemma 3.18 (symmetry of partly smooth manifolds). Consider an lsc function

f : Rn → R that is locally symmetric at x̄. Suppose that f is C2-partly smooth at x̄
relative to M . Then M is locally symmetric around x̄.

Proof. Consider a permutation σ ∈ Fix(x̄). Then the function f is partly smooth
at x̄ relative to σM . On the other hand, partly smooth manifolds are locally unique
by Theorem 3.11. Consequently, we deduce equality M = σM locally around x̄. The
claim follows.

The main result of this section is now immediate.
Theorem 3.19 (lifts of Cp-partly smooth functions). Consider an lsc function

f : Rn → R and a matrix X ∈ Sn. Suppose that f is locally symmetric around
x̄ := λ(X). Then f is Cp-partly smooth (p = 2, . . . ,∞, ω) at x̄ relative to M if and
only if f ◦ λ is Cp-partly smooth at X relative to λ−1(M).

Proof. Throughout the proof, we will be using Proposition 3.14, thereby going
back and forth between identifiability and partial smoothness. Suppose that f is
Cp-partly smooth at x̄ relative to M . In light of Lemma 3.18, we deduce that M is
locally symmetric at x̄. Consequently, Theorem 2.7 implies that the set λ−1(M) is a
Cp manifold, while Corollary 2.3 implies that f ◦ λ is Cp-smooth on λ−1(M) near X.
Applying Theorem 3.6, we conclude that f ◦ λ is prox-regular at X. Consider now
a subgradient V ∈ ri ∂(f ◦ λ)(X). Then by Proposition 3.17, there exists a vector
v ∈ ri∂f(x̄) and a matrix U ∈ On

X
satisfying

V = UT (Diag v)U and X = UT (Diag x̄)U.

Observe by Proposition 3.14, the set M is identifiable at x̄ for v. Then applying
Proposition 3.15, we deduce that λ−1(M) is identifiable (relative to f ◦λ) atX relative
to V . Since V is an arbitrary element of ri∂(f ◦ λ)(X), applying Proposition 3.14,
we deduce that f ◦ λ is Cp-partly smooth at X relative to λ−1(M), as claimed. The
converse follows along the same lines.

4. Partly smooth duality for polyhedrally generated spectral functions.
Consider an lsc, convex function f : E→ R. Then the Fenchel conjugate f∗ : E→ R
is defined by setting

f∗(y) = sup
x∈Rn

{〈x, y〉 − f(x)}.

Moreover, in terms of the powerset of E, denoted P(E), we define a correspondence
Jf : P(E)→ P(E) by setting

Jf (Q) :=
⋃
x∈Q

ri∂f(x).

The significance of this map will become apparent shortly. Before proceeding, we
recall some basic properties of the conjugation operation:

Biconjugation: f∗∗ = f ,
Subgradient inversion formula: ∂f∗ = (∂f)−1,
Fenchel–Young inequality: 〈x, y〉 ≤ f(x) + f∗(y) for every x, y ∈ Rn.
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Moreover, convexity and conjugation behave well under spectral lifts. See, for
example, [3, section 5.2].

Theorem 4.1 (lifts of convex sets and conjugation). If f : Rn → R is a sym-
metric function, then f∗ is also symmetric and the formula

(f ◦ λ)∗ = f∗ ◦ λ holds.

Furthermore, f is convex if and only if the spectral function f ◦ λ is convex.
The following definition is standard.
Definition 4.2 (stratification). A finite partition A of a set Q ⊂ E is a strat-

ification provided that for any partitioning sets (called strata) M1 and M2 in A, the
implication

M1 ∩ clM2 �= ∅ =⇒ M1 ⊂ clM2 holds.

If the strata are open polyhedra, then A is a polyhedral stratification. If the strata
are Cp manifolds, then A is a Cp-stratification.

Stratification duality for convex polyhedral functions. We now establish
the setting and notation for the rest of the section. Suppose that f : Rn → R is
a convex polyhedral function (epigraph of f is a closed convex polyhedron). Then
f induces a finite polyhedral stratification Af of dom f in a natural way. Namely,
consider the partition of epi f into open faces {Fi}. Projecting all faces Fi, with
dimFi ≤ n, onto the first n-coordinates we obtain a stratification of the domain
dom f of f that we denote by Af . In fact, one can easily see that f is Cω-partly
smooth relative to each polyhedron M ∈ Af .

A key observation for us will be that the correspondence f
∗←→ f∗ is not only

a pairing of functions, but it also induces a duality pairing between Af and Af∗ .
Namely, one can easily check that the mapping Jf restricts to an invertible mapping
Jf : Af → Af∗ with inverse given by Jf∗ .

Limitations of stratification duality. It is natural to ask whether for general
(nonpolyhedral) lsc, convex functions f : Rn → R, the correspondence f

∗←→ f∗, along
with the mapping J , induces a pairing between partly smooth manifolds of f and f∗.
A little thought, however, shows an immediate obstruction: images of Cω-smooth
manifolds under the map Jf may fail to be even C2-smooth.

Example 4.3 (failure of smoothness). Consider the conjugate pair

f(x, y) =
1

4
(x4 + y4) and f∗(x, y) =

3

4
(|x| 43 + |y| 43 ).

Clearly, f is partly smooth relative to R2, whereas any possible partition of R2 into
partly smooth manifolds relative to f∗ must consist of at least three manifolds (one
manifold in each dimension: one, two, and three). Hence no duality pairing between
partly smooth manifolds is possible. See Figures 2 and 3 for an illustration.

Indeed, this is not very surprising, since the convex duality is really a duality
between smoothness and strict convexity. See, for example, [28, section 4] or [31,
Theorem 11.13]. Hence, in general, one needs to impose tough strict convexity con-
ditions in order to hope for this type of duality to hold. Rather than doing so, and
more in line with the current work, we consider the spectral setting. Namely, we
will show that in the case of spectral functions F := f ◦ λ, with f symmetric and
polyhedral—functions of utmost importance in eigenvalue optimization—the mapping
J does induce a duality correspondence between partly smooth manifolds of F and
F ∗.
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Fig. 2. {(x, y) : x4 + y4 ≤ 4}. Fig. 3. {(x, y) : |x| 43 + |y| 43 ≤ 4
3
}.

In what follows, let us denote by

M sym :=
⋃
σ∈Σ

σM,

the symmetrization of any subset M ⊂ Rn. Before we proceed, we will need the
following result.

Lemma 4.4 (path-connected lifts). Let M ⊆ Rn be a path-connected set and
assume that for any permutation σ ∈ Σ, we either have σM = M or σM ∩M = ∅.
Then λ−1(M sym) is a path-connected subset of Sn.

Proof. Let X1, X2 be in λ−1(M sym), and set xi = λ(Xi) ∈ M sym ∩ Rn
≥, for

i ∈ {1, 2}. It is standard to check that the sets λ−1(xi) are path-connected manifolds
for i = 1, 2. Consequently, the matrices Xi and Diag(xi) can be joined via a path
lying in λ−1(xi). Thus, in order to construct a path joining X1 to X2 and lying in
λ−1(M sym), it would be sufficient to join x1 to x2 inside M sym. This in turn will
follow immediately if both σx1, σx2 belong to M for some σ ∈ Σ. To establish this,
we will assume without loss of generality that x1 lies in M . In particular, we have
M ∩Rn

≥ �= ∅ and we will establish the inclusion x2 ∈M .
To this end, consider a permutation σ ∈ Σ satisfying x2 ∈ σM ∩ Rn

≥. Our
immediate goal is to establish σM ∩ M �= ∅, and thus σM = M thanks to our
assumption. To this end, consider the point y ∈ M satisfying x2 = σy. If y lies in
Rn

≥, then we deduce y = x2 and we are done. Therefore, we can assume y /∈ Rn
≥. We

can then consider the decomposition σ = σk · · ·σ1 of the permutation σ into 2-cycles
σi, each of which permutes exactly two coordinates of y that are not in the right
(decreasing) order. For the sake of brevity, we omit details of the construction of such
a decomposition; besides, it is rather standard. We claim now σ1M = M . To see
this, suppose that σ1 permutes the i and j coordinates of y where yi < yj and i > j.
Since x1 lies in Rn

≥ and M is path-connected, there exists a point z ∈ M satisfying
zi = zj . Then σ1z = z, whence by assumption σ1M = M and σ1y ∈ M . Applying
the same argument to σ1y and σ1M with the 2-cycle σ2 we obtain σ2σ1M = M and
σ2σ1y ∈M . By induction, σM = M . Thus x2 ∈M and the assertion follows.

Stratification duality for spectral lifts. Consider a symmetric, convex poly-
hedral function f : Rn → R together with its induced stratification Af of dom f .
Then with each polyhedron M ∈ Af , we may associate the symmetric set M sym. We
record some properties of such sets in the following lemma.

Lemma 4.5 (properties ofAf ). Consider a symmetric, convex polyhedral function
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f : Rn → R and the induced stratification Af of dom f . Then the following are true:
(i) For any sets M1,M2 ∈ Af and any permutation σ ∈ Σ, the sets σM1 and

M2 either coincide or are disjoint.
(ii) The action of Σ on Rn induces an action of Σ on

Ak
f := {M ∈ Af : dimM = k}

for each k = 0, . . . , n. In particular, the set M sym is simply the union of all
polyhedra belonging to the orbit of M under this action.

(iii) For any polyhedron M ∈ Af , and every point x ∈ M , there exists a neigh-
borhood U of x satisfying U ∩M sym = U ∩M . Consequently, M sym is a Cω

manifold of the same dimension as M .
Moreover, λ−1(M sym) is connected, whenever M is.

The last assertion follows from Lemma 4.4. The remaining assertions are straight-
forward and hence we omit their proof.

Notice that the strata of the stratification Af are connected Cω manifolds, which
fail to be symmetric in general. In light of Lemma 4.5, the set M sym is a Cω manifold
and a disjoint union of open polyhedra. Thus the collection

Asym
f := {M sym : M ∈ Af}

is a stratification of dom f , whose strata are now symmetric manifolds. Even though
the new strata are disconnected, they give rise to connected lifts λ−1(M sym). One can
easily verify that, as before, Jf restricts to an invertible mapping Jf : Asym

f → Asym
f∗

with inverse given by the restriction of Jf∗ .
We now arrive at the main result of the section.
Theorem 4.6 (lift of the duality map). Consider a symmetric, convex polyhedral

function f : Rn → R and define the spectral function F := f ◦ λ. Let Af be the finite
polyhedral partition of dom f induced by f , and define the collection

AF :=
{
λ−1(M sym) : M ∈ Af

}
.

Then the following properties hold:
(i) AF is a Cω-stratification of domF comprised of connected manifolds,
(ii) F is Cω-partly smooth relative to each set λ−1(M sym) ∈ AF .
(iii) The map JF : P(Sn) → P(Sn) restricts to an invertible mapping JF : AF →

AF∗ with inverse given by the restriction of JF∗ .
(iv) The following diagram commutes:

AF AF∗

Asym
f Asym

f∗

JF

Jf

λ−1 λ−1

That is, the equation (λ−1 ◦ Jf )(M sym) = (JF ◦ λ−1)(M sym) holds for every
set M sym ∈ Asym

f .

Proof. In light of Lemma 4.5, each set M sym ∈ Asym
f is a symmetric Cω manifold.

The fact that AF is a Cω-stratification of domF now follows from the transfer princi-
ple for stratifications [15, Theorem 4.8], while the fact that each manifold λ−1(M sym)
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is connected follows immediately from Lemma 4.5. Moreover, from Theorem 3.19, we
deduce that F is Cω-partly smooth relative to each set in AF .

Consider now a set M sym ∈ Asym
f for some M ∈ Af . Then we have

JF (λ−1(M sym)) =
⋃

X∈λ−1(Msym)

ri ∂F (X)

=
⋃

X∈λ−1(Msym)

{UT (Diag v)U : v ∈ ri∂f(λ(X)) and U ∈ On
X},

and concurrently,

λ−1(Jf (M sym)) = λ−1

( ⋃
x∈Msym

ri∂f(x)

)
=

⋃
x∈Msym, v∈ri ∂f(x)

On.(Diag v).

We claim that the equality λ−1(Jf (M sym)) = JF (λ−1(M sym)) holds. The in-
clusion “⊃” is immediate. To see the converse, fix a point x ∈ M sym, a vector v ∈
ri∂f(x), and a matrix U ∈ On. We must show V := UT (Diag v)U ∈ JF (λ−1(M sym)).
To see this, fix a permutation σ ∈ Σ with σx ∈ Rn

≥, and observe

UT (Diag v)U = (AσU)T (Diag σv)AσU,

where Aσ denotes the matrix representing the permutation σ. Define a matrix
X := (AσU)T (Diagσx)AσU . Clearly, we have V ∈ ri∂F (X) and X ∈ λ−1(M sym).
This proves the claimed equality. Consequently, we deduce that the assignment
JF : P(Sn) → P(Sn) restricts to a mapping JF : AF → AF∗ , and that the diagram
commutes. Commutativity of the diagram along with the fact that Jf∗ restricts to
be the inverse of Jf : Asym

f → Asym
f∗ implies that JF∗ restricts to be the inverse of

JF : AF → AF∗ .
Example 4.7 (constant rank manifolds). Consider the closed convex cones of

positive (respectively, negative) semidefinite matrices Sn
+ (respectively, Sn−). Clearly,

we have equality Sn
± = λ−1(Rn

±). Define the constant rank manifolds

M±
k := {X ∈ Sn

± : rankX = k} for k = 0, . . . , n.

Then using Theorem 4.6 one can easily check that the manifolds M±
k and M∓

n−k are

dual to each other under the conjugacy correspondence δSn
+

∗←→ δSn
− .

5. Extensions to nonsymmetric matrices. Consider the space of n×m real
matrices Mn×m, endowed with the trace inner-product 〈X,Y 〉 = tr (XTY ), and the
corresponding Frobenius norm. We will let the groupOn,m := On×Om act onMn×m

simply by defining

(U, V ).X = UTXV for all (U, V ) ∈ On,m and X ∈Mn×m.

Recall that singular values of a matrix A ∈Mn×m are the square roots of the eigen-
values of the matrix ATA. The singular value mapping σ : Mn×m → Rm is simply
the mapping taking each matrix X to its vector (σ1(X), . . . , σm(X)) of singular values
in nonincreasing order. We will be interested in functions F : Mn×m → R that are in-
variant under the action ofOn,m. Such functions F are representable as a composition
F = f ◦ σ, where the outer-function f : Rm → R is absolutely permutation-invariant,



ORTHOGONAL INVARIANCE AND IDENTIFIABILITY 597

meaning invariant under all signed permutations of coordinates. As in the symmetric
case, it is useful to localize this notion. Namely, we will say that a function f is lo-
cally absolutely permutation-invariant around a point x̄ provided that for each signed
permutation σ fixing x̄, we have f(σx) = f(x) for all x near x̄. Then all of the results
presented in the symmetric case have natural analogues in this setting (with nearly
identical proofs).

Theorem 5.1 (the nonsymmetric case: lifts of manifolds). Consider a matrix
X ∈Mn×m and a set M ⊂ Rm that is locally absolutely permutation-invariant around
x̄ := σ(X). Then M is a Cp manifold (p = 2, . . . ,∞, ω) around x̄ if and only if the
set σ−1(M) is a Cp manifold around X.

Proposition 5.2 (the nonsymmetric case: lifts of identifiable sets). Consider
an lsc f : Rm → R and a matrix X ∈ Mn×m. Suppose that f is locally absolutely
permutation-invariant around x̄ := σ(X) and consider a subset M ⊂ Rm that is
locally absolutely permutation-invariant around x̄. Then M is identifiable (relative
to f) at x̄ for v̄ ∈ ∂f(x̄), if and only if σ−1(M) is identifiable (relative to f ◦ σ)
at X for UT (Diag v̄)V ∈ ∂(f ◦ σ)(X), where (U, V ) ∈ On,m is any pair satisfying
X = UT (Diag σ(X))V .

Theorem 5.3 (the nonsymmetric case: lifts of partly smooth manifolds). Con-
sider an lsc function f : Rm → R and a matrix X ∈Mn×m. Suppose that f is locally
absolutely permutation-invariant around x̄ := σ(X). Then f is Cp-partly smooth
(p = 2, . . . ,∞, ω) at x̄ relative to M if and only if f ◦ σ is Cp-partly smooth at X
relative to σ−1(M).

Finally, we should note that section 4 also has a natural analogue in the nonsym-
metric setting. For the sake of brevity, we do not record it here.

Acknowledgment. The first author thanks Nicolas Hadjisavvas for useful dis-
cussions leading to a simplification of the proof of Lemma 4.4.
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[6] J.V. Burke and J.J. Moré, On the identification of active constraints, SIAM J. Numer. Anal.,
25 (1988), pp. 1197–1211.
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