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468 D. Drusvyatskiy, A. S. Lewis

1 Introduction

Active set ideas permeate traditional nonlinear optimization. Classical problems
involve a list of smooth nonlinear constraints: the active set for a particular feasi-
ble solution—the collection of binding constraints at that point—is crucial in first and
second order optimality conditions, in sensitivity analysis, and for certain algorithms.
Contemporary interest in more general constraints (such as semidefiniteness) suggests
a reappraisal. A very thorough modern study of sensitivity analysis in its full generality
appears in Bonnans and Shapiro [3]. Approaches more variational-analytic in flavor
appear in texts such as [31]. Our aim here is rather different: to present a simple fresh
approach, combining wide generality with mathematical elegance.

Our approach has its roots in the notion of an “identifiable surface” [34], and its
precursors [1,5–7,13,15,16]. In essence, the idea is extremely simple: given a critical
point x for a function f , a set M is identifiable if any sequence of points approaching
x that is approximately critical (meaning corresponding subgradients approach zero)
must eventually lie in M . The terminology comes from the idea that an iterative
algorithm that approximates x along with an approximate criticality certificate must
“identify” M . To take the classical example where f is a pointwise maximum of smooth
functions, around any critical point x , assuming a natural constraint qualification,
we can define M as those points with the same “active set” of functions attaining
the maximum. Similarly we may consider the case when the function f is a sum
of two-norms of finitely many smooth mappings. Then around any critical point x ,
assuming a natural nondegeneracy condition, we can define M as the zero-set of those
mappings that are active—meaning those that are zero at x . For a historical discussion
of minimizing such a function using active set methods, see Andersen et al. [2].

Identifiable sets M are useful computationally because the problem of minimizing
f near the critical point x is equivalent to minimizing the restriction of f to M , which
may be an easier problem, and because the identifiability property allows convergent
algorithms to find M—the motivation for active set methods. For a discussion on how
to constructively identify and exploit such sets, see for example Lee and Wright [20],
Mifflin and Sagastizábal [25]. We show moreover how M is a natural tool for optimality
conditions: under reasonable conditions, quadratic growth of f around x is equivalent
to quadratic growth on M—a potentially easier condition to check. In particular, it
is the (generalized) derivatives of the restriction of f to M that play a decisive role
for sensitivity analysis. See a related discussion of second-order optimality conditions
for semidefinite programming in Lewis and Zhang [22]. Our results, in particular,
generalize the ideas there.

Clearly the smaller the identifiable set M , the more informative it is. Ideal would
be a “locally minimal identifiable set”. We note that such sets may fail to exist, even
for finite convex functions f . However, when a minimal identifiable set M does exist,
we show that it is both unique (locally), and central to sensitivity analysis: it consists
locally of all critical points of small linear perturbations to f . We show furthermore
that, under reasonable conditions, variational analysis of f simplifies because, locally,
the graph of its subdifferential mapping is influenced only by the restriction of f to
M . One appealing consequence is a close relationship between minimal identifiable
sets and critical cones appearing in the study of variational inequalities.
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Optimality, identifiability, and sensitivity 469

The case when an identifiable set M is in fact a manifold around the point x (as in the
classical example above) is particularly interesting. Remarkably, this case is equivalent
to a powerful but seemingly stringent list of properties known as “partial smoothness”
[21], nondegeneracy and prox-regularity—related work on “VU algorithms” and “the
fast track” appears in Mifflin and Sagastizábal [23–25] and Hare and Sagastizábal
[17,18]. By contrast, our approach here is to offer a concise mathematical development
emphasizing how this important scenario is in fact very natural indeed.

The outline of the paper is as follows. In Sect. 2, we introduce the notion of identi-
fiability for arbitrary set-valued mappings. Then in Sect. 3, we specialize this idea to
subdifferential mappings, laying the foundation for the rest of the paper. Section 4 con-
tains basic examples of identifiable sets. Arriving at our main results in Sect. 5, we study
variational geometry of identifiable sets; this in particular allows us to establish a strong
relationship between identifiable sets and critical cones in Sect. 6. Finally in Sect. 7,
we consider optimality conditions in the context of identifiable sets, while in Sect. 8
we establish a relationship between identifiable manifolds and partial smoothness—
one of our central original goals. To facilitate the reading, we have omitted a num-
ber of details. An expanded version of the material presented here may be found in
[11, Chapter 7] and [12].

2 Identifiability in set-valued analysis

A set-valued mapping G from Rn to Rm , denoted by G : Rn ⇒ Rm , is a mapping
from Rn to the power set of Rm . Thus for each point x ∈ Rn, G(x) is a subset of Rm .
The domain, graph, and range of G are defined to be

dom G := {x ∈ Rn : G(x) �= ∅},
gph G := {(x, y) ∈ Rn × Rm : y ∈ G(x)

}
,

rge G :=
⋃

x∈Rn

G(x),

respectively. For two sets M and Q in Rn , we will say that the inclusion M ⊂ Q holds
locally around x̄ , if there exists a neighborhood U of x̄ satisfying M ∩ U ⊂ Q ∩ U .
The following is the key property we explore in this work.

Definition 2.1 (Identifiable sets) Consider a mapping G : Rn ⇒ Rm . We say that a
subset M ⊂ Rn is identifiable at x̄ for v̄, where v̄ ∈ G(x̄), if the inclusion

gph G ⊂ M × Rm holds locally around (x̄, v̄).

Thus a set M is identifiable at x̄ for v̄ ∈ G(x̄) if for any sequence (xi , vi ) → (x̄, v̄)

in gph G, the points xi must lie in M for all sufficiently large indices i . Clearly M is
identifiable at x̄ for v̄ if and only if the same can be said of M ∩ dom G. Hence we
will make light of the distinction between two such sets.

Clearly dom G is identifiable at x̄ for v̄ ∈ G(x̄). More generally, if v̄ lies in the
interior of some set U , then G−1(U ) is identifiable at x̄ for v̄. Sometimes all identifiable
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subsets of dom G arise locally in this way. In particular, one can readily check that
this is the case for any set-valued mapping G satisfying G−1 ◦ G = Id, an important
example being the inverse of the projection map G = P−1

Q onto a nonempty, closed,
convex set Q.

The “smaller” the set M is, the more interesting and the more useful it becomes.
Hence an immediate question arises. When is the identifiable set M locally minimal,
in the sense that for any other identifiable set M ′ at x̄ for v̄, the inclusion M ⊂ M ′
holds locally around x̄? The following notion will be instrumental in addressing this
question.

Definition 2.2 (Necessary sets) Consider a mapping G : Rn ⇒ Rm , a point x̄ ∈ Rn ,
and a vector v̄ ∈ G(x̄). We say that a subset M ⊂ Rn , containing x̄ , is necessary at x̄
for v̄ if the function

x 
→ d(v̄, G(x)),

restricted to M , is continuous at x̄ .

Thus M is necessary at x̄ for v̄ ∈ G(x̄) if for any sequence xi → x̄ in M , there
exists a sequence vi ∈ G(xi ) with vi → v̄. The name “necessary” arises from the
following simple observation.

Lemma 2.3 Consider a mapping G : Rn ⇒ Rm and a pair (x̄, v̄) ∈ gph G. Let M
and M ′ be two subsets of Rn. Then we have the implication

M is identifiable at x̄ for v̄

M ′ is necessary at x̄ for v̄

}
⇒ M ′ ⊂ M locally around x̄ .

The following elementary characterization of locally minimal identifiable sets will
be used extensively in the sequel, often without an explicit reference. We omit the
proof since it is straightforward.

Proposition 2.4 (Characterizing locally minimal identifiability) Consider a set-
valued mapping G : Rn ⇒ Rm and a pair (x̄, v̄) ∈ gph G. The following are equiva-
lent.

1. M is a locally minimal identifiable set at x̄ for v̄.
2. There exists neighborhood V of v̄ such that for any subneighborhood W ⊂ V of

v̄, the representation

M = G−1(W ) holds locally around x̄ .

3. M is a locally maximal necessary set at x̄ for v̄.
4. M is identifiable and necessary at x̄ for v̄.

Remark 2.5 Proposition 2.4 implies that whenever locally minimal identifiable sets
exist, they are locally unique. That is, if M1 and M2 are locally minimal identifiable
sets at x̄ for v̄ ∈ G(x̄), then M1 = M2 locally around x̄ .
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Optimality, identifiability, and sensitivity 471

The central goal in sensitivity analysis is to understand the behavior of solutions x ,
around x̄ , to the inclusion

v ∈ G(x),

as v varies near v̄. Characterization 2 of Proposition 2.4 shows that a locally minimal
identifiable set at x̄ for v̄ is a locally minimal set that captures all the sensitivity
information about the inclusion above.

This characterization yields a “constructive” approach to finding locally minimal
identifiable sets. Consider any open neighborhoods V1 ⊃ V2 ⊃ V3 ⊃ · · · , around v̄

with the diameters of Vi tending to zero. If the chain

G−1(V1) ⊃ G−1(V2) ⊃ G−1(V3) ⊃ · · · ,

stabilizes, in the sense that for all large indices i and j , we have G−1(Vi ) = G−1(Vj )

locally around x̄ , then G−1(Vi ) is a locally minimal identifiable set at x̄ for v̄, whenever
i is sufficiently large. Moreover, the locally minimal identifiable set at x̄ for v̄, if it
exists, must arise in this way.

The following example shows that indeed a set-valued mapping can easily fail to
admit a locally minimal identifiable set.

Example 2.6 (Failure of existence) Consider the mapping G : R2 ⇒ R, defined in
polar coordinates, by

G(r, θ) =
{ |θ | if r �= 0, θ ∈ [−π, π ],

[−1, 1] if r = 0.

Let x̄ be the origin in R2 and v̄ := 0 ∈ G(x̄). Observe that for ε → 0, the preimages

G−1(−ε, ε) =
{
(r, θ) ∈ R2 : G(r, θ) ∩ (−ε, ε) �= ∅

}
=
{
(r, θ) : |θ | < ε

}
,

never coincide around x̄ . Consequently, there is no locally minimal identifiable set at
x̄ for v̄.

Notwithstanding the previous example, locally minimal identifiable sets do often
exist. Before proceeding, we recall the following two standard notions.

Definition 2.7 (Continuity) Consider a set-valued mapping F : Rn ⇒ Rm .

1. F is outer semicontinuous at a point x̄ ∈ Rn if for any sequence of points xi ∈ Rn

converging to x̄ and any sequence of vectors vi ∈ F(xi ) converging to v̄, we must
have v̄ ∈ F(x̄).

2. F is inner semicontinuous at x̄ if for any sequence xi converging to x̄ and any
vector v̄ ∈ F(x̄), there exist vectors vi ∈ F(xi ) converging to v̄.

If both properties hold, then we say that F is continuous at x̄ . We say that F is inner-
semicontinuous at x̄ , relative to a certain set Q ⊂ Rn , if the condition above for
inner-semicontinuity is satisfied for sequences xi → x̄ in Q.

123



472 D. Drusvyatskiy, A. S. Lewis

Proposition 2.8 (Identifiability under continuity) Consider a set-valued mapping
G : Rn ⇒ Rm that is inner semicontinuous, relative to dom G, at a point x̄ ∈ dom G.
Then dom G is a locally minimal identifiable set at x̄ for any vector v̄ ∈ G(x̄).

More interesting examples can be constructed by taking pointwise unions of maps
admitting locally minimal identifiable sets.

Proposition 2.9 (Pointwise union) Consider a finite collection of outer-
semicontinuous mappings, Gi : Rn ⇒ Rm, for i = 1, . . . , k. Define the pointwise
union mapping G : Rn ⇒ Rm to be

G(x) =
m⋃

i=1

Gi (x).

Fix a point x̄ ∈ Rn and a vector v̄ ∈ G(x̄), and suppose that for each index i , satisfying
v̄ ∈ Gi (x̄), there exists a locally minimal identifiable set Mi (with respect to Gi ) at x̄
for v̄. Then the set

M :=
⋃

i :v̄∈Gi (x̄)

Mi ,

is a locally minimal identifiable set (with respect to G) at x̄ for v̄.

Proof This readily follows from Proposition 2.4. �
In particular, locally minimal identifiable sets exist for piecewise polyhedral map-

pings. These are those mappings whose graphs can be decomposed into a union of
finitely many convex polyhedra.

Example 2.10 (Piecewise polyhedral mappings) Consider a piecewise polyhedral
mapping G : Rn ⇒ Rm , where gph G = ⋃k

i=1 Vi and Vi ⊂ Rn are convex poly-
hedral sets. It is well-known that set-valued mappings whose graphs are convex poly-
hedral are inner-semicontinuous (in fact, (Hausdorff) Lipschitz continuous) on their
domains [30]. Fix a point x̄ ∈ Rn and a vector v̄ ∈ G(x̄), and let π : Rn × Rm → Rn

be the canonical projection onto Rn . Consequently, by Propositions 2.8 and 2.9,
the set

⋃

i :(x̄,v̄)∈Vi

π(Vi )

is a locally minimal identifiable set at x̄ for v̄.

For the remainder of the current work, we will be investigating the notion of iden-
tifiability in the context of the workhorse of variational analysis, the subdifferential
mapping (Definition 3.5).
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3 Identifiability in variational analysis

3.1 Preliminaries from variational analysis

In this subsection, we briefly summarize some of the fundamental tools used in vari-
ational analysis and nonsmooth optimization. We refer the reader to the monographs
Borwein and Zhu [4], Clarke et al. [8], Mordukhovich [26], and Rockafellar and Wets
[32], for more details. Unless otherwise stated, we follow the terminology and notation
of Rockafellar and Wets [32].

The functions that we will be considering will take their values in the extended real
line R := R ∪ {−∞,∞}. We say that an extended-real-valued function is proper if it
is never {−∞} and is not always {+∞}.

For a function f : Rn → R, the domain of f is

dom f := {x ∈ Rn : f (x) < +∞},

and the epigraph of f is

epi f := {(x, r) ∈ Rn × R : r ≥ f (x)
}
.

Throughout this work, we will only use Euclidean norms. Hence for a point x ∈ Rn ,
the symbol |x | will denote the standard Euclidean norm of x . For any set Q ⊂ Rn ,
the symbols int Q, cl Q, bd Q, cone Q, conv Q, and aff Q will denote the interior,
closure, boundary, (nonconvex) conical hull, convex hull, and affine hull of Q, respec-
tively. The interior and boundary of Q, relative to aff Q, will be denoted by ri Q and
rb Q, respectively.

For a set Q ⊂ Rn and a point x ∈ Rn , the distance of x from Q is

dQ(x) := inf
y∈Q

|x − y|,

and the projection of x onto Q is

PQ(x) := {y ∈ Q : |x − y| = dQ(x)
}
.

Normal cones are fundamental in variational geometry.

Definition 3.1 (Proximal normals) Consider a set Q ⊂ Rn and a point x̄ ∈ Q. The
proximal normal cone to Q at x̄ , denoted N P

Q (x̄), consists of all vectors v ∈ Rn such

that x̄ ∈ PQ(x̄ + 1
r v) for some r > 0. In this case, {x̄} = PQ(x̄ + 1

r ′ v) for each real
number r ′ > r .

Geometrically, a vector v �= 0 is a proximal normal to Q at x̄ precisely when there
exists a ball touching Q at x̄ such that v points from x̄ towards the center of the ball.
Furthermore, this condition amounts to

〈v, x − x̄〉 ≤ O(|x − x̄ |2) as x → x̄ in Q.

Relaxing the inequality above, one obtains the following notion.

123



474 D. Drusvyatskiy, A. S. Lewis

Definition 3.2 (Frechét normals) Consider a set Q ⊂ Rn and a point x̄ ∈ Q. The
Frechét normal cone to Q at x̄ , denoted N̂Q(x̄), consists of all vectors v ∈ Rn such
that

〈v, x − x̄〉 ≤ o(|x − x̄ |) as x → x̄ in Q.

Note that both N P
Q (x̄) and N̂Q(x̄) are convex cones, while N̂Q(x̄) is also closed.

For a set Q ∈ Rn , the set-valued mapping x 
→ N̂Q(x) is not outer-semicontinuous,
and hence is not robust relative to perturbations in x . To correct for that, the following
definition is introduced.

Definition 3.3 (Limiting normals) The limiting normal cone to a set Q ⊂ Rn at a
point x̄ ∈ Q, denoted NQ(x̄), consists of all vectors v ∈ Rn such that there are

sequences xi
Q→ x̄ and vi → v with vi ∈ N̂Q(xi ).

The limiting normal cone, as defined above, consists of limits of nearby Frechét
normals. In fact, the same object arises if we only allow limits of nearby proximal
normals. An important and favorable situation arises when the Frechét and limiting
constructions coincide.

Definition 3.4 (Clarke regularity of sets) A set Q ⊂ Rn is said to be Clarke regular
at a point x̄ ∈ Q if it is locally closed at x̄ and every limiting normal vector to Q at x̄
is a Frechét normal vector, that is NQ(x̄) = N̂Q(x̄).

We can study nonsmooth functions using epigraphical normal cones.

Definition 3.5 (Subdifferentials) Consider a function f : Rn → R and a point x̄ ∈ Rn

where f is finite. The proximal, Frechét, and limiting subdifferentials of f at x̄ ,
respectively, are defined by

∂P f (x̄) = {v ∈ Rn : (v,−1) ∈ N P
epi f (x̄, f (x̄))

}
,

∂̂ f (x̄) = {v ∈ Rn : (v,−1) ∈ N̂ epi f (x̄, f (x̄))
}
,

∂ f (x̄) = {v ∈ Rn : (v,−1) ∈ N epi f (x̄, f (x̄))
}
,

while the horizon subdifferential is defined by

∂∞ f (x̄) = {v ∈ Rn : (v, 0) ∈ N epi f (x̄, f (x̄))
}
.

For x̄ such that f (x̄) is not finite, we follow the convention that ∂P f (x̄) = ∂̂ f (x̄) =
∂ f (x̄) = ∂∞ f (x̄) = ∅.

For convex functions f , the subdifferentials ∂p f, ∂̂ f , and ∂ f reduce to the
classical convex subdifferential, while for smooth f they coincide with the gra-
dient mapping ∇ f . See for example [32, Exercise 8.8]. In this sense, these three
subdifferentials generalize the classical gradient. The horizon subdifferential plays
an entirely different role; it records horizontal normals to the epigraph of the
function and is instrumental in establishing subdifferential calculus rules. See
[32, Theorem 10.6].
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Definition 3.6 (Clarke regularity of functions) A function f : Rn → R is said to be
Clarke regular at a point x̄ ∈ Rn if the epigraph epi f is Clarke regular at (x̄, f (x̄)).

Given any set Q ⊂ Rn and a mapping F : Q → Q̃, where Q̃ ⊂ Rm , we say that
F is Cp-smooth (p ≥ 1) if for each point x̄ ∈ Q, there is a neighborhood U of x̄ and
a Cp mapping F̂ : Rn → Rm that agrees with F on Q ∩ U .

Definition 3.7 (Smooth Manifolds) We say that a set M ⊂ Rn is a Cp-submanifold of
dimension r if for each point x̄ ∈ M , there is an open neighborhood U around x̄ and
a function F : U → Rn−r that is Cp-smooth with ∇F(x̄) of full rank and satisfying
M ∩ U = {x ∈ U : F(x) = 0}. In this case, we call F a local defining function for M
around x̄ .

A good source on smooth manifold theory is Lee [19].

Theorem 3.8 ([32, Example 6.8]) Any C1-manifold M is Clarke regular at every
point x ∈ M and the normal cone NM (x) is equal to the normal space to M at x, in
the sense of differential geometry.

For a set Q ⊂ Rn , we let δQ denote a function that is 0 on Q and +∞ elsewhere;
we call δQ the indicator function of Q. Then for any point x̄ ∈ Q, we have N P

Q (x̄) =
∂PδQ(x̄), N̂Q(x̄) = ∂̂δQ(x̄) and NQ(x̄) = ∂δQ(x̄). We will have occasion to use the
following simple result; see [21, Proposition 2.2].

Proposition 3.9 Consider a set M ⊂ Rn and a function f : Rn → R that is finite-
valued and C1-smooth on M. Then, at any point x̄ ∈ M, we have

∂̂ f (x̄) ⊂ ∇g(x̄) + N̂M (x̄),

where g : Rn → R is any C1-smooth function agreeing with f on a neighborhood of
x̄ in M.

3.2 Identifiability in variational analysis

We are now ready to define identifiability in the context of optimization.

Definition 3.10 (Identifiability for functions) Consider a function f : Rn → R, a
point x̄ ∈ Rn , and a subgradient v̄ ∈ ∂ f (x̄). A set M ⊂ Rn is identifiable at x̄ for v̄

if for any sequences (xi , f (xi ), vi ) → (x̄, f (x̄), v̄), with vi ∈ ∂ f (xi ), the points xi

must all lie in M for all sufficiently large indices i .

The definition above can be interpreted in the sense of Sect. 2. Indeed, consider a
function f : Rn → R and a subgradient v̄ ∈ ∂ f (x̄), for some point x̄ ∈ Rn . Define
the set-valued mapping

G : Rn ⇒ R × Rn,

x 
→ { f (x)} × ∂ f (x).
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Then M is identifiable (relative to f ) at x̄ for v̄ if and only if it is identifiable (relative
to G) at x̄ for the vector ( f (x̄), v̄). Here, we have to work with the mapping G, rather
than the subdifferential mapping ∂ f directly, so as to facilitate coherence between
normal cone mappings and subdifferential mappings via epigraphical geometry. (See
Proposition 3.14.) This slight annoyance can be avoided whenever f is subdifferen-
tially continuous at x̄ for v̄, meaning that the function (x, v) 
→ f (x), restricted to
gph ∂ f is continuous in the usual sense at the point (x̄, v̄); see [28, Definition 1.14].
In particular, any lsc convex function is subdifferentially continuous [32, Example
13.30].

Similarly, we define necessary sets as follows.

Definition 3.11 (Necessity for functions) Consider a function f : Rn → R. A set
M ⊂ Rn is necessary at x̄ for v̄ ∈ ∂ f (x̄) if both the function f and the mapping

x 
→ d(v̄, ∂ f (x)),

restricted to M , are continuous at x̄ .

Specializing the characterization in Proposition 2.4 to this setting, we obtain the
following.

Proposition 3.12 (Characterizing locally minimal identifiability) Consider a function
f : Rn → R, a point x̄ ∈ Rn, and a subgradient v̄ ∈ ∂ f (x̄). Then the following are
equivalent.

1. M is a locally minimal identifiable set at x̄ for v̄,
2. There exists a neighborhood V of v̄ and a real number ε > 0 such that for any

subneighborhood W ⊂ V of v̄ and a real number 0 < ε′ < ε, the presentation

M = (∂ f )−1(W ) ∩ {x ∈ Rn : | f (x) − f (x̄)| < ε′} holds locally around x̄ .

3. M is a locally maximal necessary set at x̄ for v̄.
4. M is identifiable and necessary at x̄ for v̄

Definition 3.13 (Identifiability for sets) Given a set Q ⊂ Rn , we will say that a subset
M ⊂ Q is identifiable (relative to Q) at x̄ for v̄ ∈ NQ(x̄) if M is identifiable (relative
to δQ) at x̄ for v̄ ∈ ∂δQ(x̄). Analogous conventions will hold for necessary sets and
locally minimal identifiable sets.

The following simple proposition establishes epigraphical coherence, alluded to
above, between normal cone mappings and subdifferential mappings in the context of
identifiability.

Proposition 3.14 (Epigraphical coherence) Consider a function f : Rn → R and a
subgradient v̄ ∈ ∂ f (x̄), for some point x̄ ∈ Rn. Then M ⊂ dom f is an identifiable set
(relative to f ) at x̄ for v̄ if and only if gph f

∣
∣
M is an identifiable set (relative to epi f )

at (x̄, f (x̄)) for (v̄,−1). Analogous statements hold for necessary, and consequently
for locally minimal identifiable sets.
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4 Basic examples

In this section, we present some basic examples of identifiable sets.

Example 4.1 (Smooth functions) If f : Rn → R is C1-smooth on a neighborhood U
of x̄ , then U is a locally minimal identifiable set at x̄ for ∇ f (x̄).

Example 4.2 (Smooth manifolds) If M is a C1 manifold, then M is a locally minimal
identifiable set at any x ∈ M for any v ∈ NM (x). This is so because the normal cone
mapping x 
→ NM (x) is inner-semicontinuous on M .

We define the support of any vector v ∈ Rn , denoted supp v, to be the set consisting
of all indices i ∈ {1, . . . , n} such that vi �= 0. The rank of v, denoted rank v, is then
the size of the support supp v.

Example 4.3 (Polyhedral functions) Consider a convex polyhedral function f : Rn →
R, that is a function whose epigraph is a convex polyhedron, and fix a pair (x̄, v̄) ∈
gph ∂ f . Example 2.10 shows that M := (∂ f )−1(v̄) is a locally minimal identifiable
set at x̄ for v̄.

To be more precise, we may express f as

f (x) =
{

maxi∈I {〈ai , x〉 + bi } whenever 〈c j , x〉 ≤ d j for all j ∈ J,

∞ otherwise,

for index sets I = {1, . . . , m} and J = {1, . . . , k}, vectors ai , c j ∈ Rn , and real
numbers bi , d j for i ∈ I and j ∈ J . For any point x ∈ Rn , define the active index sets

I (x) = {i ∈ I : 〈ai , x〉 + bi = f (x)},
J (x) = { j ∈ J : 〈c j , x〉 = d j }.

A straightforward computation shows

∂ f (x) = conv {ai : i ∈ I (x)} + cone {c j : j ∈ J (x)}.

Consequently, there exist multipliers (λ̄, μ̄) ∈ Rm+ × Rk+ satisfying

v̄ =
∑

i∈I

λ̄i ai +
∑

j∈J

μ̄ j c j ,

with
∑

i∈I λ̄i = 1, supp λ̄ ⊂ I (x̄), and supp μ̄ ⊂ J (x̄). It easily follows that

M := {x ∈ dom f : supp λ̄ ⊂ I (x), supp μ̄ ⊂ J (x)
}
,

is a locally minimal identifiable set at x̄ for v̄. We should note that a particularly nice
situation occurs under a strict complementarity condition, v̄ ∈ ri ∂ f (x̄). In this case,
there exist multipliers (λ̄, μ̄) so that supp λ̄ = I (x̄) and supp μ̄ = J (x̄), and then M
coincides with an affine subspace around x̄ .
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Example 4.4 (Maximum function) In particular, consider the maximum function
mx : Rn → R, defined by

mx(x) := max{x1, . . . , xn}.

Then given a point x̄ and a vector v̄ ∈ ∂(mx)(x̄), the set M = {x ∈ Rn : supp v̄ ⊂
I (x)}, where

I (x) := {i : xi = mx(x)},

is a locally minimal identifiable set at x̄ for v̄. Alternatively, M admits the presentation

M = {x ∈ Rn : mult mx(x) ≥ rank v̄} locally around x̄,

where mult mx(x) simply denotes the size of the set I (x).

Going beyond polyhedrality, we may consider piecewise linear-quadratic func-
tions; these are those functions whose domain can be represented as the union of
finitely many convex polyhedra, so that the function is linear or quadratic on each
such set. Convex piecewise linear-quadratic functions are precisely the convex func-
tions whose subdifferential mappings are piecewise polyhedral [30]. Combining this
with Example 2.10, we obtain the following.

Proposition 4.5 (Piecewise linear-quadratic functions) Consider a convex, piecewise
linear-quadratic function f : Rn → R. Then there exists a locally minimal identifiable
set at any x ∈ dom f for any v ∈ ∂ f (x).

We now briefly consider the three standard convex cones of mathematical program-
ming.

Example 4.6 (Non-negative Orthant) Consider a point x̄ ∈ Rn+ and a vector v̄ ∈
NRn+(x̄). Then M := {x ∈ Rn+ : xi = 0 for each i ∈ supp v̄} is a locally minimal
identifiable set at x̄ for v̄. Observe that M also admits the presentation

M = {x ∈ Rn+ : rank x + rank v̄ ≤ n
}

locally around x̄ .

Example 4.7 (Lorentz cone) Consider the Lorentz cone

Ln := {(x, r) ∈ Rn × R : r ≥ |x |}.

Observe that Ln coincides with the epigraph epi | · |. Let x̄ = 0 and consider any v ∈
∂| · |(0) with |v| = 1. Then for any real ε > 0, the set Mε := {x ∈ Rn : 〈 x

|x | , v̄〉 ≤ ε}
is identifiable at x̄ for v̄. In particular, for n ≥ 2 and ε �= ε′ the sets Mε and Mε′ do
not coincide on any neighborhood of x̄ , and consequently there is no locally minimal
identifiable set at x̄ for v̄.
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In what follows Sn will denote the space of n × n real symmetric matrices with the
trace inner product while Sn+ will denote the convex cone of symmetric positive semi-
definite matrices. With every matrix X ∈ Sn we will associate its largest eigenvalue,
denoted by λ1(X). The multiplicity of λ1(X) as an eigenvalue of X will be written as
mult λ1(X). Finally Mn×m will denote the space of n × m matrices with real entries.
We defer the verification of the following two examples to a forthcoming paper [10].
We should also emphasize the intriguing parallel between these two examples and
Examples 4.4 and 4.6.

Example 4.8 (Positive semi-definite cone) Consider a matrix X̄ ∈ Sn+ and a normal
V̄ ∈ NSn+(X̄). Then

M = {X ∈ Sn+ : rank X + rank V̄ ≤ n
}
,

is an identifiable set at X̄ for V̄ . It is interesting to note that M may fail to be locally
minimal in general. Indeed, it is possible that Sn+ admits no locally minimal identifiable
set at X̄ for V̄ . This can easily be seen from the previous example and the fact that S2+
and L2 are isometrically isomorphic.

However, under the strict complementarity condition V̄ ∈ ri NSn+(X̄), we have

rank X̄ + rank V̄ = n, and consequently M coincides with {X ∈ Sn+ : rank X =
rank X̄} around X̄ . It is then standard that M is an analytic manifold around X̄ , and
furthermore one can show that M is indeed a locally minimal identifiable set at X̄ for
V̄ . For more details see Daniilidis et al. [10].

Example 4.9 (Maximum eigenvalue) Consider a matrix X̄ and a subgradient V̄ ∈
∂λ1(X̄), where λ1 : Sn → R is the maximum eigenvalue function. Then

M := {X ∈ Sn : mult λ1(X) ≥ rank V̄
}
,

is an identifiable set at X̄ for V̄ . Again under a strict complementarity condition
V̄ ∈ ri ∂λ1(X̄), we have rank V̄ = mult λ1(X̄), and consequently M coincides with
the manifold {X ∈ Sn : mult λ1(X) = mult λ1(X̄)} locally around X̄ . Furthermore
under this strict complementarity condition, M is locally minimal. For more details
see Daniilidis et al. [10].

Example 4.10 (The rank function) Consider the rank function, denoted rank : Mn×m

→ R. Then

M := {X ∈ Mn×m : rank X = rank X̄
}

is a locally minimal identifiable set at X̄ for any V̄ ∈ ∂(rank )(X̄). To see this, observe
that the equality

epi rank = epi (rank X̄ + δM ) holds locally around (X̄ , rank X̄).

Combining this with the standard fact that M is an analytic manifold verifies the claim.
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To build more sophisticated examples, it is necessary to develop some calculus
rules. In particular, one can derive a powerful chain rule for identifiable sets; the
details appear in [11, Chapter 7]. One notable consequence is that fully amenable
functions, in the sense of Poliquin and Rockafellar [27], always admit locally minimal
identifiable sets [11, Proposition 7.5.8]. Important examples of such functions are
max-type functions and indicator functions of feasible regions of standard problems
of nonlinear programming (under a constraint qualification).

Corollary 4.11 (Max-type functions) Consider C1-smooth functions fi : Rn → R,
for i ∈ I := {1, . . . , m}, and let f (x) := max{ f1(x), f2(x), . . . , fm(x)}. For any
x ∈ Rn, define the active set

I (x) = {i ∈ I : f (x) = fi (x)}.

Consider a pair (x̄, v̄) ∈ gph ∂ f , and the corresponding set of multipliers

� =
⎧
⎨

⎩
λ ∈ Rm : v̄ =

∑

i∈I (x̄)

λi∇ fi (x̄), supp λ ⊂ I (x̄)

⎫
⎬

⎭
.

Then

M =
⋃

λ∈�

{x ∈ Rn : supp λ ⊂ I (x)},

is a locally minimal identifiable set (relative to f ) at x̄ for v̄.

Corollary 4.12 (Smooth constraints) Consider C1-smooth functions gi : Rn → R,
for i ∈ I := {1, . . . , m}, and define the set

Q = {x ∈ Rn : gi (x) ≤ 0 for each i ∈ I }.

For any x ∈ Rn, define the active set

I (x) = {i ∈ I : gi (x) = 0}

and suppose that for a certain pair (x̄, v̄) ∈ gph NQ, the constraint qualification

∑

i∈I (x̄)

λi∇gi (x̄)=0 and λi ≥0 for all i ∈ I (x̄) �⇒ λi =0 for all i ∈ I (x̄),

holds. Then in terms of the Lagrange multipliers

� :=
⎧
⎨

⎩
λ ∈ Rm : v̄ =

∑

i∈I (x̄)

λi∇gi (x̄), supp λ ⊂ I (x̄)

⎫
⎬

⎭
,
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the set

M =
⋃

λ∈�

{x ∈ Q : g j (x) = 0 for each j ∈ supp λ},

is a locally minimal identifiable set (relative to Q) at x̄ for v̄.

In Examples 4.7 and 4.8, we already saw that there are simple functions f : Rn → R
that do not admit a locally minimal identifiable set at some point x̄ for v̄ ∈ ∂ f (x̄).
However in those examples v̄ was degenerate in the sense that v̄ was contained in
the relative boundary of ∂ f (x̄). We end this section by demonstrating that locally
minimal identifiable sets may, in general, fail to exist even for subgradients v̄ lying in
the relative interior of the convex subdifferential ∂ f (x̄).

Example 4.13 (Failure of existence) Consider the convex function f : R2 → R, given
by

f (x, y) =
√

x4 + y2.

Observe that f is continuously differentiable on R2\{(0, 0)}, with

|∇ f (x, y)|2 = 4x6 + y2

x4 + y2 ,

and

∂ f (0, 0) = {0} × [−1, 1].

We claim that f does not admit a locally minimal identifiable set at (0, 0) for the
vector (0, 0) ∈ ∂ f (0, 0). To see this, suppose otherwise and let M be such a set.

Consider the curves

Ln :=
{
(x, y) ∈ R2 : y = 1

n
x2
}
,

parametrized by integers n. For a fixed integer n, consider a sequence of points
(xi , yi ) → (0, 0) in Ln . Then limi→∞ |∇ f (xi , yi )| = n2

n4+1
. Since M is necessary at

(0, 0) for (0, 0), we deduce that for each integer n, there exists a real number εn > 0
such that

Bεn ∩ Ln ∩ M = {(0, 0)}.

However observe limn→∞ n2

n4+1
= 0. Therefore we can choose a sequence

(xn, yn) ∈ Bεn ∩ Ln , with (xn, yn) �= (0, 0), (xn, yn) → (0, 0), and the gradients
∇ f (xn, yn) tending to (0, 0). Since M is identifiable at (0, 0) for (0, 0), the points
(xn, yn) lie in M for all large indices n, which is a contradiction.
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5 Variational geometry of identifiable sets

In the previous sections, we have introduced the notions of identifiability, analyzed
when locally minimal identifiable sets exist, developed calculus rules, and provided
important examples. In this section, we consider the interplay between variational
geometry of a set Q and its identifiable subsets M . Considering sets rather than func-
tions has the advantage of making our arguments entirely geometric. We begin with
the simple observation that locally minimal identifiable sets are locally closed.

Proposition 5.1 Consider a closed set Q ⊂ Rn and a subset M ⊂ Q that is locally
minimal identifiable at x̄ for v̄ ∈ NQ(x̄). Then M is locally closed at x̄ .

Proof Suppose not. Then there exists a sequence xi ∈ (bd M)\M with xi → x̄ .
Since M is identifiable at x̄ for v̄, there exists a neighborhood V of v̄ satisfying
cl V ∩ NQ(xi ) = ∅ for all large indices i . Observe that for each index i , every point y
sufficiently close to xi satisfies V ∩ NQ(y) = ∅. Consequently, there exists a sequence
yi ∈ Q converging to x̄ with V ∩ NQ(y) = ∅, which contradicts the necessity of M
at x̄ for v̄. �

Recall that for a set Q ⊂ Rn and a subset M ⊂ Q, the inclusion N̂Q(x) ⊂ NM (x)

holds for each point x ∈ M , while the analogous inclusion for the limiting normal
cone may fail. This does not occur for identifiable sets.

Proposition 5.2 Consider a closed set Q and a set M that is identifiable at x̄ for
v̄ ∈ NQ(x̄). Then the inclusion

gph NQ ⊂ gph NM holds locally around (x̄, v̄).

Proof Consider a sequence (xi , vi ) ∈ gph NQ converging to (x̄, v̄). Then for each i ,

there exists a sequence (x j
i , v

j
i ) ∈ gph N̂Q converging to (xi , vi ). For sufficiently

large indices i , the points x j
i lie in M for all large j . For such indices we have

v
j
i ∈ N̂Q(x j

i ) ⊂ N̂M (x j
i ), and consequently vi ∈ NM (xi ). This verifies the inclu-

sion gph NQ ⊂ gph NM locally around (x̄, v̄). �
It turns out that in order to make further headway in studying properties of identifi-

able sets, one must impose the condition of prox-regularity, introduced by Rockafellar
and Poliquin [28]. We follow the development of Rockafellar and Poliquin [28] and
Poliquin et al. [29].

Definition 5.3 (Prox-regularity) We say that a set M ⊂ Rn is prox-regular at x̄ ∈ M
if it is locally closed around x̄ and there exists a neighborhood U of x̄ , such that the
projection map PM is single-valued on U .

Prox-regularity unifies the notions of convex sets and C2-manifolds. A proof may
be found in [32, Example 13.30, Proposition 13.32].

Theorem 5.4 (Prox-regularity under convexity and smoothness) Convex sets and C2-
manifolds are prox-regular at each of their points.

123



Optimality, identifiability, and sensitivity 483

It will be useful to consider a variant of prox-regularity where we consider local-
ization with respect to direction [28, Definition 2.10].

Definition 5.5 (Directional prox-regularity for sets) Consider a set Q ⊂ Rn , a point
x̄ ∈ Q, and a normal vector v̄ ∈ NQ(x̄). We say that Q is prox-regular at x̄ for v̄ if
Q is locally closed at x̄ and there exist real numbers ε > 0 and r > 0 such that the
following implication holds:

x ∈ Q, v ∈ NQ(x)

|x − x̄ | < ε, |v − v̄| < ε

}
⇒ PQ∩Bε (x̄)(x + r−1v) = x .

Observe that if the implication above holds for some r, ε > 0, then it also holds for
any r ′, ε′ > 0 with r ′ > r and ε′ < ε.

In particular, a set Q is prox-regular at x̄ , in the sense of Definition 5.3, if and only
of Q is prox-regular at x̄ for every vector v ∈ NQ(x̄). Clearly, if Q is prox-regular at
x̄ for v̄, then the equalities

gph N P
Q = gph N̂Q = gph NQ hold locally around (x̄, v̄).

The following characterization [28, Corollary 3.4] will be useful for us.

Proposition 5.6 (Prox-regularity and monotonicity) For a set Q ⊂ Rn and x̄ ∈ Q,
with Q locally closed at x̄ , the following are equivalent.

1. Q is prox-regular at x̄ for v̄.
2. The vector v̄ is a proximal normal to Q at x̄ , and there exists a real number r > 0

satisfying

〈v1 − v0, x1 − x0〉 ≥ −r |x1 − x0|2,

for any pairs (xi , vi ) ∈ gph NQ (for i = 0, 1) near (x̄, v̄).

So Q is prox-regular at x̄ for a proximal normal v̄ ∈ N P
Q (x̄) as long as NQ +r I has

a monotone localization around (x̄, v̄+r x̄), for some real number r > 0. We may talk
about prox-regularity of functions by means of epigraphical geometry [28, Theorem
3.5].

Definition 5.7 (Directional prox-regularity for functions) We say that a function
f : Rn → R is prox-regular at x̄ for v̄ ∈ ∂ f (x̄) if the epigraph epi f is prox-regular
at (x̄, f (x̄)) for the vector (v̄,−1).

The following proposition shows that prox-regularity of an identifiable subset M
of a set Q implies that Q itself is prox-regular.

Proposition 5.8 (Prox-regularity of identifiable sets) Consider a closed set Q and a
subset M ⊂ Q that is identifiable at x̄ for v̄ ∈ N̂Q(x̄). In addition, suppose that M is
prox-regular at x̄ for v̄. Then Q is prox-regular at x̄ for v̄.
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Proof To show that Q is prox-regular at x̄ for v̄, we will utilize Proposition 5.6. To this
end, we first claim that the inclusion v̄ ∈ N P

Q (x̄) holds. To see this, choose a sequence
of real numbers ri → ∞ and a sequence of points

xi ∈ PQ(x̄ + r−1
i v̄).

We have

vi := ri (x̄ − xi ) + v̄ ∈ N P
Q (xi ).

Clearly xi → x̄ . We now claim that the sequence vi converges to v̄. Observe by
definition of xi , we have

|(x̄ − xi ) + r−1
i v̄| ≤ |r−1

i v̄|.

Squaring and cancelling terms, we obtain

2〈v̄, x̄ − xi 〉 ≤ −ri |x̄ − xi |2.

Combining this with the inclusion v̄ ∈ N̂Q(x̄), we deduce

o(x̄ − xi )

|x̄ − xi | ≤ 2

〈
v̄,

x̄ − xi

|x̄ − xi |
〉

≤ −ri |x̄ − xi |

We conclude ri (x̄ − xi ) → 0 and consequently vi → v̄. Since M is identifiable at x̄
for v̄, we deduce xi ∈ M for all large indices i . In addition, since M is prox-regular
at x̄ for v̄, we have

xi = PM∩Bε (x̄)(x̄ + r−1
i v̄) = x̄,

for some ε > 0 and for sufficiently large indices i . Hence the inclusion v̄ ∈ N P
Q (x̄)

holds.
Now since M is prox-regular at x̄ for v̄ we deduce, using Proposition 5.6, that there

exists a real number r > 0 satisfying

〈v1 − v0, x1 − x0〉 ≥ −r |x1 − x0|2,

for any pairs (xi , vi ) ∈ gph NM (for i = 0, 1) near (x̄, v̄).
By Proposition 5.2, we have

gph NQ ⊂ gph NM locally around (x̄, v̄).

Recalling that v̄ is a proximal normal to Q at x̄ and again appealing to Proposition 5.6,
we deduce that Q is prox-regular at x̄ for v̄. �
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The following result brings to the fore the insight one obtains by combining the
notions of identifiability and prox-regularity. It asserts that given a prox-regular iden-
tifiable set M at x̄ for v̄ ∈ N̂Q(x̄), not only does the inclusion gph NQ ⊂ gph NM hold
locally around (x̄, v̄), but rather the two sets gph NQ and gph NM coincide around
(x̄, v̄).

Proposition 5.9 (Reduction I) Consider a closed set Q and let M ⊂ Q be a set that
is prox-regular at a point x̄ for v̄ ∈ N̂Q(x̄). Then M is identifiable at x̄ for v̄ if and
only if

gph NQ = gph NM locally around (x̄, v̄).

Proof We must show that locally around (x̄, v̄), we have the equivalence

gph NQ ⊂ M × Rn ⇔ gph NQ = gph NM .

The implication “⇐” is clear. Now assume gph NQ ⊂ M × Rn locally around (x̄, v̄).
By prox-regularity, there exist real numbers r, ε > 0 so that PQ(x̄ + r−1v̄) = x̄
(Proposition 5.8) and so that the implication

x ∈ M, v ∈ NM (x)

|x − x̄ | < ε, |v − v̄| < ε

}
⇒ PM∩Bε (x̄)(x + r−1v) = x,

holds. By Proposition 5.2, it is sufficient to argue that the inclusion

gph NM ⊂ gph NQ holds locally around (x̄, v̄).

Suppose this is not the case. Then there exists a sequence (xi , vi ) → (x̄, v̄), with
(xi , vi ) ∈ gph NM and (xi , vi ) /∈ gph NQ . Let zi ∈ PQ(xi + r−1vi ). We have

(xi − zi )+ r−1vi ∈ N P
Q (zi ),

xi �= zi . (5.1)

Observe zi → x̄ by the continuity of the projection map. Consequently, by the finite
identification property, for large indices i , we have zi ∈ M and

xi + r−1vi ∈ zi + N P
Q (zi ) ⊂ zi + NM (zi ).

Hence zi = PM∩Bε (x̄)(xi + r−1vi ) = xi , for large i , thus contradicting (5.1). �
Recall that Proposition 5.8 shows that prox-regularity of an identifiable subset

M ⊂ Q is inherited by Q. It is then natural to consider to what extent the converse
holds. It clearly cannot hold in full generality, since identifiable sets may contain many
extraneous pieces. However we will see shortly that the converse does hold for a large
class of identifiable sets M , and in particular for ones that are locally minimal. The
key tool is the following lemma, which may be of independent interest.
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Lemma 5.10 (Accessibility) Consider a closed set Q ⊂ Rn and a subset M ⊂ Q
containing a point x̄ . Suppose that for some vector v̄ ∈ N̂Q(x̄), there exists a sequence

yi ∈ N P
M (x̄)\N P

Q (x̄) with yi → v̄.

Then there exists a sequence (xi , vi ) ∈ gph N P
Q converging to (x̄, v̄) with xi /∈ M for

each index i .

Proof For each index i , there exists a real ri > 0 satisfying PM (x̄ + r−1
i yi ) = {x̄}.

Furthermore we can clearly assume ri → ∞. Define a sequence (xi , vi ) ∈ gph N P
Q

by

xi ∈ PQ(x̄ + r−1
i yi ) and vi := ri (x̄ − xi ) + yi .

Observe xi /∈ M since otherwise we would have xi = x̄ and yi = rivi ∈ N P
Q (x̄),

a contradiction. By continuity of the projection PQ , clearly we have xi → x̄ . Now
observe

|(x̄ − xi ) + r−1
i yi | ≤ r−1

i |yi |.

Squaring and simplifying we obtain

ri |x̄ − xi | + 2
〈 x̄ − xi

|x̄ − xi | , yi

〉
≤ 0.

Since v̄ is a Frechét normal, we deduce

liminf
i→∞

〈 x̄ − xi

|x̄ − xi | , yi

〉
= liminf

i→∞

〈 x̄ − xi

|x̄ − xi | , v̄
〉
≥ 0.

Consequently we obtain ri |x̄ − xi | → 0 and vi → v̄, as claimed. �
Proposition 5.11 (Reduction II) Consider a closed set Q ⊂ Rn, a point x̄ , and a
normal v̄ ∈ NQ(x̄). Suppose gph N P

Q = gph NQ locally around (x̄, v̄), and consider

a set M := N−1
Q (V ), where V is a convex, open neighborhood of v̄. Then the equation

gph NQ = gph NM holds locally around (x̄, v̄).

Proof First observe that since M is identifiable at x̄ for v̄, applying Proposition 5.2, we
deduce that the inclusion gph NQ ⊂ gph NM holds locally around (x̄, v̄). To see the
reverse inclusion, suppose that there exists a pair (x, v) ∈ gph N P

M , arbitrarily close
to (x̄, v̄), with v ∈ V and v /∈ N P

Q (x). By definition of M , we have N P
Q (x) ∩ V �= ∅.

Let z be a vector in this intersection, and consider the line segment γ joining z and v.
Clearly the inclusion γ ⊂ V ∩ N P

M (x) holds. Observe that the line segment γ ∩ N P
Q (x)
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is strictly contained in γ , with z being one of its endpoints. Let w be the other endpoint
of γ ∩ N P

Q (x). Then we immediately deduce that there exists a sequence

yi ∈ N P
M (x)\N P

Q (x) with yi → w.

Applying Lemma 5.10, we obtain a contradiction. Therefore the inclusion gph NQ ⊃
gph N P

M holds locally around (x̄, v̄). The result follows. �
In particular, we obtain the following essential converse of Proposition 5.8.

Proposition 5.12 (Prox-regularity under local minimality) Consider a closed set Q
and a subset M ⊂ Q that is a locally minimal identifiable set at x̄ for v̄ ∈ N̂Q(x̄).
Then Q is prox-regular at x̄ for v̄ if and only if M is prox-regular at x̄ for v̄.

Proof The implication ⇐ was proven in Proposition 5.8. To see the reverse impli-
cation, first recall that M is locally closed by Proposition 5.1. Furthermore Proposi-
tions 3.12 shows that there exists an open convex neighborhood V of v̄ so that M
coincides locally with N−1

Q (V ). In turn, applying Proposition 5.11 we deduce that the
equation

gph NQ = gph NM holds locally around (x̄, v̄).

Finally by Proposition 5.6, prox-regularity of Q at x̄ for v̄ immediately implies that
M is prox-regular at x̄ for v̄. �

We end this section by recording the strong relationship between identifiable sets
and the metric projection map.

Proposition 5.13 (Projections of neighborhoods are identifiable) Consider a set Q ⊂
Rn that is prox-regular at x̄ for v̄ ∈ NQ(x̄). Then for all sufficiently small λ > 0, if
the inclusion x̄ + λv̄ ∈ int U holds for some set U, then PQ(U ) is identifiable at x̄ for
v̄.

Proof Suppose (xi , vi ) → (x̄, v̄) in gph NQ . Then by prox-regularity for all suffi-
ciently small λ > 0, we have PQ(xi + λvi ) = xi and xi + λvi ∈ U for all large i . We
deduce xi ∈ PQ(U ) for all large i , as we needed to show. �

In fact, all locally minimal identifiable sets arise in this way.

Proposition 5.14 (Representing locally minimal identifiable sets) Consider a set Q ⊂
Rn that is prox-regular at x̄ for v̄ ∈ NQ(x̄) and let M be a locally minimal identifiable
set at x̄ for v̄. For λ, ε > 0, define

U := {x + λv : x ∈ M, v ∈ NQ(x), |x − x̄ | < ε, |v − v̄| < ε}.

Then for all sufficiently small λ, ε > 0, we have x̄ + λv̄ ∈ int U and M admits the
presentation

M = PQ(U ) locally around x̄ .
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Proof Using prox-regularity and Lemma 5.10, we deduce that for all sufficiently small
λ, ε > 0 we have

x ∈ Q, v ∈ NQ(x)

|x − x̄ | < ε, |v − v̄| < ε

}
⇒ PQ(x + λv) = x,

and x̄ + λv̄ ∈ int U . Using the fact that M is locally minimal at x̄ for v̄, it is easy to
verify that M and PQ(U ) coincide locally around x̄ . �

6 Identifiable sets and critical cones

In this section, we consider critical cones, a notion that has been instrumental in
sensitivity analysis, particularly in connection with polyhedral variational inequalities.
See [31, Section 2E] for example. We will see that there is a strong relationship
between these objects and locally minimal identifiable sets. We begin with the notion
of tangency.

Definition 6.1 (Tangent cones) Consider a set Q ⊂ Rn and a point x̄ ∈ Q. The
tangent cone to Q at x̄ , written TQ(x̄), consists of all vectors w such that

w = lim
i→∞

xi − x̄

τi
, for some xi

Q→ x̄, τi ↓ 0.

The tangent cone is always closed but may easily fail to be convex. For any cone
K ∈ Rn , we consider the polar cone

K ∗ := {y : 〈y, v〉 ≤ 0 for all v ∈ K }.

It turns out that the sets cl conv TQ(x̄) and N̂Q(x̄) are dual to each other, that is the
equation

N̂Q(x̄) = TQ(x̄)∗,

holds [32, Theorem 6.28]. Consequently if Q is locally closed at x̄ , then Q is Clarke
regular at x̄ if and only if the equation NQ(x̄) = TQ(x̄)∗ holds.

A companion notion to tangency is smooth derivability.

Definition 6.2 (smooth derivability) Consider a set Q and a point x̄ ∈ Q. Then a
tangent vector w ∈ TQ(x̄) is smoothly derivable if there exists a C1-smooth path
γ : [0, ε) → Q satisfying

w = lim
t↓0

γ (t) − x̄

t
,

where ε > 0 is a real number and γ (0) = x̄ . We will say that Q is smoothly derivable
at x̄ if every tangent vector w ∈ TQ(x̄) is smoothly derivable.
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We should note that there is a related weaker notion of geometric derivability, where
the path γ is not required to be C1-smooth. For more details see [32, Definition 6.1].

Most sets that occur in practice are smoothly derivable. In particular, any smooth
manifold is smoothly derivable at each of its point, as is any semi-algebraic set Q ⊂ Rn .
We omit the proof of the latter claim, since it is a straightforward consequence of the
curve selection lemma [33, Property 4.6] and the details needed for the argument would
take us far off field. For a nice survey on semi-algebraic geometry, see Coste [9].

We now arrive at the following central notion.

Definition 6.3 (Critical cones) For a set Q ⊂ Rn that is Clarke regular at a point
x̄ ∈ Q, the critical cone to Q at x̄ for v̄ ∈ NQ(x̄) is the set

K Q(x̄, v̄) := NNQ(x̄)(v̄).

Because of the polarity relationship between normals and tangents, the critical cone
K Q(x̄, v̄) can be equivalently described as

K Q(x̄, v̄) = TQ(x̄) ∩ v̄⊥,

where v̄⊥ is the subspace perpendicular to v̄. For more on critical cones and their use in
variational inequalities and complementarity problems, see Facchinei and Pang [14].

Connecting the classical theory of critical cones to our current work, we will now see
that critical cones provide tangential approximations to locally minimal identifiable
sets. In what follows, we denote the closed convex hull of any set Q ⊂ Rn by co Q.

Proposition 6.4 (Critical cones as tangential approximations) Consider a set Q that is
Clarke regular at a point x̄ and a locally minimal identifiable set M at x̄ for v̄ ∈ NQ(x̄).
Suppose furthermore that M is prox-regular at x̄ for v̄ and is smoothly derivable at x̄ .
Then the equation

co TM (x̄) = K Q(x̄, v̄) holds.

Proof Observe

K Q(x̄, v̄) = NNQ(x̄)(v̄) = NNM (x̄)(v̄) = NN̂M (x̄)
(v̄) = co TM (x̄) ∩ v̄⊥,

where the second equality follows from Proposition 5.9 and the last equality follows
from polarity of cl conv TM (x̄) and N̂M (x̄). Hence to establish the claim, it is sufficient
to argue that every tangent vector w ∈ TM (x̄) lies in v̄⊥.

To this end, fix a vector w ∈ TM (x̄) and a C1-smooth path γ : [0, ε) → Q satisfying

w = lim
t↓0

γ (t) − x̄

t
,

where ε > 0 is a real number and γ (0) = x̄ .
Let ti ∈ (0, ε) be a sequence converging to 0 and define xi := γ (ti ). Observe

that for each index i , the tangent cone TM (xi ) contains the line {λγ̇ (ti ) : λ ∈ R}.
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Since M is necessary at x̄ for v̄, there exist vectors vi ∈ NQ(γ (ti )) with vi → v̄. By
Proposition 5.9, we have vi ∈ N̂M (γ (ti )) for all large i . For such indices, we have
〈vi , γ̇ (ti )〉=0. Letting i tend to ∞, we deduce 〈v̄, w̄〉=0, as we needed to show. �

Classically, the main use of critical cones has been in studying polyhedral variational
inequalities. Their usefulness in that regard is due to Proposition 6.5, stated below.
We provide a simple proof of this proposition that makes it evident that this result is
simply a special case of Proposition 5.9. This further reinforces the theory developed
in our current work. For an earlier proof, see for example [31, Lemma 2E.4].

Proposition 6.5 (Polyhedral reduction) Consider a polyhedron Q ⊂ Rn and a normal
vector v̄ ∈ NQ(x̄), for some point x̄ ∈ Q. Let K := K Q(x̄, v̄). Then we have

gph NQ − (x̄, v̄) = gph NK locally around (0, 0).

Proof By Example 4.3, the set M := argmaxx∈Q〈x, v̄〉 is the locally minimal identi-
fiable set at x̄ for v̄. Being polyhedral, M is smoothly derivable and it satisfies

x̄ + TM (x̄) = M locally around x̄ .

In light of Proposition 6.4, we deduce M − x̄ = K locally around 0.
Thus for all (u, w) sufficiently near (0, 0) we have

v̄ + u ∈ NQ(x̄ + w) ⇐⇒ v̄ + u ∈ NM (x̄ + w)

⇐⇒ v̄ + u ∈ NK (w)

⇐⇒ u ∈ NK (w)

where the first equivalence follows from Proposition 5.9, and the last equivalence
follows from the fact that K ⊂ v̄⊥ and so for all w ∈ K , the cone NK (w) contains
the line spanned by v̄. �

Proposition 6.5 easily fails for nonpolyhedral sets. Indeed, in light of Proposi-
tion 6.4, this is to be expected since critical cones provide only tangential approxi-
mations to locally minimal identifiable sets. Such an approximation is exact only for
polyhedral sets. Hence the theory of locally minimal identifiable sets (e.g. Proposi-
tion 5.9) extends Proposition 6.5 far beyond polyhedrality.

We end this section by showing how Proposition 6.4 can be extended even further to
the situation when locally minimal identifiable sets do not even exist. Indeed, consider
a set Q that is Clarke regular at a point x̄ , and let v̄ ∈ NQ(x̄). Consider a nested
sequence of open neighborhoods Vi of v̄ satisfying

⋂∞
i=1 Vi = {v̄}. One would then

expect that, under reasonable conditions, the equality

K Q(x̄, v̄) = co
∞⋂

i=1

TN−1
Q (Vi )

(x̄),
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holds. To put this in perspective, observe that if there exists a locally minimal identi-
fiable set M at x̄ for v̄, then the sets TN−1

Q (Vi )
(x̄) are equal to TM (x̄) for all large i , and

the equation above reduces to Proposition 6.4. More generally, the following is true.
We omit the proof since it is similar to that of Proposition 6.4.

Proposition 6.6 (Critical cones more generally) Consider a set Q that is Clarke regu-
lar at a point x̄ , and let v̄ ∈ NQ(x̄). Consider a nested sequence of open neighborhoods
Vi of v̄ satisfying

⋂∞
i=1 Vi = {v̄} and the corresponding preimages Mi := N̂−1

Q (Vi ).
Assume that each Mi is smoothly derivable at x̄ . Then the inclusion

K Q(x̄, v̄) ⊃ co
∞⋂

i=1

TMi (x̄), (6.1)

holds. Assume in addition that each Mi is prox-regular at x̄ for v̄ and that the formula

co
∞⋂

i=1

TMi (x̄) =
∞⋂

i=1

co TMi (x̄), (6.2)

holds. Then each Mi is an identifiable set at x̄ for v̄ and we have

K Q(x̄, v̄) = co
∞⋂

i=1

TMi (x̄).

In particular, let us note that (6.2) holds whenever the tangent spaces TMi (x̄) all
coincide for sufficiently large indices i or whenever all Mi are Clarke regular at x̄ .

7 Optimality conditions

In this section, we will see that the order of growth of a function f around a critical
point (a point satisfying 0 ∈ ∂ f (x)) is dictated entirely by its order of growth around
this point on a corresponding identifiable set. Here is a preliminary geometric result.

Proposition 7.1 (Restricted optimality) Consider a closed set Q and a subset M ⊂ Q
that is identifiable at x̄ for a proximal normal v̄ ∈ N P

Q (x̄). Then x̄ is a (strict) local
maximizer of the linear function 〈v̄, ·〉 on M if and only if x̄ is a (strict) local maximizer
of 〈v̄, ·〉 on Q.

Proof One implication is clear. To establish the converse, suppose that x̄ is a local
maximizer of the linear function 〈v̄, ·〉 on M . We will show that the inequality, 〈v̄, x̄〉 >

〈v̄, x〉, holds for all points x ∈ Q\M near x̄ . Indeed, suppose this is not the case. Then
there exists a sequence xi → x̄ in Q\M satisfying

〈v̄, x̄〉 ≤ 〈v̄, xi 〉. (7.1)

Since v̄ is a proximal normal, we deduce that there exists a real number r > 0 satisfying
PQ(x̄ + r−1v̄) = {x̄}. Consider any points zi with
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zi ∈ PQ(xi + r−1v̄).

Clearly we have zi → x̄ and

(xi − zi ) + r−1v̄ ∈ NQ(zi ).

Since M is identifiable at x̄ for v̄, we deduce zi ∈ M for all large indices i . Conse-
quently, for such indices i , we have xi �= zi .

Observe

|(xi − zi ) + r−1v̄| ≤ r−1|v̄|.

Squaring and cancelling terms, we obtain

〈v̄, zi − xi 〉 ≥ r

2
|zi − xi |2. (7.2)

Consequently,

r

2
|zi − xi |2 ≤ 〈v̄, x̄ − xi 〉 ≤ 0,

which is a contradiction. Claim (1) now follows. �
Recall that a function f : Rn → R is said to grow quadratically around x̄ provided

that the inequality

liminf
x→x̄

f (x) − f (x̄)

|x − x̄ |2 > 0,

holds. We now arrive at the main result of this section.

Proposition 7.2 (Order of growth) Consider a function f : Rn → R and a set M ⊂
Rn. Suppose that M is identifiable at x̄ for v̄ = 0 ∈ ∂P f (x̄). Then the following are
true.

1. x̄ is a (strict) local minimizer of f restricted to M ⇔ x̄ is a (strict) local minimizer
of the unrestricted function f .

2. More generally, consider a growth function g : U → R, defined on an open neigh-
borhood U of 0, that is C1-smooth and satisfies

f (x̄) < f (x) − g(x − x̄) for all x ∈ M near x̄,

g(0) = 0, ∇g(0) = 0,

Then the above inequality, in fact, holds for all points x ∈ Rn near x̄ .
In particular, the function f , restricted to M, grows quadratically near x̄ if and
only if the unrestricted function f grows quadratically near x̄ .
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Proof We first prove claim 1. By Proposition 3.14, gph f
∣
∣
M is identifiable, with respect

to epi f , at (x̄, f (x̄)) for (0,−1). Now observe that x̄ is a (strict) local minimizer of
f
∣
∣
M if and only of (x̄, f (x̄)) is a (strict) local maximizer of the linear function,

(x, r) 
→ −r , on gph f
∣
∣
M . Similarly x̄ is a (strict) local minimizer of f if and only of

(x̄, f (x̄)) is a (strict) local maximizer of the linear function, (x, r) 
→ −r , on epi f .
Combining these equivalences with Proposition 7.1 establishes the claim.

We now prove claim 2. Suppose that the growth condition is satisfied. Let h :=
f − g(x − x̄). Since f is C1-smooth, g(0) = 0, and ∇g(0) = 0, it easily follows that
M is identifiable, now with respect to h, at x̄ for 0 ∈ ∂P h(x̄). Furthermore, the point
x̄ is a strict local minimizer of h

∣
∣
M . Applying claim 1 of the current proposition, we

deduce that x̄ is a strict local minimizer of the unrestricted function h, that is

f (x̄) = h(x̄) < h(x) = f (x) − g(x − x̄), for all x near x̄,

as we needed to show. �
In particular, we obtain the following characterization of quadratic growth.

Corollary 7.3 (Refined optimality) Consider a function f : Rn → R and a point x̄
with 0 ∈ ∂P f (x̄). Then f grows quadratically around x̄ if and only if

liminf
(x, f (x),v)→(x̄, f (x̄),0)

v∈∂ f (x)

f (x) − f (x̄)

|x − x̄ |2 > 0. (7.3)

Proof Clearly if f grows quadratically around x̄ , then (7.3) holds. Conversely, assume
(7.3) holds and let Vi be a sequence of neighborhoods of 0 shrinking to 0 and let εi > 0
be real number tending to 0. Then the sets

Mi := (∂ f )−1(Vi ) ∩ {x ∈ Rn : | f (x) − f (x̄)| < εi },

are identifiable at x̄ for 0. Furthermore, f restricted to Mi must grow quadratically
around x̄ , for all sufficiently large indices i , since the alternative would contradict
(7.3). Applying Proposition 7.2, we obtain the result. �

8 Identifiable manifolds

Consider a closed set Q and a normal vector v̄ ∈ N̂Q(x̄), for a point x̄ ∈ Q. The
inherent difficulty in analyzing properties of the optimization problem,

P(v) : max 〈v, x〉,
s.t. x ∈ Q,

such as dependence of the local maximizers of P(v) on v or the order of growth of the
function x 
→ 〈x, v̄〉on Q near x̄ , stem entirely from the potential nonsmoothness of Q.
However, as we have seen in Proposition 5.9, the local geometry of gph NQ is entirely
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the same as that of a prox-regular identifiable set M at x̄ for v̄. Thus, for instance,
existence of an identifiable manifold M at x̄ for v̄ shows that the nonsmoothness of
Q is not intrinsic to the problem at all. Our goal in this section is to investigate this
setting. We begin with the following easy consequence of Proposition 5.9.

Proposition 8.1 Consider a closed set Q ⊂ Rn and suppose that a subset M ⊂ Q is
a C2 identifiable manifold at x̄ for v̄ ∈ N̂Q(x̄). Then the following properties hold.

1. v̄ lies in the interior of the cone N P
Q (x̄), relative to its linear span NM (x̄).

2. There are open neighborhoods U of x̄ and V of v̄ so that the mapping x 
→
V ∩ NQ(x), restricted to M, is inner-semicontinuous at each x ∈ U ∩ M.

Proof To see the validity of the first claim, observe that if it did not hold, then we
could choose a sequence of vectors vi satisfying

vi → v̄, vi ∈ NM (x̄), vi /∈ N P
Q (x̄),

thus contradicting Proposition 5.9. The second claim is similar. �
Consider a locally minimal identifiable subset M ⊂ Q at x̄ for v̄ ∈ NQ(x̄). Then

M remains identifiable at x for v ∈ NQ(x), whenever the pair (x, v) is sufficiently
close to (x̄, v̄). However under such perturbations, M might cease to be locally min-
imal, as one can see even from polyhedral examples. (Indeed when Q is a convex
polyhedron, this instability occurs whenever the inclusion v̄ ∈ rb NQ(x̄) holds.) In the
case of identifiable manifolds, the situation simplifies. Identifiable manifolds at x̄ for
v̄ ∈ N̂Q(x̄) are automatically locally minimal, and furthermore they remain locally
minimal under small perturbations to (x̄, v̄) in gph NQ . This important observation is
summarized below.

Proposition 8.2 Consider a closed set Q and a C2 identifiable manifold M ⊂ Q at x̄
for v̄ ∈ N̂Q(x̄). Then M is automatically a locally minimal identifiable set at x ∈ M
for v ∈ NQ(x) whenever the pair (x, v) is near (x̄, v̄).

Proof This follows directly from Proposition 2.4 and Proposition 8.1. �

8.1 Relation to partial smoothness

In this subsection, we will relate identifiable manifolds to the notion of partial smooth-
ness, introduced in Lewis [21]. The motivation behind partial smoothness is twofold.
On one hand, it is an attempt to model an intuitive idea of a “stable active set”. On the
other hand, partial smoothness, along with certain nondegeneracy and growth condi-
tions, provides checkable sufficient conditions for optimization problems to possess
good sensitivity properties. Evidently, partial smoothness imposes conditions that are
unnecessarily strong. We now describe a variant of partial smoothness that is localized
in a directional sense. This subtle distinction, however, will be important for us.

Definition 8.3 (Directional Partial Smoothness) Consider a closed set Q ⊂ Rn and
a C2 manifold M ⊂ Q. Then Q is partly smooth with respect to M at x̄ ∈ M for
v̄ ∈ NQ(x̄) if
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1. (prox-regularity) Q is prox-regular at x̄ for v̄.
2. (sharpness) span N̂Q(x̄) = NM (x̄).
3. (continuity) There exists a neighborhood V of v̄, such that the mapping, x 
→

V ∩ NQ(x), when restricted to M , is inner-semicontinuous at x̄ .

We arrive at the main result of this subsection.

Proposition 8.4 (Identifiable manifolds and partial smoothness) Consider a closed
set Q ⊂ Rn and a subset M ⊂ Q that is a C2 manifold around a point x̄ ∈ Q. Let
v̄ ∈ N̂Q(x̄). Then the following are equivalent.

1. M is an identifiable manifold at x̄ for v̄.
2. We have

gph NQ = gph NM locally around (x̄, v̄).

3. – Q is partly smooth with respect to M at x̄ for v̄.
– the inclusion v̄ ∈ ri N̂Q(x̄) holds.

4. The set Q is prox-regular at x̄ for v̄, and for all sufficiently small real numbers
λ, ε > 0, we have

x̄ + λv̄ ∈ int

⎛

⎝
⋃

x∈M∩Bε (x̄)

(
x + NQ(x)

)
⎞

⎠ .

Proof The equivalence 1 ⇔ 2 has been established in Proposition 5.9. The implication
1 ⇒ 3 follows trivially from Propositions 5.8 and 8.1.

3 ⇒ 4: There exist real numbers r, ε > 0 so that the implication

x ∈ Q, v ∈ NQ(x)

|x − x̄ | < ε, |v − v̄| < ε

}
⇒ PQ∩Bε (x̄)(x + r−1v) = x,

holds. For the sake of contradiction, suppose

x̄ + r−1v̄ ∈ bd

⎛

⎝
⋃

x∈M∩Bε (x̄)

(
x + NQ(x)

)
⎞

⎠ .

Then there exists a sequence of points zi → x̄ + r−1v̄ with

zi /∈
⋃

x∈M∩Bε (x̄)

(
x + NQ(x)

)
,

for each index i . Let xi ∈ PM (zi ). Observe

xi → x̄, zi − xi ∈ NM (xi ).
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Clearly,

zi − xi /∈ N P
Q (xi ) ⊂ NM (xi ),

for large indices i . Hence, there exist separating vectors ai ∈ NM (xi ) with |ai | = 1
satisfying

sup
v∈N P

Q (xi )

〈ai , v〉 ≤ 〈ai , zi − xi 〉 = 〈ai , zi − x̄〉 + 〈ai , x̄ − xi 〉.

We deduce,

sup
v∈N P

Q (xi )

〈ai , v〉 ≤ 〈ai , r(zi − x̄)〉 + 〈ai , r(x̄ − xi )〉.

Passing to a subsequence, we may assume ai → a for some nonzero vector a ∈
NM (x̄). Observe v̄+δa ∈ NQ(xi ) for all small δ > 0. Consequently for all sufficiently
small δ > 0, there exist vectors vi ∈ NQ(xi ) with vi → v̄ + δa. Observe

〈ai , vi 〉 ≤ 〈ai , r(zi − x̄)〉 + 〈ai , r(x̄ − xi )〉.

Letting i tend to ∞, we obtain 〈a, v̄ + δa〉 ≤ 〈a, v̄〉, which is a contradiction.
4 ⇒ 1: Choose r, ε > 0 so as to ensure

x̄ + r−1v̄ ∈ int

⎛

⎝
⋃

x∈M∩Bε (x̄)

(
x + NQ(x)

)
⎞

⎠ .

Consider any sequence of points xi ∈ Rn and vectors vi ∈ NQ(xi ), with xi → x̄ and
vi → v̄. Then for all large indices i , the inclusion

xi + r−1vi ∈
⋃

x∈M∩Bε (x̄)

(
x + NQ(x)

)
,

holds. Shrinking r and ε, from prox-regularity of Q, we deduce xi ∈ M for all large
indices i . Hence M is identifiable at x̄ for v̄. �

Consider a convex set Q containing a point x̄ , and let v̄ ∈ NQ(x̄) be a normal
vector. Then the arguments (3) ⇒ (4) and (4) ⇒ (1) show that a manifold M ⊂ Q
is identifiable at x̄ for v̄ if and only if the inclusion

x̄ + v̄ ∈ int

(
⋃

x∈M

(
x + NQ(x)

)
)

,

holds. The region
⋃

x∈M

(
x + NQ(x)

)
is formed by attaching cones NQ(x) to each

point x ∈ M . This set is precisely the set of points in Rn whose projections onto Q
lie in M .
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