FULL LENGTH PAPER

Optimality, identifiability, and sensitivity

D. Drusvyatskiy · A. S. Lewis

Received: 27 July 2012 / Accepted: 20 November 2013 / Published online: 29 November 2013 © Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013

Abstract Around a solution of an optimization problem, an "identifiable" subset of the feasible region is one containing all nearby solutions after small perturbations to the problem. A quest for only the most essential ingredients of sensitivity analysis leads us to consider identifiable sets that are "minimal". This new notion lays a broad and intuitive variational-analytic foundation for optimality conditions, sensitivity, and active set methods.

Mathematics Subject Classification (2000) 49Q12 · 49J53 · 49J52 · 90C30 · 90C31 · 90C46

D. Drusvyatskiy (🖂) · A. S. Lewis

Work of D. Drusvyatskiy on this paper has been partially supported by the NDSEG grant from the Department of Defence. Work of A. S. Lewis has been supported in part by National Science Foundation Grant DMS-0806057 and by the US-Israel Binational Scientific Foundation Grant 2008261.

School of Operations Research and Information Engineering, Cornell University, Ithaca, New York, USA

e-mail: dd379@cornell.edu

URL: http://people.orie.cornell.edu/dd379/

A. S. Lewis e-mail: aslewis@orie.cornell.edu URL: http://people.orie.cornell.edu/aslewis/

1 Introduction

Active set ideas permeate traditional nonlinear optimization. Classical problems involve a list of smooth nonlinear constraints: the active set for a particular feasible solution—the collection of binding constraints at that point—is crucial in first and second order optimality conditions, in sensitivity analysis, and for certain algorithms. Contemporary interest in more general constraints (such as semidefiniteness) suggests a reappraisal. A very thorough modern study of sensitivity analysis in its full generality appears in Bonnans and Shapiro [3]. Approaches more variational-analytic in flavor appear in texts such as [31]. Our aim here is rather different: to present a simple fresh approach, combining wide generality with mathematical elegance.

Our approach has its roots in the notion of an "identifiable surface" [34], and its precursors [1,5-7,13,15,16]. In essence, the idea is extremely simple: given a critical point x for a function f, a set M is *identifiable* if any sequence of points approaching x that is approximately critical (meaning corresponding subgradients approach zero) must eventually lie in M. The terminology comes from the idea that an iterative algorithm that approximates x along with an approximate criticality certificate must "identify" M. To take the classical example where f is a pointwise maximum of smooth functions, around any critical point x, assuming a natural constraint qualification, we can define M as those points with the same "active set" of functions attaining the maximum. Similarly we may consider the case when the function f is a sum of two-norms of finitely many smooth mappings. Then around any critical point x, assuming a natural nondegeneracy condition, we can define M as the zero-set of those mappings that are active—meaning those that are zero at x. For a historical discussion of minimizing such a function using active set methods, see Andersen et al. [2].

Identifiable sets M are useful computationally because the problem of minimizing f near the critical point x is equivalent to minimizing the restriction of f to M, which may be an easier problem, and because the identifiability property allows convergent algorithms to find M—the motivation for active set methods. For a discussion on how to constructively identify and exploit such sets, see for example Lee and Wright [20], Mifflin and Sagastizábal [25]. We show moreover how M is a natural tool for optimality conditions: under reasonable conditions, quadratic growth of f around x is equivalent to quadratic growth on M—a potentially easier condition to check. In particular, it is the (generalized) derivatives of the restriction of f to M that play a decisive role for sensitivity analysis. See a related discussion of second-order optimality conditions for semidefinite programming in Lewis and Zhang [22]. Our results, in particular, generalize the ideas there.

Clearly the smaller the identifiable set M, the more informative it is. Ideal would be a "locally minimal identifiable set". We note that such sets may fail to exist, even for finite convex functions f. However, when a minimal identifiable set M does exist, we show that it is both unique (locally), and central to sensitivity analysis: it consists locally of all critical points of small linear perturbations to f. We show furthermore that, under reasonable conditions, variational analysis of f simplifies because, locally, the graph of its subdifferential mapping is influenced only by the restriction of f to M. One appealing consequence is a close relationship between minimal identifiable sets and critical cones appearing in the study of variational inequalities. The case when an identifiable set M is in fact a manifold around the point x (as in the classical example above) is particularly interesting. Remarkably, this case is equivalent to a powerful but seemingly stringent list of properties known as "partial smoothness" [21], nondegeneracy and prox-regularity—related work on " \mathcal{VU} algorithms" and "the fast track" appears in Mifflin and Sagastizábal [23–25] and Hare and Sagastizábal [17,18]. By contrast, our approach here is to offer a concise mathematical development emphasizing how this important scenario is in fact very natural indeed.

The outline of the paper is as follows. In Sect. 2, we introduce the notion of identifiability for arbitrary set-valued mappings. Then in Sect. 3, we specialize this idea to subdifferential mappings, laying the foundation for the rest of the paper. Section 4 contains basic examples of identifiable sets. Arriving at our main results in Sect. 5, we study variational geometry of identifiable sets; this in particular allows us to establish a strong relationship between identifiable sets and critical cones in Sect. 6. Finally in Sect. 7, we consider optimality conditions in the context of identifiable sets, while in Sect. 8 we establish a relationship between identifiable manifolds and partial smoothness one of our central original goals. To facilitate the reading, we have omitted a number of details. An expanded version of the material presented here may be found in [11, Chapter 7] and [12].

2 Identifiability in set-valued analysis

A set-valued mapping G from \mathbb{R}^n to \mathbb{R}^m , denoted by $G: \mathbb{R}^n \Rightarrow \mathbb{R}^m$, is a mapping from \mathbb{R}^n to the power set of \mathbb{R}^m . Thus for each point $x \in \mathbb{R}^n$, G(x) is a subset of \mathbb{R}^m . The *domain*, graph, and range of G are defined to be

dom
$$G := \{x \in \mathbf{R}^n : G(x) \neq \emptyset\},\$$

gph $G := \{(x, y) \in \mathbf{R}^n \times \mathbf{R}^m : y \in G(x)\},\$
rge $G := \bigcup_{x \in \mathbf{R}^n} G(x),$

respectively. For two sets M and Q in \mathbb{R}^n , we will say that the inclusion $M \subset Q$ holds locally around \bar{x} , if there exists a neighborhood U of \bar{x} satisfying $M \cap U \subset Q \cap U$. The following is the key property we explore in this work.

Definition 2.1 (*Identifiable sets*) Consider a mapping $G : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$. We say that a subset $M \subset \mathbb{R}^n$ is *identifiable* at \bar{x} for \bar{v} , where $\bar{v} \in G(\bar{x})$, if the inclusion

gph $G \subset M \times \mathbf{R}^m$ holds locally around (\bar{x}, \bar{v}) .

Thus a set M is identifiable at \bar{x} for $\bar{v} \in G(\bar{x})$ if for any sequence $(x_i, v_i) \to (\bar{x}, \bar{v})$ in gph G, the points x_i must lie in M for all sufficiently large indices i. Clearly M is identifiable at \bar{x} for \bar{v} if and only if the same can be said of $M \cap \text{dom } G$. Hence we will make light of the distinction between two such sets.

Clearly dom G is identifiable at \bar{x} for $\bar{v} \in G(\bar{x})$. More generally, if \bar{v} lies in the interior of some set U, then $G^{-1}(U)$ is identifiable at \bar{x} for \bar{v} . Sometimes all identifiable

subsets of dom *G* arise locally in this way. In particular, one can readily check that this is the case for any set-valued mapping *G* satisfying $G^{-1} \circ G = \text{Id}$, an important example being the inverse of the projection map $G = P_Q^{-1}$ onto a nonempty, closed, convex set *Q*.

The "smaller" the set M is, the more interesting and the more useful it becomes. Hence an immediate question arises. When is the identifiable set M locally minimal, in the sense that for any other identifiable set M' at \bar{x} for \bar{v} , the inclusion $M \subset M'$ holds locally around \bar{x} ? The following notion will be instrumental in addressing this question.

Definition 2.2 (*Necessary sets*) Consider a mapping $G : \mathbb{R}^n \Rightarrow \mathbb{R}^m$, a point $\bar{x} \in \mathbb{R}^n$, and a vector $\bar{v} \in G(\bar{x})$. We say that a subset $M \subset \mathbb{R}^n$, containing \bar{x} , is *necessary* at \bar{x} for \bar{v} if the function

$$x \mapsto d(\bar{v}, G(x)),$$

restricted to M, is continuous at \bar{x} .

Thus *M* is necessary at \bar{x} for $\bar{v} \in G(\bar{x})$ if for any sequence $x_i \to \bar{x}$ in *M*, there exists a sequence $v_i \in G(x_i)$ with $v_i \to \bar{v}$. The name "necessary" arises from the following simple observation.

Lemma 2.3 Consider a mapping $G : \mathbf{R}^n \rightrightarrows \mathbf{R}^m$ and a pair $(\bar{x}, \bar{v}) \in \text{gph } G$. Let M and M' be two subsets of \mathbf{R}^n . Then we have the implication

 $\begin{array}{l} M \text{ is identifiable at } \bar{x} \text{ for } \bar{v} \\ M' \text{ is necessary at } \bar{x} \text{ for } \bar{v} \end{array} \} \Rightarrow M' \subset M \text{ locally around } \bar{x}.$

The following elementary characterization of locally minimal identifiable sets will be used extensively in the sequel, often without an explicit reference. We omit the proof since it is straightforward.

Proposition 2.4 (Characterizing locally minimal identifiability) Consider a setvalued mapping $G: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ and a pair $(\bar{x}, \bar{v}) \in \text{gph } G$. The following are equivalent.

- 1. *M* is a locally minimal identifiable set at \bar{x} for \bar{v} .
- 2. There exists neighborhood V of \overline{v} such that for any subneighborhood $W \subset V$ of \overline{v} , the representation

 $M = G^{-1}(W)$ holds locally around \bar{x} .

- 3. *M* is a locally maximal necessary set at \bar{x} for \bar{v} .
- 4. *M* is identifiable and necessary at \bar{x} for \bar{v} .

Remark 2.5 Proposition 2.4 implies that whenever locally minimal identifiable sets exist, they are locally unique. That is, if M_1 and M_2 are locally minimal identifiable sets at \bar{x} for $\bar{v} \in G(\bar{x})$, then $M_1 = M_2$ locally around \bar{x} .

The central goal in sensitivity analysis is to understand the behavior of solutions x, around \bar{x} , to the inclusion

$$v \in G(x)$$
,

as v varies near \bar{v} . Characterization 2 of Proposition 2.4 shows that a locally minimal identifiable set at \bar{x} for \bar{v} is a locally minimal set that captures *all* the sensitivity information about the inclusion above.

This characterization yields a "constructive" approach to finding locally minimal identifiable sets. Consider any open neighborhoods $V_1 \supset V_2 \supset V_3 \supset \cdots$, around \bar{v} with the diameters of V_i tending to zero. If the chain

$$G^{-1}(V_1) \supset G^{-1}(V_2) \supset G^{-1}(V_3) \supset \cdots,$$

stabilizes, in the sense that for all large indices *i* and *j*, we have $G^{-1}(V_i) = G^{-1}(V_j)$ locally around \bar{x} , then $G^{-1}(V_i)$ is a locally minimal identifiable set at \bar{x} for \bar{v} , whenever *i* is sufficiently large. Moreover, the locally minimal identifiable set at \bar{x} for \bar{v} , if it exists, must arise in this way.

The following example shows that indeed a set-valued mapping can easily fail to admit a locally minimal identifiable set.

Example 2.6 (Failure of existence) Consider the mapping $G: \mathbb{R}^2 \rightrightarrows \mathbb{R}$, defined in polar coordinates, by

$$G(r,\theta) = \begin{cases} |\theta| & \text{if } r \neq 0, \ \theta \in [-\pi,\pi], \\ [-1,1] & \text{if } r = 0. \end{cases}$$

Let \bar{x} be the origin in \mathbb{R}^2 and $\bar{v} := 0 \in G(\bar{x})$. Observe that for $\epsilon \to 0$, the preimages

$$G^{-1}(-\epsilon,\epsilon) = \left\{ (r,\theta) \in \mathbf{R}^2 : G(r,\theta) \cap (-\epsilon,\epsilon) \neq \emptyset \right\} = \left\{ (r,\theta) : |\theta| < \epsilon \right\},\$$

never coincide around \bar{x} . Consequently, there is no locally minimal identifiable set at \bar{x} for \bar{v} .

Notwithstanding the previous example, locally minimal identifiable sets do often exist. Before proceeding, we recall the following two standard notions.

Definition 2.7 (*Continuity*) Consider a set-valued mapping $F : \mathbf{R}^n \rightrightarrows \mathbf{R}^m$.

- 1. *F* is *outer semicontinuous* at a point $\bar{x} \in \mathbf{R}^n$ if for any sequence of points $x_i \in \mathbf{R}^n$ converging to \bar{x} and any sequence of vectors $v_i \in F(x_i)$ converging to \bar{v} , we must have $\bar{v} \in F(\bar{x})$.
- 2. *F* is *inner semicontinuous* at \bar{x} if for any sequence x_i converging to \bar{x} and any vector $\bar{v} \in F(\bar{x})$, there exist vectors $v_i \in F(x_i)$ converging to \bar{v} .

If both properties hold, then we say that *F* is *continuous* at \bar{x} . We say that *F* is innersemicontinuous at \bar{x} , *relative* to a certain set $Q \subset \mathbf{R}^n$, if the condition above for inner-semicontinuity is satisfied for sequences $x_i \to \bar{x}$ in Q. **Proposition 2.8** (Identifiability under continuity) *Consider a set-valued mapping* $G : \mathbf{R}^n \rightrightarrows \mathbf{R}^m$ that is inner semicontinuous, relative to dom G, at a point $\bar{x} \in \text{dom } G$. Then dom G is a locally minimal identifiable set at \bar{x} for any vector $\bar{v} \in G(\bar{x})$.

More interesting examples can be constructed by taking pointwise unions of maps admitting locally minimal identifiable sets.

Proposition 2.9 (Pointwise union) Consider a finite collection of outersemicontinuous mappings, $G_i : \mathbf{R}^n \rightrightarrows \mathbf{R}^m$, for i = 1, ..., k. Define the pointwise union mapping $G : \mathbf{R}^n \rightrightarrows \mathbf{R}^m$ to be

$$G(x) = \bigcup_{i=1}^{m} G_i(x).$$

Fix a point $\bar{x} \in \mathbf{R}^n$ and a vector $\bar{v} \in G(\bar{x})$, and suppose that for each index *i*, satisfying $\bar{v} \in G_i(\bar{x})$, there exists a locally minimal identifiable set M_i (with respect to G_i) at \bar{x} for \bar{v} . Then the set

$$M:=\bigcup_{i:\bar{v}\in G_i(\bar{x})}M_i,$$

is a locally minimal identifiable set (with respect to G) at \bar{x} for \bar{v} .

Proof This readily follows from Proposition 2.4.

In particular, locally minimal identifiable sets exist for *piecewise polyhedral* mappings. These are those mappings whose graphs can be decomposed into a union of finitely many convex polyhedra.

Example 2.10 (Piecewise polyhedral mappings) Consider a piecewise polyhedral mapping $G : \mathbf{R}^n \Rightarrow \mathbf{R}^m$, where gph $G = \bigcup_{i=1}^k V_i$ and $V_i \subset \mathbf{R}^n$ are convex polyhedral sets. It is well-known that set-valued mappings whose graphs are convex polyhedral are inner-semicontinuous (in fact, (Hausdorff) Lipschitz continuous) on their domains [30]. Fix a point $\bar{x} \in \mathbf{R}^n$ and a vector $\bar{v} \in G(\bar{x})$, and let $\pi : \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}^n$ be the canonical projection onto \mathbf{R}^n . Consequently, by Propositions 2.8 and 2.9, the set

$$\bigcup_{\bar{x}:(\bar{x},\bar{v})\in V_i}\pi(V_i)$$

is a locally minimal identifiable set at \bar{x} for \bar{v} .

For the remainder of the current work, we will be investigating the notion of identifiability in the context of the workhorse of variational analysis, the *subdifferential* mapping (Definition 3.5).

3 Identifiability in variational analysis

3.1 Preliminaries from variational analysis

In this subsection, we briefly summarize some of the fundamental tools used in variational analysis and nonsmooth optimization. We refer the reader to the monographs Borwein and Zhu [4], Clarke et al. [8], Mordukhovich [26], and Rockafellar and Wets [32], for more details. Unless otherwise stated, we follow the terminology and notation of Rockafellar and Wets [32].

The functions that we will be considering will take their values in the extended real line $\overline{\mathbf{R}} := \mathbf{R} \cup \{-\infty, \infty\}$. We say that an extended-real-valued function is proper if it is never $\{-\infty\}$ and is not always $\{+\infty\}$.

For a function $f : \mathbf{R}^n \to \overline{\mathbf{R}}$, the *domain* of f is

dom
$$f := \{x \in \mathbf{R}^n : f(x) < +\infty\},\$$

and the *epigraph* of f is

$$epi f := \{(x, r) \in \mathbf{R}^n \times \mathbf{R} : r \ge f(x)\}.$$

Throughout this work, we will only use Euclidean norms. Hence for a point $x \in \mathbb{R}^n$, the symbol |x| will denote the standard Euclidean norm of x. For any set $Q \subset \mathbb{R}^n$, the symbols int Q, cl Q, bd Q, cone Q, conv Q, and aff Q will denote the interior, closure, boundary, (nonconvex) conical hull, convex hull, and affine hull of Q, respectively. The interior and boundary of Q, relative to aff Q, will be denoted by ri Q and rb Q, respectively.

For a set $Q \subset \mathbf{R}^n$ and a point $x \in \mathbf{R}^n$, the distance of x from Q is

$$d_Q(x) := \inf_{y \in Q} |x - y|,$$

and the projection of x onto Q is

$$P_Q(x) := \{ y \in Q : |x - y| = d_Q(x) \}.$$

Normal cones are fundamental in variational geometry.

Definition 3.1 (*Proximal normals*) Consider a set $Q \subset \mathbb{R}^n$ and a point $\bar{x} \in Q$. The *proximal normal cone* to Q at \bar{x} , denoted $N_Q^P(\bar{x})$, consists of all vectors $v \in \mathbb{R}^n$ such that $\bar{x} \in P_Q(\bar{x} + \frac{1}{r}v)$ for some r > 0. In this case, $\{\bar{x}\} = P_Q(\bar{x} + \frac{1}{r'}v)$ for each real number r' > r.

Geometrically, a vector $v \neq 0$ is a proximal normal to Q at \bar{x} precisely when there exists a ball touching Q at \bar{x} such that v points from \bar{x} towards the center of the ball. Furthermore, this condition amounts to

$$\langle v, x - \bar{x} \rangle \le O(|x - \bar{x}|^2)$$
 as $x \to \bar{x}$ in Q.

Relaxing the inequality above, one obtains the following notion.

Definition 3.2 (*Frechét normals*) Consider a set $Q \subset \mathbf{R}^n$ and a point $\bar{x} \in Q$. The *Frechét normal cone* to Q at \bar{x} , denoted $\hat{N}_Q(\bar{x})$, consists of all vectors $v \in \mathbf{R}^n$ such that

$$\langle v, x - \bar{x} \rangle \le o(|x - \bar{x}|)$$
 as $x \to \bar{x}$ in Q.

Note that both $N_O^P(\bar{x})$ and $\hat{N}_O(\bar{x})$ are convex cones, while $\hat{N}_O(\bar{x})$ is also closed.

For a set $Q \in \mathbf{R}^n$, the set-valued mapping $x \mapsto \hat{N}_Q(x)$ is not outer-semicontinuous, and hence is not robust relative to perturbations in x. To correct for that, the following definition is introduced.

Definition 3.3 (*Limiting normals*) The *limiting normal cone* to a set $Q \subset \mathbf{R}^n$ at a point $\bar{x} \in Q$, denoted $N_Q(\bar{x})$, consists of all vectors $v \in \mathbf{R}^n$ such that there are sequences $x_i \xrightarrow{Q} \bar{x}$ and $v_i \to v$ with $v_i \in \hat{N}_Q(x_i)$.

The limiting normal cone, as defined above, consists of limits of nearby Frechét normals. In fact, the same object arises if we only allow limits of nearby proximal normals. An important and favorable situation arises when the Frechét and limiting constructions coincide.

Definition 3.4 (*Clarke regularity of sets*) A set $Q \subset \mathbb{R}^n$ is said to be *Clarke regular* at a point $\bar{x} \in Q$ if it is locally closed at \bar{x} and every limiting normal vector to Q at \bar{x} is a Frechét normal vector, that is $N_O(\bar{x}) = \hat{N}_O(\bar{x})$.

We can study nonsmooth functions using epigraphical normal cones.

Definition 3.5 (Subdifferentials) Consider a function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ and a point $\overline{x} \in \mathbb{R}^n$ where f is finite. The proximal, Frechét, and limiting subdifferentials of f at \overline{x} , respectively, are defined by

$$\partial_P f(\bar{x}) = \left\{ v \in \mathbf{R}^n : (v, -1) \in N_{\text{epi}\,f}^P(\bar{x}, f(\bar{x})) \right\},\\ \hat{\partial} f(\bar{x}) = \left\{ v \in \mathbf{R}^n : (v, -1) \in \hat{N}_{\text{epi}\,f}(\bar{x}, f(\bar{x})) \right\},\\ \partial f(\bar{x}) = \left\{ v \in \mathbf{R}^n : (v, -1) \in N_{\text{epi}\,f}(\bar{x}, f(\bar{x})) \right\},$$

while the horizon subdifferential is defined by

$$\partial^{\infty} f(\bar{x}) = \left\{ v \in \mathbf{R}^n : (v, 0) \in N_{\text{epi } f}(\bar{x}, f(\bar{x})) \right\}.$$

For \bar{x} such that $f(\bar{x})$ is not finite, we follow the convention that $\partial_P f(\bar{x}) = \hat{\partial} f(\bar{x}) = \partial f(\bar{x}) = \partial^\infty f(\bar{x}) = \emptyset$.

For convex functions f, the subdifferentials $\partial_p f$, $\hat{\partial} f$, and ∂f reduce to the classical convex subdifferential, while for smooth f they coincide with the gradient mapping ∇f . See for example [32, Exercise 8.8]. In this sense, these three subdifferentials generalize the classical gradient. The horizon subdifferential plays an entirely different role; it records horizontal normals to the epigraph of the function and is instrumental in establishing subdifferential calculus rules. See [32, Theorem 10.6].

Definition 3.6 (*Clarke regularity of functions*) A function $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ is said to be *Clarke regular* at a point $\overline{x} \in \mathbf{R}^n$ if the epigraph epi f is Clarke regular at $(\overline{x}, f(\overline{x}))$.

Given any set $Q \subset \mathbf{R}^n$ and a mapping $F: Q \to \widetilde{Q}$, where $\widetilde{Q} \subset \mathbf{R}^m$, we say that F is \mathbf{C}^p -smooth $(p \ge 1)$ if for each point $\overline{x} \in Q$, there is a neighborhood U of \overline{x} and a \mathbf{C}^p mapping $\widehat{F}: \mathbf{R}^n \to \mathbf{R}^m$ that agrees with F on $Q \cap U$.

Definition 3.7 (*Smooth Manifolds*) We say that a set $M \subset \mathbb{R}^n$ is a \mathbb{C}^p -submanifold of dimension r if for each point $\bar{x} \in M$, there is an open neighborhood U around \bar{x} and a function $F: U \to \mathbb{R}^{n-r}$ that is \mathbb{C}^p -smooth with $\nabla F(\bar{x})$ of full rank and satisfying $M \cap U = \{x \in U : F(x) = 0\}$. In this case, we call F a *local defining function* for M around \bar{x} .

A good source on smooth manifold theory is Lee [19].

Theorem 3.8 ([32, Example 6.8]) Any \mathbb{C}^1 -manifold M is Clarke regular at every point $x \in M$ and the normal cone $N_M(x)$ is equal to the normal space to M at x, in the sense of differential geometry.

For a set $Q \subset \mathbf{R}^n$, we let δ_Q denote a function that is 0 on Q and $+\infty$ elsewhere; we call δ_Q the *indicator function* of Q. Then for any point $\bar{x} \in Q$, we have $N_Q^P(\bar{x}) = \partial_P \delta_Q(\bar{x})$, $\hat{N}_Q(\bar{x}) = \hat{\partial} \delta_Q(\bar{x})$ and $N_Q(\bar{x}) = \partial \delta_Q(\bar{x})$. We will have occasion to use the following simple result; see [21, Proposition 2.2].

Proposition 3.9 Consider a set $M \subset \mathbb{R}^n$ and a function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ that is finitevalued and \mathbb{C}^1 -smooth on M. Then, at any point $\overline{x} \in M$, we have

$$\hat{\partial} f(\bar{x}) \subset \nabla g(\bar{x}) + \hat{N}_M(\bar{x}),$$

where $g: \mathbf{R}^n \to \mathbf{R}$ is any \mathbf{C}^1 -smooth function agreeing with f on a neighborhood of \bar{x} in M.

3.2 Identifiability in variational analysis

We are now ready to define identifiability in the context of optimization.

Definition 3.10 (*Identifiability for functions*) Consider a function $f : \mathbb{R}^n \to \mathbb{R}$, a point $\bar{x} \in \mathbb{R}^n$, and a subgradient $\bar{v} \in \partial f(\bar{x})$. A set $M \subset \mathbb{R}^n$ is *identifiable at* \bar{x} for \bar{v} if for any sequences $(x_i, f(x_i), v_i) \to (\bar{x}, f(\bar{x}), \bar{v})$, with $v_i \in \partial f(x_i)$, the points x_i must all lie in M for all sufficiently large indices i.

The definition above can be interpreted in the sense of Sect. 2. Indeed, consider a function $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ and a subgradient $\overline{v} \in \partial f(\overline{x})$, for some point $\overline{x} \in \mathbf{R}^n$. Define the set-valued mapping

$$G: \mathbf{R}^n \rightrightarrows \mathbf{R} \times \mathbf{R}^n,$$
$$x \mapsto \{f(x)\} \times \partial f(x).$$

Then *M* is identifiable (relative to *f*) at \bar{x} for \bar{v} if and only if it is identifiable (relative to *G*) at \bar{x} for the vector $(f(\bar{x}), \bar{v})$. Here, we have to work with the mapping *G*, rather than the subdifferential mapping ∂f directly, so as to facilitate coherence between normal cone mappings and subdifferential mappings via epigraphical geometry. (See Proposition 3.14.) This slight annoyance can be avoided whenever *f* is *subdifferentially continuous* at \bar{x} for \bar{v} , meaning that the function $(x, v) \mapsto f(x)$, restricted to gph ∂f is continuous in the usual sense at the point (\bar{x}, \bar{v}) ; see [28, Definition 1.14]. In particular, any lsc convex function is subdifferentially continuous [32, Example 13.30].

Similarly, we define necessary sets as follows.

Definition 3.11 (*Necessity for functions*) Consider a function $f : \mathbf{R}^n \to \overline{\mathbf{R}}$. A set $M \subset \mathbf{R}^n$ is *necessary at* \bar{x} for $\bar{v} \in \partial f(\bar{x})$ if both the function f and the mapping

$$x \mapsto d(\bar{v}, \partial f(x)),$$

restricted to M, are continuous at \bar{x} .

Specializing the characterization in Proposition 2.4 to this setting, we obtain the following.

Proposition 3.12 (Characterizing locally minimal identifiability) *Consider a function* $f : \mathbf{R}^n \to \overline{\mathbf{R}}$, a point $\bar{x} \in \mathbf{R}^n$, and a subgradient $\bar{v} \in \partial f(\bar{x})$. Then the following are equivalent.

- 1. *M* is a locally minimal identifiable set at \bar{x} for \bar{v} ,
- 2. There exists a neighborhood V of \bar{v} and a real number $\epsilon > 0$ such that for any subneighborhood $W \subset V$ of \bar{v} and a real number $0 < \epsilon' < \epsilon$, the presentation

$$M = (\partial f)^{-1}(W) \cap \{x \in \mathbf{R}^n : |f(x) - f(\bar{x})| < \epsilon'\} \text{ holds locally around } \bar{x}.$$

- 3. *M* is a locally maximal necessary set at \bar{x} for \bar{v} .
- 4. *M* is identifiable and necessary at \bar{x} for \bar{v}

Definition 3.13 (*Identifiability for sets*) Given a set $Q \subset \mathbb{R}^n$, we will say that a subset $M \subset Q$ is *identifiable* (relative to Q) at \bar{x} for $\bar{v} \in N_Q(\bar{x})$ if M is identifiable (relative to δ_Q) at \bar{x} for $\bar{v} \in \partial \delta_Q(\bar{x})$. Analogous conventions will hold for necessary sets and locally minimal identifiable sets.

The following simple proposition establishes epigraphical coherence, alluded to above, between normal cone mappings and subdifferential mappings in the context of identifiability.

Proposition 3.14 (Epigraphical coherence) Consider a function $f : \mathbf{R}^n \to \mathbf{R}$ and a subgradient $\bar{v} \in \partial f(\bar{x})$, for some point $\bar{x} \in \mathbf{R}^n$. Then $M \subset \text{dom } f$ is an identifiable set (relative to f) at \bar{x} for \bar{v} if and only if gph $f|_M$ is an identifiable set (relative to epi f) at $(\bar{x}, f(\bar{x}))$ for $(\bar{v}, -1)$. Analogous statements hold for necessary, and consequently for locally minimal identifiable sets.

4 Basic examples

In this section, we present some basic examples of identifiable sets.

Example 4.1 (Smooth functions) If $f : \mathbf{R}^n \to \mathbf{R}$ is \mathbf{C}^1 -smooth on a neighborhood U of \bar{x} , then U is a locally minimal identifiable set at \bar{x} for $\nabla f(\bar{x})$.

Example 4.2 (Smooth manifolds) If M is a \mathbb{C}^1 manifold, then M is a locally minimal identifiable set at any $x \in M$ for any $v \in N_M(x)$. This is so because the normal cone mapping $x \mapsto N_M(x)$ is inner-semicontinuous on M.

We define the *support* of any vector $v \in \mathbf{R}^n$, denoted supp v, to be the set consisting of all indices $i \in \{1, ..., n\}$ such that $v_i \neq 0$. The *rank* of v, denoted rank v, is then the size of the support supp v.

Example 4.3 (Polyhedral functions) Consider a *convex polyhedral function* $f : \mathbf{R}^n \to \overline{\mathbf{R}}$, that is a function whose epigraph is a convex polyhedron, and fix a pair $(\bar{x}, \bar{v}) \in$ gph ∂f . Example 2.10 shows that $M := (\partial f)^{-1}(\bar{v})$ is a locally minimal identifiable set at \bar{x} for \bar{v} .

To be more precise, we may express f as

$$f(x) = \begin{cases} \max_{i \in I} \{ \langle a_i, x \rangle + b_i \} & \text{whenever } \langle c_j, x \rangle \le d_j \text{ for all } j \in J, \\ \infty & \text{otherwise,} \end{cases}$$

for index sets $I = \{1, ..., m\}$ and $J = \{1, ..., k\}$, vectors $a_i, c_j \in \mathbb{R}^n$, and real numbers b_i, d_j for $i \in I$ and $j \in J$. For any point $x \in \mathbb{R}^n$, define the active index sets

$$I(x) = \{i \in I : \langle a_i, x \rangle + b_i = f(x)\},\$$

$$J(x) = \{j \in J : \langle c_j, x \rangle = d_j\}.$$

A straightforward computation shows

$$\partial f(x) = \operatorname{conv} \{a_i : i \in I(x)\} + \operatorname{cone} \{c_i : j \in J(x)\}.$$

Consequently, there exist multipliers $(\bar{\lambda}, \bar{\mu}) \in \mathbf{R}^m_+ \times \mathbf{R}^k_+$ satisfying

$$\bar{v} = \sum_{i \in I} \bar{\lambda}_i a_i + \sum_{j \in J} \bar{\mu}_j c_j,$$

with $\sum_{i \in I} \overline{\lambda}_i = 1$, supp $\overline{\lambda} \subset I(\overline{x})$, and supp $\overline{\mu} \subset J(\overline{x})$. It easily follows that

$$M := \left\{ x \in \text{dom } f : \text{supp } \bar{\lambda} \subset I(x), \text{ supp } \bar{\mu} \subset J(x) \right\}$$

is a locally minimal identifiable set at \bar{x} for \bar{v} . We should note that a particularly nice situation occurs under a strict complementarity condition, $\bar{v} \in \operatorname{ri} \partial f(\bar{x})$. In this case, there exist multipliers $(\bar{\lambda}, \bar{\mu})$ so that $\operatorname{supp} \bar{\lambda} = I(\bar{x})$ and $\operatorname{supp} \bar{\mu} = J(\bar{x})$, and then M coincides with an affine subspace around \bar{x} .

Example 4.4 (Maximum function) In particular, consider the maximum function $mx: \mathbf{R}^n \to \mathbf{R}$, defined by

$$\max(x) := \max\{x_1, \ldots, x_n\}.$$

Then given a point \bar{x} and a vector $\bar{v} \in \partial(\max)(\bar{x})$, the set $M = \{x \in \mathbb{R}^n : \operatorname{supp} \bar{v} \subset I(x)\}$, where

$$I(x) := \{i : x_i = \max(x)\},\$$

is a locally minimal identifiable set at \bar{x} for \bar{v} . Alternatively, M admits the presentation

 $M = \{x \in \mathbf{R}^n : \text{mult } \max(x) \ge \text{rank } \bar{v}\} \text{ locally around } \bar{x},\$

where mult mx(x) simply denotes the size of the set I(x).

Going beyond polyhedrality, we may consider *piecewise linear-quadratic functions*; these are those functions whose domain can be represented as the union of finitely many convex polyhedra, so that the function is linear or quadratic on each such set. Convex piecewise linear-quadratic functions are precisely the convex functions whose subdifferential mappings are piecewise polyhedral [30]. Combining this with Example 2.10, we obtain the following.

Proposition 4.5 (Piecewise linear-quadratic functions) *Consider a convex, piecewise linear-quadratic function* $f : \mathbf{R}^n \to \overline{\mathbf{R}}$. *Then there exists a locally minimal identifiable set at any* $x \in \text{dom } f$ *for any* $v \in \partial f(x)$.

We now briefly consider the three standard convex cones of mathematical programming.

Example 4.6 (Non-negative Orthant) Consider a point $\bar{x} \in \mathbf{R}^n_+$ and a vector $\bar{v} \in N_{\mathbf{R}^n_+}(\bar{x})$. Then $M := \{x \in \mathbf{R}^n_+ : x_i = 0 \text{ for each } i \in \text{supp } \bar{v}\}$ is a locally minimal identifiable set at \bar{x} for \bar{v} . Observe that M also admits the presentation

 $M = \{x \in \mathbf{R}^n_+ : \operatorname{rank} x + \operatorname{rank} \bar{v} \le n\} \quad \text{locally around } \bar{x}.$

Example 4.7 (Lorentz cone) Consider the Lorentz cone

$$\mathcal{L}^n := \{ (x, r) \in \mathbf{R}^n \times \mathbf{R} : r \ge |x| \}.$$

Observe that \mathcal{L}^n coincides with the epigraph epi $|\cdot|$. Let $\bar{x} = 0$ and consider any $v \in \partial |\cdot|(0)$ with |v| = 1. Then for any real $\epsilon > 0$, the set $M_{\epsilon} := \{x \in \mathbb{R}^n : \langle \frac{x}{|x|}, \bar{v} \rangle \le \epsilon\}$ is identifiable at \bar{x} for \bar{v} . In particular, for $n \ge 2$ and $\epsilon \ne \epsilon'$ the sets M_{ϵ} and $M_{\epsilon'}$ do not coincide on any neighborhood of \bar{x} , and consequently there is no locally minimal identifiable set at \bar{x} for \bar{v} .

In what follows S^n will denote the space of $n \times n$ real symmetric matrices with the trace inner product while S^n_+ will denote the convex cone of symmetric positive semidefinite matrices. With every matrix $X \in S^n$ we will associate its largest eigenvalue, denoted by $\lambda_1(X)$. The multiplicity of $\lambda_1(X)$ as an eigenvalue of X will be written as mult $\lambda_1(X)$. Finally $\mathbf{M}^{n \times m}$ will denote the space of $n \times m$ matrices with real entries. We defer the verification of the following two examples to a forthcoming paper [10]. We should also emphasize the intriguing parallel between these two examples and Examples 4.4 and 4.6.

Example 4.8 (Positive semi-definite cone) Consider a matrix $\bar{X} \in \mathbf{S}^n_+$ and a normal $\bar{V} \in N_{\mathbf{S}^n_+}(\bar{X})$. Then

$$M = \{ X \in \mathbf{S}^n_+ : \operatorname{rank} X + \operatorname{rank} \bar{V} \le n \},\$$

is an identifiable set at \bar{X} for \bar{V} . It is interesting to note that M may fail to be locally minimal in general. Indeed, it is possible that \mathbf{S}_{+}^{n} admits no locally minimal identifiable set at \bar{X} for \bar{V} . This can easily be seen from the previous example and the fact that \mathbf{S}_{+}^{2} and \mathcal{L}^{2} are isometrically isomorphic.

However, under the strict complementarity condition $\bar{V} \in \operatorname{ri} N_{\mathbf{S}^n_+}(\bar{X})$, we have rank \bar{X} + rank $\bar{V} = n$, and consequently M coincides with $\{X \in \mathbf{S}^n_+ : \operatorname{rank} X = \operatorname{rank} \bar{X}\}$ around \bar{X} . It is then standard that M is an analytic manifold around \bar{X} , and furthermore one can show that M is indeed a locally minimal identifiable set at \bar{X} for \bar{V} . For more details see Daniilidis et al. [10].

Example 4.9 (Maximum eigenvalue) Consider a matrix \bar{X} and a subgradient $\bar{V} \in \partial \lambda_1(\bar{X})$, where $\lambda_1 \colon \mathbf{S}^n \to \mathbf{R}$ is the maximum eigenvalue function. Then

$$M := \{ X \in \mathbf{S}^n : \text{mult } \lambda_1(X) \ge \text{rank } \bar{V} \},\$$

is an identifiable set at \bar{X} for \bar{V} . Again under a strict complementarity condition $\bar{V} \in \operatorname{ri} \partial \lambda_1(\bar{X})$, we have rank $\bar{V} = \operatorname{mult} \lambda_1(\bar{X})$, and consequently M coincides with the manifold $\{X \in \mathbf{S}^n : \operatorname{mult} \lambda_1(X) = \operatorname{mult} \lambda_1(\bar{X})\}$ locally around \bar{X} . Furthermore under this strict complementarity condition, M is locally minimal. For more details see Daniilidis et al. [10].

Example 4.10 (The rank function) Consider the rank function, denoted rank : $\mathbf{M}^{n \times m} \rightarrow \mathbf{R}$. Then

$$M := \left\{ X \in \mathbf{M}^{n \times m} : \text{rank } X = \text{rank } \bar{X} \right\}$$

is a locally minimal identifiable set at \bar{X} for any $\bar{V} \in \partial(\operatorname{rank})(\bar{X})$. To see this, observe that the equality

epi rank = epi (rank $\bar{X} + \delta_M$) holds locally around (\bar{X} , rank \bar{X}).

Combining this with the standard fact that *M* is an analytic manifold verifies the claim.

To build more sophisticated examples, it is necessary to develop some calculus rules. In particular, one can derive a powerful chain rule for identifiable sets; the details appear in [11, Chapter 7]. One notable consequence is that *fully amenable functions*, in the sense of Poliquin and Rockafellar [27], always admit locally minimal identifiable sets [11, Proposition 7.5.8]. Important examples of such functions are max-type functions and indicator functions of feasible regions of standard problems of nonlinear programming (under a constraint qualification).

Corollary 4.11 (Max-type functions) Consider \mathbb{C}^1 -smooth functions $f_i : \mathbb{R}^n \to \overline{\mathbb{R}}$, for $i \in I := \{1, ..., m\}$, and let $f(x) := \max\{f_1(x), f_2(x), ..., f_m(x)\}$. For any $x \in \mathbb{R}^n$, define the active set

$$I(x) = \{i \in I : f(x) = f_i(x)\}.$$

Consider a pair $(\bar{x}, \bar{v}) \in \text{gph} \partial f$, and the corresponding set of multipliers

$$\Lambda = \left\{ \lambda \in \mathbf{R}^m : \bar{v} = \sum_{i \in I(\bar{x})} \lambda_i \nabla f_i(\bar{x}), \text{ supp } \lambda \subset I(\bar{x}) \right\}.$$

Then

$$M = \bigcup_{\lambda \in \Lambda} \{ x \in \mathbf{R}^n : \operatorname{supp} \lambda \subset I(x) \},\$$

is a locally minimal identifiable set (relative to f) at \bar{x} for \bar{v} .

Corollary 4.12 (Smooth constraints) Consider \mathbb{C}^1 -smooth functions $g_i : \mathbb{R}^n \to \overline{\mathbb{R}}$, for $i \in I := \{1, \ldots, m\}$, and define the set

$$Q = \{x \in \mathbf{R}^n : g_i(x) \le 0 \text{ for each } i \in I\}.$$

For any $x \in \mathbf{R}^n$, define the active set

$$I(x) = \{i \in I : g_i(x) = 0\}$$

and suppose that for a certain pair $(\bar{x}, \bar{v}) \in \operatorname{gph} N_O$, the constraint qualification

 $\sum_{i \in I(\bar{x})} \lambda_i \nabla g_i(\bar{x}) = 0 \quad and \quad \lambda_i \ge 0 \quad for \ all \quad i \in I(\bar{x}) \implies \lambda_i = 0 \quad for \ all \quad i \in I(\bar{x}),$

holds. Then in terms of the Lagrange multipliers

$$\Lambda := \left\{ \lambda \in \mathbf{R}^m : \bar{v} = \sum_{i \in I(\bar{x})} \lambda_i \nabla g_i(\bar{x}), \text{ supp } \lambda \subset I(\bar{x}) \right\},$$

🖉 Springer

the set

$$M = \bigcup_{\lambda \in \Lambda} \{ x \in Q : g_j(x) = 0 \text{ for each } j \in \operatorname{supp} \lambda \},\$$

is a locally minimal identifiable set (relative to Q) at \bar{x} for \bar{v} .

In Examples 4.7 and 4.8, we already saw that there are simple functions $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ that do not admit a locally minimal identifiable set at some point \bar{x} for $\bar{v} \in \partial f(\bar{x})$. However in those examples \bar{v} was degenerate in the sense that \bar{v} was contained in the relative boundary of $\partial f(\bar{x})$. We end this section by demonstrating that locally minimal identifiable sets may, in general, fail to exist even for subgradients \bar{v} lying in the relative interior of the convex subdifferential $\partial f(\bar{x})$.

Example 4.13 (Failure of existence) Consider the convex function $f : \mathbb{R}^2 \to \mathbb{R}$, given by

$$f(x, y) = \sqrt{x^4 + y^2}.$$

Observe that f is continuously differentiable on $\mathbb{R}^2 \setminus \{(0, 0)\}$, with

$$|\nabla f(x, y)|^{2} = \frac{4x^{6} + y^{2}}{x^{4} + y^{2}},$$

and

$$\partial f(0,0) = \{0\} \times [-1,1].$$

We claim that f does not admit a locally minimal identifiable set at (0, 0) for the vector $(0, 0) \in \partial f(0, 0)$. To see this, suppose otherwise and let M be such a set.

Consider the curves

$$L_n := \left\{ (x, y) \in \mathbf{R}^2 : y = \frac{1}{n} x^2 \right\},$$

parametrized by integers *n*. For a fixed integer *n*, consider a sequence of points $(x_i, y_i) \rightarrow (0, 0)$ in L_n . Then $\lim_{i \to \infty} |\nabla f(x_i, y_i)| = \frac{n^2}{n^4+1}$. Since *M* is necessary at (0, 0) for (0, 0), we deduce that for each integer *n*, there exists a real number $\epsilon_n > 0$ such that

$$\mathbf{B}_{\epsilon_n} \cap L_n \cap M = \{(0,0)\}.$$

However observe $\lim_{n\to\infty} \frac{n^2}{n^4+1} = 0$. Therefore we can choose a sequence $(x_n, y_n) \in \mathbf{B}_{\epsilon_n} \cap L_n$, with $(x_n, y_n) \neq (0, 0)$, $(x_n, y_n) \rightarrow (0, 0)$, and the gradients $\nabla f(x_n, y_n)$ tending to (0, 0). Since *M* is identifiable at (0, 0) for (0, 0), the points (x_n, y_n) lie in *M* for all large indices *n*, which is a contradiction.

5 Variational geometry of identifiable sets

In the previous sections, we have introduced the notions of identifiability, analyzed when locally minimal identifiable sets exist, developed calculus rules, and provided important examples. In this section, we consider the interplay between variational geometry of a set Q and its identifiable subsets M. Considering sets rather than functions has the advantage of making our arguments entirely geometric. We begin with the simple observation that locally minimal identifiable sets are locally closed.

Proposition 5.1 Consider a closed set $Q \subset \mathbf{R}^n$ and a subset $M \subset Q$ that is locally minimal identifiable at \bar{x} for $\bar{v} \in N_Q(\bar{x})$. Then M is locally closed at \bar{x} .

Proof Suppose not. Then there exists a sequence $x_i \in (bd M) \setminus M$ with $x_i \to \bar{x}$. Since M is identifiable at \bar{x} for \bar{v} , there exists a neighborhood V of \bar{v} satisfying $cl V \cap N_Q(x_i) = \emptyset$ for all large indices i. Observe that for each index i, every point y sufficiently close to x_i satisfies $V \cap N_Q(y) = \emptyset$. Consequently, there exists a sequence $y_i \in Q$ converging to \bar{x} with $V \cap N_Q(y) = \emptyset$, which contradicts the necessity of M at \bar{x} for \bar{v} .

Recall that for a set $Q \subset \mathbf{R}^n$ and a subset $M \subset Q$, the inclusion $\hat{N}_Q(x) \subset N_M(x)$ holds for each point $x \in M$, while the analogous inclusion for the limiting normal cone may fail. This does not occur for identifiable sets.

Proposition 5.2 Consider a closed set Q and a set M that is identifiable at \bar{x} for $\bar{v} \in N_Q(\bar{x})$. Then the inclusion

gph
$$N_Q \subset$$
 gph N_M holds locally around (\bar{x}, \bar{v}) .

Proof Consider a sequence $(x_i, v_i) \in \operatorname{gph} N_Q$ converging to (\bar{x}, \bar{v}) . Then for each *i*, there exists a sequence $(x_i^j, v_i^j) \in \operatorname{gph} \hat{N}_Q$ converging to (x_i, v_i) . For sufficiently large indices *i*, the points x_i^j lie in *M* for all large *j*. For such indices we have $v_i^j \in \hat{N}_Q(x_i^j) \subset \hat{N}_M(x_i^j)$, and consequently $v_i \in N_M(x_i)$. This verifies the inclusion gph $N_Q \subset \operatorname{gph} N_M$ locally around (\bar{x}, \bar{v}) .

It turns out that in order to make further headway in studying properties of identifiable sets, one must impose the condition of *prox-regularity*, introduced by Rockafellar and Poliquin [28]. We follow the development of Rockafellar and Poliquin [28] and Poliquin et al. [29].

Definition 5.3 (*Prox-regularity*) We say that a set $M \subset \mathbb{R}^n$ is *prox-regular* at $\bar{x} \in M$ if it is locally closed around \bar{x} and there exists a neighborhood U of \bar{x} , such that the projection map P_M is single-valued on U.

Prox-regularity unifies the notions of convex sets and C^2 -manifolds. A proof may be found in [32, Example 13.30, Proposition 13.32].

Theorem 5.4 (Prox-regularity under convexity and smoothness) *Convex sets and* \mathbb{C}^2 -*manifolds are prox-regular at each of their points.*

It will be useful to consider a variant of prox-regularity where we consider localization with respect to direction [28, Definition 2.10].

Definition 5.5 (*Directional prox-regularity for sets*) Consider a set $Q \subset \mathbb{R}^n$, a point $\bar{x} \in Q$, and a normal vector $\bar{v} \in N_Q(\bar{x})$. We say that Q is *prox-regular at* \bar{x} for \bar{v} if Q is locally closed at \bar{x} and there exist real numbers $\epsilon > 0$ and r > 0 such that the following implication holds:

$$\left. \begin{array}{l} x \in Q, \quad v \in N_Q(x) \\ |x - \bar{x}| < \epsilon, \ |v - \bar{v}| < \epsilon \end{array} \right\} \Rightarrow P_{Q \cap B_{\epsilon}(\bar{x})}(x + r^{-1}v) = x.$$

Observe that if the implication above holds for some $r, \epsilon > 0$, then it also holds for any $r', \epsilon' > 0$ with r' > r and $\epsilon' < \epsilon$.

In particular, a set Q is prox-regular at \bar{x} , in the sense of Definition 5.3, if and only of Q is prox-regular at \bar{x} for every vector $v \in N_Q(\bar{x})$. Clearly, if Q is prox-regular at \bar{x} for \bar{v} , then the equalities

 $\operatorname{gph} N_Q^P = \operatorname{gph} \hat{N}_Q = \operatorname{gph} N_Q$ hold locally around (\bar{x}, \bar{v}) .

The following characterization [28, Corollary 3.4] will be useful for us.

Proposition 5.6 (Prox-regularity and monotonicity) For a set $Q \subset \mathbf{R}^n$ and $\bar{x} \in Q$, with Q locally closed at \bar{x} , the following are equivalent.

- 1. *Q* is prox-regular at \bar{x} for \bar{v} .
- 2. The vector \overline{v} is a proximal normal to Q at \overline{x} , and there exists a real number r > 0 satisfying

$$\langle v_1 - v_0, x_1 - x_0 \rangle \ge -r|x_1 - x_0|^2$$
,

for any pairs $(x_i, v_i) \in \operatorname{gph} N_Q$ (for i = 0, 1) near (\bar{x}, \bar{v}) .

So Q is prox-regular at \bar{x} for a proximal normal $\bar{v} \in N_Q^P(\bar{x})$ as long as $N_Q + rI$ has a monotone localization around $(\bar{x}, \bar{v} + r\bar{x})$, for some real number r > 0. We may talk about prox-regularity of functions by means of epigraphical geometry [28, Theorem 3.5].

Definition 5.7 (*Directional prox-regularity for functions*) We say that a function $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ is *prox-regular at* \overline{x} for $\overline{v} \in \partial f(\overline{x})$ if the epigraph epi f is prox-regular at $(\overline{x}, f(\overline{x}))$ for the vector $(\overline{v}, -1)$.

The following proposition shows that prox-regularity of an identifiable subset M of a set Q implies that Q itself is prox-regular.

Proposition 5.8 (Prox-regularity of identifiable sets) Consider a closed set Q and a subset $M \subset Q$ that is identifiable at \bar{x} for $\bar{v} \in \hat{N}_Q(\bar{x})$. In addition, suppose that M is prox-regular at \bar{x} for \bar{v} . Then Q is prox-regular at \bar{x} for \bar{v} .

Proof To show that Q is prox-regular at \bar{x} for \bar{v} , we will utilize Proposition 5.6. To this end, we first claim that the inclusion $\bar{v} \in N_Q^P(\bar{x})$ holds. To see this, choose a sequence of real numbers $r_i \to \infty$ and a sequence of points

$$x_i \in P_O(\bar{x} + r_i^{-1}\bar{v}).$$

We have

$$v_i := r_i(\bar{x} - x_i) + \bar{v} \in N_O^P(x_i).$$

Clearly $x_i \rightarrow \bar{x}$. We now claim that the sequence v_i converges to \bar{v} . Observe by definition of x_i , we have

$$|(\bar{x} - x_i) + r_i^{-1}\bar{v}| \le |r_i^{-1}\bar{v}|.$$

Squaring and cancelling terms, we obtain

$$2\langle \bar{v}, \bar{x} - x_i \rangle \le -r_i |\bar{x} - x_i|^2.$$

Combining this with the inclusion $\bar{v} \in \hat{N}_Q(\bar{x})$, we deduce

$$\frac{o(\bar{x}-x_i)}{|\bar{x}-x_i|} \le 2\left\langle \bar{v}, \frac{\bar{x}-x_i}{|\bar{x}-x_i|} \right\rangle \le -r_i |\bar{x}-x_i|$$

We conclude $r_i(\bar{x} - x_i) \to 0$ and consequently $v_i \to \bar{v}$. Since *M* is identifiable at \bar{x} for \bar{v} , we deduce $x_i \in M$ for all large indices *i*. In addition, since *M* is prox-regular at \bar{x} for \bar{v} , we have

$$x_i = P_{M \cap B_{\epsilon}(\bar{x})}(\bar{x} + r_i^{-1}\bar{v}) = \bar{x},$$

for some $\epsilon > 0$ and for sufficiently large indices *i*. Hence the inclusion $\bar{v} \in N_Q^P(\bar{x})$ holds.

Now since *M* is prox-regular at \bar{x} for \bar{v} we deduce, using Proposition 5.6, that there exists a real number r > 0 satisfying

$$\langle v_1 - v_0, x_1 - x_0 \rangle \ge -r |x_1 - x_0|^2$$
,

for any pairs $(x_i, v_i) \in \operatorname{gph} N_M$ (for i = 0, 1) near (\bar{x}, \bar{v}) .

By Proposition 5.2, we have

gph
$$N_O \subset$$
 gph N_M locally around (\bar{x}, \bar{v}) .

Recalling that \bar{v} is a proximal normal to Q at \bar{x} and again appealing to Proposition 5.6, we deduce that Q is prox-regular at \bar{x} for \bar{v} .

The following result brings to the fore the insight one obtains by combining the notions of identifiability and prox-regularity. It asserts that given a prox-regular identifiable set M at \bar{x} for $\bar{v} \in \hat{N}_Q(\bar{x})$, not only does the inclusion gph $N_Q \subset$ gph N_M hold locally around (\bar{x}, \bar{v}) , but rather the two sets gph N_Q and gph N_M coincide around (\bar{x}, \bar{v}) .

Proposition 5.9 (Reduction I) Consider a closed set Q and let $M \subset Q$ be a set that is prox-regular at a point \bar{x} for $\bar{v} \in \hat{N}_Q(\bar{x})$. Then M is identifiable at \bar{x} for \bar{v} if and only if

$$\operatorname{gph} N_Q = \operatorname{gph} N_M$$
 locally around (\bar{x}, \bar{v}) .

Proof We must show that locally around (\bar{x}, \bar{v}) , we have the equivalence

$$\operatorname{gph} N_O \subset M \times \mathbf{R}^n \Leftrightarrow \operatorname{gph} N_O = \operatorname{gph} N_M.$$

The implication " \Leftarrow " is clear. Now assume gph $N_Q \subset M \times \mathbf{R}^n$ locally around (\bar{x}, \bar{v}) . By prox-regularity, there exist real numbers $r, \epsilon > 0$ so that $P_Q(\bar{x} + r^{-1}\bar{v}) = \bar{x}$ (Proposition 5.8) and so that the implication

$$\left.\begin{array}{l} x \in M, \quad v \in N_M(x) \\ |x - \bar{x}| < \epsilon, \ |v - \bar{v}| < \epsilon \end{array}\right\} \Rightarrow P_{M \cap B_{\epsilon}(\bar{x})}(x + r^{-1}v) = x,$$

holds. By Proposition 5.2, it is sufficient to argue that the inclusion

gph $N_M \subset$ gph N_Q holds locally around (\bar{x}, \bar{v}) .

Suppose this is not the case. Then there exists a sequence $(x_i, v_i) \rightarrow (\bar{x}, \bar{v})$, with $(x_i, v_i) \in \operatorname{gph} N_M$ and $(x_i, v_i) \notin \operatorname{gph} N_Q$. Let $z_i \in P_Q(x_i + r^{-1}v_i)$. We have

$$(x_i - z_i) + r^{-1}v_i \in N_Q^P(z_i),$$

$$x_i \neq z_i.$$
(5.1)

Observe $z_i \rightarrow \bar{x}$ by the continuity of the projection map. Consequently, by the finite identification property, for large indices *i*, we have $z_i \in M$ and

$$x_i + r^{-1}v_i \in z_i + N_O^P(z_i) \subset z_i + N_M(z_i).$$

Hence $z_i = P_{M \cap B_{\epsilon}(\bar{x})}(x_i + r^{-1}v_i) = x_i$, for large *i*, thus contradicting (5.1).

Recall that Proposition 5.8 shows that prox-regularity of an identifiable subset $M \subset Q$ is inherited by Q. It is then natural to consider to what extent the converse holds. It clearly cannot hold in full generality, since identifiable sets may contain many extraneous pieces. However we will see shortly that the converse does hold for a large class of identifiable sets M, and in particular for ones that are locally minimal. The key tool is the following lemma, which may be of independent interest.

Lemma 5.10 (Accessibility) Consider a closed set $Q \subset \mathbb{R}^n$ and a subset $M \subset Q$ containing a point \bar{x} . Suppose that for some vector $\bar{v} \in \hat{N}_Q(\bar{x})$, there exists a sequence

$$y_i \in N_M^P(\bar{x}) \setminus N_O^P(\bar{x}) \text{ with } y_i \to \bar{v}.$$

Then there exists a sequence $(x_i, v_i) \in \operatorname{gph} N_Q^P$ converging to (\bar{x}, \bar{v}) with $x_i \notin M$ for each index *i*.

Proof For each index *i*, there exists a real $r_i > 0$ satisfying $P_M(\bar{x} + r_i^{-1}y_i) = \{\bar{x}\}$. Furthermore we can clearly assume $r_i \to \infty$. Define a sequence $(x_i, v_i) \in \operatorname{gph} N_Q^P$ by

$$x_i \in P_Q(\bar{x} + r_i^{-1}y_i)$$
 and $v_i := r_i(\bar{x} - x_i) + y_i$.

Observe $x_i \notin M$ since otherwise we would have $x_i = \bar{x}$ and $y_i = r_i v_i \in N_Q^P(\bar{x})$, a contradiction. By continuity of the projection P_Q , clearly we have $x_i \to \bar{x}$. Now observe

$$|(\bar{x} - x_i) + r_i^{-1} y_i| \le r_i^{-1} |y_i|.$$

Squaring and simplifying we obtain

$$r_i|\bar{x}-x_i|+2\Big\langle\frac{\bar{x}-x_i}{|\bar{x}-x_i|},\,y_i\Big\rangle\leq 0.$$

Since \bar{v} is a Frechét normal, we deduce

$$\liminf_{i\to\infty}\left\langle\frac{\bar{x}-x_i}{|\bar{x}-x_i|},\,y_i\right\rangle=\liminf_{i\to\infty}\left\langle\frac{\bar{x}-x_i}{|\bar{x}-x_i|},\,\bar{v}\right\rangle\geq 0.$$

Consequently we obtain $r_i |\bar{x} - x_i| \to 0$ and $v_i \to \bar{v}$, as claimed.

Proposition 5.11 (Reduction II) Consider a closed set $Q \subset \mathbb{R}^n$, a point \bar{x} , and a normal $\bar{v} \in N_Q(\bar{x})$. Suppose gph N_Q^P = gph N_Q locally around (\bar{x}, \bar{v}) , and consider a set $M := N_Q^{-1}(V)$, where V is a convex, open neighborhood of \bar{v} . Then the equation

gph N_O = gph N_M holds locally around (\bar{x}, \bar{v}) .

Proof First observe that since M is identifiable at \bar{x} for \bar{v} , applying Proposition 5.2, we deduce that the inclusion gph $N_Q \subset$ gph N_M holds locally around (\bar{x}, \bar{v}) . To see the reverse inclusion, suppose that there exists a pair $(x, v) \in$ gph N_M^P , arbitrarily close to (\bar{x}, \bar{v}) , with $v \in V$ and $v \notin N_Q^P(x)$. By definition of M, we have $N_Q^P(x) \cap V \neq \emptyset$. Let z be a vector in this intersection, and consider the line segment γ joining z and v. Clearly the inclusion $\gamma \subset V \cap N_M^P(x)$ holds. Observe that the line segment $\gamma \cap N_Q^P(x)$

is strictly contained in γ , with z being one of its endpoints. Let w be the other endpoint of $\gamma \cap N_{\Omega}^{P}(x)$. Then we immediately deduce that there exists a sequence

$$y_i \in N_M^P(x) \setminus N_O^P(x)$$
 with $y_i \to w$.

Applying Lemma 5.10, we obtain a contradiction. Therefore the inclusion gph $N_Q \supset$ gph N_M^P holds locally around (\bar{x}, \bar{v}) . The result follows.

In particular, we obtain the following essential converse of Proposition 5.8.

Proposition 5.12 (Prox-regularity under local minimality) Consider a closed set Qand a subset $M \subset Q$ that is a locally minimal identifiable set at \bar{x} for $\bar{v} \in \hat{N}_Q(\bar{x})$. Then Q is prox-regular at \bar{x} for \bar{v} if and only if M is prox-regular at \bar{x} for \bar{v} .

Proof The implication \Leftarrow was proven in Proposition 5.8. To see the reverse implication, first recall that M is locally closed by Proposition 5.1. Furthermore Propositions 3.12 shows that there exists an open convex neighborhood V of \bar{v} so that M coincides locally with $N_Q^{-1}(V)$. In turn, applying Proposition 5.11 we deduce that the equation

gph N_Q = gph N_M holds locally around (\bar{x}, \bar{v}) .

Finally by Proposition 5.6, prox-regularity of Q at \bar{x} for \bar{v} immediately implies that M is prox-regular at \bar{x} for \bar{v} .

We end this section by recording the strong relationship between identifiable sets and the metric projection map.

Proposition 5.13 (Projections of neighborhoods are identifiable) *Consider a set* $Q \subset \mathbb{R}^n$ *that is prox-regular at* \bar{x} *for* $\bar{v} \in N_Q(\bar{x})$. *Then for all sufficiently small* $\lambda > 0$, *if the inclusion* $\bar{x} + \lambda \bar{v} \in \text{int } U$ *holds for some set* U, *then* $P_Q(U)$ *is identifiable at* \bar{x} *for* \bar{v} .

Proof Suppose $(x_i, v_i) \rightarrow (\bar{x}, \bar{v})$ in gph N_Q . Then by prox-regularity for all sufficiently small $\lambda > 0$, we have $P_Q(x_i + \lambda v_i) = x_i$ and $x_i + \lambda v_i \in U$ for all large *i*. We deduce $x_i \in P_Q(U)$ for all large *i*, as we needed to show.

In fact, all locally minimal identifiable sets arise in this way.

Proposition 5.14 (Representing locally minimal identifiable sets) *Consider a set* $Q \subset \mathbf{R}^n$ that is prox-regular at \bar{x} for $\bar{v} \in N_Q(\bar{x})$ and let M be a locally minimal identifiable set at \bar{x} for \bar{v} . For λ , $\epsilon > 0$, define

$$U := \{x + \lambda v : x \in M, v \in N_O(x), |x - \bar{x}| < \epsilon, |v - \bar{v}| < \epsilon\}.$$

Then for all sufficiently small $\lambda, \epsilon > 0$, we have $\bar{x} + \lambda \bar{v} \in \text{int } U$ and M admits the presentation

$$M = P_O(U)$$
 locally around \bar{x} .

Proof Using prox-regularity and Lemma 5.10, we deduce that for all sufficiently small $\lambda, \epsilon > 0$ we have

$$\left. \begin{array}{l} x \in Q, \quad v \in N_Q(x) \\ |x - \bar{x}| < \epsilon, \ |v - \bar{v}| < \epsilon \end{array} \right\} \Rightarrow P_Q(x + \lambda v) = x,$$

and $\bar{x} + \lambda \bar{v} \in \text{int } U$. Using the fact that M is locally minimal at \bar{x} for \bar{v} , it is easy to verify that M and $P_Q(U)$ coincide locally around \bar{x} .

6 Identifiable sets and critical cones

In this section, we consider *critical cones*, a notion that has been instrumental in sensitivity analysis, particularly in connection with polyhedral variational inequalities. See [31, Section 2E] for example. We will see that there is a strong relationship between these objects and locally minimal identifiable sets. We begin with the notion of tangency.

Definition 6.1 (*Tangent cones*) Consider a set $Q \subset \mathbb{R}^n$ and a point $\bar{x} \in Q$. The *tangent cone* to Q at \bar{x} , written $T_Q(\bar{x})$, consists of all vectors w such that

$$w = \lim_{i \to \infty} \frac{x_i - \bar{x}}{\tau_i}$$
, for some $x_i \stackrel{Q}{\to} \bar{x}, \ \tau_i \downarrow 0$.

The tangent cone is always closed but may easily fail to be convex. For any cone $K \in \mathbf{R}^n$, we consider the polar cone

$$K^* := \{ y : \langle y, v \rangle \le 0 \quad \text{for all} \quad v \in K \}.$$

It turns out that the sets cl conv $T_Q(\bar{x})$ and $\hat{N}_Q(\bar{x})$ are dual to each other, that is the equation

$$\hat{N}_O(\bar{x}) = T_O(\bar{x})^*,$$

holds [32, Theorem 6.28]. Consequently if Q is locally closed at \bar{x} , then Q is Clarke regular at \bar{x} if and only if the equation $N_Q(\bar{x}) = T_Q(\bar{x})^*$ holds.

A companion notion to tangency is smooth derivability.

Definition 6.2 (*smooth derivability*) Consider a set Q and a point $\bar{x} \in Q$. Then a tangent vector $w \in T_Q(\bar{x})$ is *smoothly derivable* if there exists a \mathbb{C}^1 -smooth path $\gamma : [0, \epsilon) \to Q$ satisfying

$$w = \lim_{t \downarrow 0} \frac{\gamma(t) - \bar{x}}{t},$$

where $\epsilon > 0$ is a real number and $\gamma(0) = \bar{x}$. We will say that Q is *smoothly derivable* at \bar{x} if every tangent vector $w \in T_Q(\bar{x})$ is smoothly derivable.

We should note that there is a related weaker notion of geometric derivability, where the path γ is not required to be C¹-smooth. For more details see [32, Definition 6.1].

Most sets that occur in practice are smoothly derivable. In particular, any smooth manifold is smoothly derivable at each of its point, as is any semi-algebraic set $Q \subset \mathbb{R}^n$. We omit the proof of the latter claim, since it is a straightforward consequence of the curve selection lemma [33, Property 4.6] and the details needed for the argument would take us far off field. For a nice survey on semi-algebraic geometry, see Coste [9].

We now arrive at the following central notion.

Definition 6.3 (*Critical cones*) For a set $Q \subset \mathbf{R}^n$ that is Clarke regular at a point $\bar{x} \in Q$, the *critical cone* to Q at \bar{x} for $\bar{v} \in N_Q(\bar{x})$ is the set

$$K_Q(\bar{x}, \bar{v}) := N_{N_Q(\bar{x})}(\bar{v}).$$

Because of the polarity relationship between normals and tangents, the critical cone $K_O(\bar{x}, \bar{v})$ can be equivalently described as

$$K_O(\bar{x}, \bar{v}) = T_O(\bar{x}) \cap \bar{v}^{\perp},$$

where \bar{v}^{\perp} is the subspace perpendicular to \bar{v} . For more on critical cones and their use in variational inequalities and complementarity problems, see Facchinei and Pang [14].

Connecting the classical theory of critical cones to our current work, we will now see that critical cones provide tangential approximations to locally minimal identifiable sets. In what follows, we denote the closed convex hull of any set $Q \subset \mathbf{R}^n$ by $\overline{\operatorname{co}} Q$.

Proposition 6.4 (Critical cones as tangential approximations) Consider a set Q that is Clarke regular at a point \bar{x} and a locally minimal identifiable set M at \bar{x} for $\bar{v} \in N_Q(\bar{x})$. Suppose furthermore that M is prox-regular at \bar{x} for \bar{v} and is smoothly derivable at \bar{x} . Then the equation

$$\overline{\operatorname{co}} T_M(\bar{x}) = K_O(\bar{x}, \bar{v}) \quad holds.$$

Proof Observe

$$K_Q(\bar{x},\bar{v}) = N_{N_Q(\bar{x})}(\bar{v}) = N_{N_M(\bar{x})}(\bar{v}) = N_{\hat{N}_M(\bar{x})}(\bar{v}) = \overline{\operatorname{co}} T_M(\bar{x}) \cap \bar{v}^{\perp}.$$

where the second equality follows from Proposition 5.9 and the last equality follows from polarity of cl conv $T_M(\bar{x})$ and $\hat{N}_M(\bar{x})$. Hence to establish the claim, it is sufficient to argue that every tangent vector $w \in T_M(\bar{x})$ lies in \bar{v}^{\perp} .

To this end, fix a vector $w \in T_M(\bar{x})$ and a \mathbb{C}^1 -smooth path $\gamma : [0, \epsilon) \to Q$ satisfying

$$w = \lim_{t \downarrow 0} \frac{\gamma(t) - \bar{x}}{t},$$

where $\epsilon > 0$ is a real number and $\gamma(0) = \bar{x}$.

Let $t_i \in (0, \epsilon)$ be a sequence converging to 0 and define $x_i := \gamma(t_i)$. Observe that for each index *i*, the tangent cone $T_M(x_i)$ contains the line $\{\lambda \dot{\gamma}(t_i) : \lambda \in \mathbf{R}\}$.

Since *M* is necessary at \bar{x} for \bar{v} , there exist vectors $v_i \in N_Q(\gamma(t_i))$ with $v_i \to \bar{v}$. By Proposition 5.9, we have $v_i \in \hat{N}_M(\gamma(t_i))$ for all large *i*. For such indices, we have $\langle v_i, \dot{\gamma}(t_i) \rangle = 0$. Letting *i* tend to ∞ , we deduce $\langle \bar{v}, \bar{w} \rangle = 0$, as we needed to show. \Box

Classically, the main use of critical cones has been in studying polyhedral variational inequalities. Their usefulness in that regard is due to Proposition 6.5, stated below. We provide a simple proof of this proposition that makes it evident that this result is simply a special case of Proposition 5.9. This further reinforces the theory developed in our current work. For an earlier proof, see for example [31, Lemma 2E.4].

Proposition 6.5 (Polyhedral reduction) *Consider a polyhedron* $Q \subset \mathbf{R}^n$ *and a normal vector* $\bar{v} \in N_Q(\bar{x})$, for some point $\bar{x} \in Q$. Let $K := K_Q(\bar{x}, \bar{v})$. Then we have

 $\operatorname{gph} N_Q - (\bar{x}, \bar{v}) = \operatorname{gph} N_K$ locally around (0, 0).

Proof By Example 4.3, the set $M := \operatorname{argmax}_{x \in Q} \langle x, \overline{v} \rangle$ is the locally minimal identifiable set at \overline{x} for \overline{v} . Being polyhedral, M is smoothly derivable and it satisfies

 $\bar{x} + T_M(\bar{x}) = M$ locally around \bar{x} .

In light of Proposition 6.4, we deduce $M - \bar{x} = K$ locally around 0.

Thus for all (u, w) sufficiently near (0, 0) we have

$$\begin{split} \bar{v} + u \in N_Q(\bar{x} + w) & \Longleftrightarrow \bar{v} + u \in N_M(\bar{x} + w) \\ & \longleftrightarrow \bar{v} + u \in N_K(w) \\ & \longleftrightarrow u \in N_K(w) \end{split}$$

where the first equivalence follows from Proposition 5.9, and the last equivalence follows from the fact that $K \subset \overline{v}^{\perp}$ and so for all $w \in K$, the cone $N_K(w)$ contains the line spanned by \overline{v} .

Proposition 6.5 easily fails for nonpolyhedral sets. Indeed, in light of Proposition 6.4, this is to be expected since critical cones provide only tangential approximations to locally minimal identifiable sets. Such an approximation is exact only for polyhedral sets. Hence the theory of locally minimal identifiable sets (e.g. Proposition 5.9) extends Proposition 6.5 far beyond polyhedrality.

We end this section by showing how Proposition 6.4 can be extended even further to the situation when locally minimal identifiable sets do not even exist. Indeed, consider a set Q that is Clarke regular at a point \bar{x} , and let $\bar{v} \in N_Q(\bar{x})$. Consider a nested sequence of open neighborhoods V_i of \bar{v} satisfying $\bigcap_{i=1}^{\infty} V_i = \{\bar{v}\}$. One would then expect that, under reasonable conditions, the equality

$$K_{\mathcal{Q}}(\bar{x}, \bar{v}) = \overline{\operatorname{co}} \bigcap_{i=1}^{\infty} T_{N_{\mathcal{Q}}^{-1}(V_i)}(\bar{x}),$$

Springer

holds. To put this in perspective, observe that if there exists a locally minimal identifiable set M at \bar{x} for \bar{v} , then the sets $T_{N_Q^{-1}(V_i)}(\bar{x})$ are equal to $T_M(\bar{x})$ for all large i, and the equation above reduces to Proposition 6.4. More generally, the following is true. We omit the proof since it is similar to that of Proposition 6.4.

Proposition 6.6 (Critical cones more generally) Consider a set Q that is Clarke regular at a point \bar{x} , and let $\bar{v} \in N_Q(\bar{x})$. Consider a nested sequence of open neighborhoods V_i of \bar{v} satisfying $\bigcap_{i=1}^{\infty} V_i = \{\bar{v}\}$ and the corresponding preimages $M_i := \hat{N}_Q^{-1}(V_i)$. Assume that each M_i is smoothly derivable at \bar{x} . Then the inclusion

$$K_Q(\bar{x}, \bar{v}) \supset \overline{\operatorname{co}} \bigcap_{i=1}^{\infty} T_{M_i}(\bar{x}),$$
(6.1)

holds. Assume in addition that each M_i is prox-regular at \bar{x} for \bar{v} and that the formula

$$\overline{\operatorname{co}}\,\bigcap_{i=1}^{\infty}T_{M_i}(\bar{x}) = \bigcap_{i=1}^{\infty}\overline{\operatorname{co}}\,T_{M_i}(\bar{x}),\tag{6.2}$$

holds. Then each M_i is an identifiable set at \bar{x} for \bar{v} and we have

$$K_Q(\bar{x}, \bar{v}) = \overline{\operatorname{co}} \bigcap_{i=1}^{\infty} T_{M_i}(\bar{x}).$$

In particular, let us note that (6.2) holds whenever the tangent spaces $T_{M_i}(\bar{x})$ all coincide for sufficiently large indices *i* or whenever all M_i are Clarke regular at \bar{x} .

7 Optimality conditions

In this section, we will see that the order of growth of a function f around a critical point (a point satisfying $0 \in \partial f(x)$) is dictated entirely by its order of growth around this point on a corresponding identifiable set. Here is a preliminary geometric result.

Proposition 7.1 (Restricted optimality) Consider a closed set Q and a subset $M \subset Q$ that is identifiable at \bar{x} for a proximal normal $\bar{v} \in N_Q^P(\bar{x})$. Then \bar{x} is a (strict) local maximizer of the linear function $\langle \bar{v}, \cdot \rangle$ on M if and only if \bar{x} is a (strict) local maximizer of $\langle \bar{v}, \cdot \rangle$ on Q.

Proof One implication is clear. To establish the converse, suppose that \bar{x} is a local maximizer of the linear function $\langle \bar{v}, \cdot \rangle$ on M. We will show that the inequality, $\langle \bar{v}, \bar{x} \rangle > \langle \bar{v}, x \rangle$, holds for all points $x \in Q \setminus M$ near \bar{x} . Indeed, suppose this is not the case. Then there exists a sequence $x_i \to \bar{x}$ in $Q \setminus M$ satisfying

$$\langle \bar{v}, \bar{x} \rangle \le \langle \bar{v}, x_i \rangle. \tag{7.1}$$

Since \bar{v} is a proximal normal, we deduce that there exists a real number r > 0 satisfying $P_Q(\bar{x} + r^{-1}\bar{v}) = \{\bar{x}\}$. Consider any points z_i with

$$z_i \in P_O(x_i + r^{-1}\bar{v}).$$

Clearly we have $z_i \rightarrow \bar{x}$ and

$$(x_i - z_i) + r^{-1}\bar{v} \in N_O(z_i).$$

Since *M* is identifiable at \bar{x} for \bar{v} , we deduce $z_i \in M$ for all large indices *i*. Consequently, for such indices *i*, we have $x_i \neq z_i$.

Observe

$$|(x_i - z_i) + r^{-1}\bar{v}| \le r^{-1}|\bar{v}|$$

Squaring and cancelling terms, we obtain

 $\langle \bar{v}, z_i - x_i \rangle \ge \frac{r}{2} |z_i - x_i|^2.$ (7.2)

Consequently,

$$\frac{r}{2}|z_i-x_i|^2 \le \langle \bar{v}, \bar{x}-x_i \rangle \le 0,$$

which is a contradiction. Claim (1) now follows.

Recall that a function $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ is said to grow quadratically around \overline{x} provided that the inequality

$$\liminf_{x \to \bar{x}} \frac{f(x) - f(\bar{x})}{|x - \bar{x}|^2} > 0,$$

holds. We now arrive at the main result of this section.

Proposition 7.2 (Order of growth) *Consider a function* $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ and a set $M \subset \mathbf{R}^n$. Suppose that M is identifiable at \overline{x} for $\overline{v} = 0 \in \partial_P f(\overline{x})$. Then the following are true.

- 1. \bar{x} is a (strict) local minimizer of f restricted to $M \Leftrightarrow \bar{x}$ is a (strict) local minimizer of the unrestricted function f.
- 2. More generally, consider a growth function $g: U \to \mathbf{R}$, defined on an open neighborhood U of 0, that is \mathbb{C}^1 -smooth and satisfies

$$f(\bar{x}) < f(x) - g(x - \bar{x}) \text{ for all } x \in M \text{ near } \bar{x},$$

$$g(0) = 0, \ \nabla g(0) = 0,$$

Then the above inequality, in fact, holds for all points $x \in \mathbf{R}^n$ near \bar{x} . In particular, the function f, restricted to M, grows quadratically near \bar{x} if and only if the unrestricted function f grows quadratically near \bar{x} .

Proof We first prove claim 1. By Proposition 3.14, gph $f|_{M}$ is identifiable, with respect to epi f, at $(\bar{x}, f(\bar{x}))$ for (0, -1). Now observe that \bar{x} is a (strict) local minimizer of $f|_{M}$ if and only of $(\bar{x}, f(\bar{x}))$ is a (strict) local maximizer of the linear function, $(x, r) \mapsto -r$, on gph $f|_M$. Similarly \bar{x} is a (strict) local minimizer of f if and only of $(\bar{x}, f(\bar{x}))$ is a (strict) local maximizer of the linear function, $(x, r) \mapsto -r$, on epi f. Combining these equivalences with Proposition 7.1 establishes the claim.

We now prove claim 2. Suppose that the growth condition is satisfied. Let h := $f - g(x - \bar{x})$. Since f is C¹-smooth, g(0) = 0, and $\nabla g(0) = 0$, it easily follows that *M* is identifiable, now with respect to *h*, at \bar{x} for $0 \in \partial_P h(\bar{x})$. Furthermore, the point \bar{x} is a strict local minimizer of $h|_{M}$. Applying claim 1 of the current proposition, we deduce that \bar{x} is a strict local minimizer of the unrestricted function h, that is

$$f(\bar{x}) = h(\bar{x}) < h(x) = f(x) - g(x - \bar{x}), \text{ for all } x \text{ near } \bar{x},$$

as we needed to show.

In particular, we obtain the following characterization of quadratic growth.

Corollary 7.3 (Refined optimality) Consider a function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ and a point \overline{x} with $0 \in \partial_P f(\bar{x})$. Then f grows quadratically around \bar{x} if and only if

$$\liminf_{\substack{(x,f(x),v)\to(\bar{x},f(\bar{x}),0)\\v\in\partial f(x)}}\frac{f(x)-f(\bar{x})}{|x-\bar{x}|^2} > 0.$$
(7.3)

Proof Clearly if f grows quadratically around \bar{x} , then (7.3) holds. Conversely, assume (7.3) holds and let V_i be a sequence of neighborhoods of 0 shrinking to 0 and let $\epsilon_i > 0$ be real number tending to 0. Then the sets

$$M_i := (\partial f)^{-1}(V_i) \cap \{x \in \mathbf{R}^n : |f(x) - f(\bar{x})| < \epsilon_i\},\$$

are identifiable at \bar{x} for 0. Furthermore, f restricted to M_i must grow quadratically around \bar{x} , for all sufficiently large indices *i*, since the alternative would contradict (7.3). Applying Proposition 7.2, we obtain the result.

8 Identifiable manifolds

Consider a closed set Q and a normal vector $\bar{v} \in \hat{N}_Q(\bar{x})$, for a point $\bar{x} \in Q$. The inherent difficulty in analyzing properties of the optimization problem,

$$P(v): \max \langle v, x \rangle,$$

s.t. $x \in Q$,

such as dependence of the local maximizers of P(v) on v or the order of growth of the function $x \mapsto \langle x, \bar{v} \rangle$ on Q near \bar{x} , stem entirely from the potential nonsmoothness of Q. However, as we have seen in Proposition 5.9, the local geometry of gph N_O is entirely

the same as that of a prox-regular identifiable set M at \bar{x} for \bar{v} . Thus, for instance, existence of an *identifiable manifold* M at \bar{x} for \bar{v} shows that the nonsmoothness of Q is not intrinsic to the problem at all. Our goal in this section is to investigate this setting. We begin with the following easy consequence of Proposition 5.9.

Proposition 8.1 Consider a closed set $Q \subset \mathbf{R}^n$ and suppose that a subset $M \subset Q$ is a $\mathbb{C}^{\hat{2}}$ identifiable manifold at \bar{x} for $\bar{v} \in \hat{N}_O(\bar{x})$. Then the following properties hold.

- 1. \bar{v} lies in the interior of the cone $N_Q^P(\bar{x})$, relative to its linear span $N_M(\bar{x})$. 2. There are open neighborhoods \tilde{U} of \bar{x} and V of \bar{v} so that the mapping $x \mapsto$ $V \cap N_{\Omega}(x)$, restricted to M, is inner-semicontinuous at each $x \in U \cap M$.

Proof To see the validity of the first claim, observe that if it did not hold, then we could choose a sequence of vectors v_i satisfying

$$v_i \to \bar{v}, \ v_i \in N_M(\bar{x}), \ v_i \notin N_O^P(\bar{x}),$$

thus contradicting Proposition 5.9. The second claim is similar.

Consider a locally minimal identifiable subset $M \subset Q$ at \bar{x} for $\bar{v} \in N_Q(\bar{x})$. Then M remains identifiable at x for $v \in N_O(x)$, whenever the pair (x, v) is sufficiently close to (\bar{x}, \bar{v}) . However under such perturbations, M might cease to be locally minimal, as one can see even from polyhedral examples. (Indeed when Q is a convex polyhedron, this instability occurs whenever the inclusion $\bar{v} \in \operatorname{rb} N_O(\bar{x})$ holds.) In the case of identifiable manifolds, the situation simplifies. Identifiable manifolds at \bar{x} for $\bar{v} \in \hat{N}_Q(\bar{x})$ are automatically locally minimal, and furthermore they remain locally minimal under small perturbations to (\bar{x}, \bar{v}) in gph N_Q . This important observation is summarized below.

Proposition 8.2 Consider a closed set Q and a \mathbb{C}^2 identifiable manifold $M \subset Q$ at \bar{x} for $\overline{v} \in \hat{N}_O(\overline{x})$. Then M is automatically a locally minimal identifiable set at $x \in M$ for $v \in N_O(x)$ whenever the pair (x, v) is near (\bar{x}, \bar{v}) .

Proof This follows directly from Proposition 2.4 and Proposition 8.1.

8.1 Relation to partial smoothness

In this subsection, we will relate identifiable manifolds to the notion of partial smoothness, introduced in Lewis [21]. The motivation behind partial smoothness is twofold. On one hand, it is an attempt to model an intuitive idea of a "stable active set". On the other hand, partial smoothness, along with certain nondegeneracy and growth conditions, provides checkable sufficient conditions for optimization problems to possess good sensitivity properties. Evidently, partial smoothness imposes conditions that are unnecessarily strong. We now describe a variant of partial smoothness that is localized in a directional sense. This subtle distinction, however, will be important for us.

Definition 8.3 (Directional Partial Smoothness) Consider a closed set $Q \subset \mathbb{R}^n$ and a \mathbb{C}^2 manifold $M \subset Q$. Then Q is partly smooth with respect to M at $\bar{x} \in M$ for $\bar{v} \in N_O(\bar{x})$ if

- 1. (**prox-regularity**) Q is prox-regular at \bar{x} for \bar{v} .
- 2. (sharpness) span $\hat{N}_Q(\bar{x}) = N_M(\bar{x})$.
- 3. (continuity) There exists a neighborhood V of \bar{v} , such that the mapping, $x \mapsto V \cap N_O(x)$, when restricted to M, is inner-semicontinuous at \bar{x} .

We arrive at the main result of this subsection.

Proposition 8.4 (Identifiable manifolds and partial smoothness) *Consider a closed* set $Q \subset \mathbf{R}^n$ and a subset $M \subset Q$ that is a \mathbf{C}^2 manifold around a point $\bar{x} \in Q$. Let $\bar{v} \in \hat{N}_O(\bar{x})$. Then the following are equivalent.

- 1. *M* is an identifiable manifold at \bar{x} for \bar{v} .
- 2. We have

gph N_O = gph N_M locally around (\bar{x}, \bar{v}) .

- 3. Q is partly smooth with respect to M at \bar{x} for \bar{v} . - the inclusion $\bar{v} \in \operatorname{ri} \hat{N}_Q(\bar{x})$ holds.
- 4. The set Q is prox-regular at \bar{x} for \bar{v} , and for all sufficiently small real numbers $\lambda, \epsilon > 0$, we have

$$\bar{x} + \lambda \bar{v} \in \operatorname{int} \left(\bigcup_{x \in M \cap B_{\epsilon}(\bar{x})} (x + N_Q(x)) \right).$$

Proof The equivalence $1 \Leftrightarrow 2$ has been established in Proposition 5.9. The implication $1 \Rightarrow 3$ follows trivially from Propositions 5.8 and 8.1.

 $3 \Rightarrow 4$: There exist real numbers $r, \epsilon > 0$ so that the implication

$$\left. \begin{array}{l} x \in Q, \quad v \in N_Q(x) \\ |x - \bar{x}| < \epsilon, \ |v - \bar{v}| < \epsilon \end{array} \right\} \Rightarrow P_{Q \cap B_{\epsilon}(\bar{x})}(x + r^{-1}v) = x,$$

holds. For the sake of contradiction, suppose

$$\bar{x} + r^{-1}\bar{v} \in \mathrm{bd}\left(\bigcup_{x\in\mathcal{M}\cap B_{\epsilon}(\bar{x})} (x + N_{\mathcal{Q}}(x))\right).$$

Then there exists a sequence of points $z_i \rightarrow \bar{x} + r^{-1}\bar{v}$ with

$$z_i \notin \bigcup_{x \in M \cap B_{\epsilon}(\bar{x})} (x + N_Q(x)),$$

for each index *i*. Let $x_i \in P_M(z_i)$. Observe

$$x_i \to \bar{x}, \ z_i - x_i \in N_M(x_i)$$

Clearly,

$$z_i - x_i \notin N_O^P(x_i) \subset N_M(x_i),$$

for large indices *i*. Hence, there exist separating vectors $a_i \in N_M(x_i)$ with $|a_i| = 1$ satisfying

$$\sup_{v \in N_{O}^{P}(x_{i})} \langle a_{i}, v \rangle \leq \langle a_{i}, z_{i} - x_{i} \rangle = \langle a_{i}, z_{i} - \bar{x} \rangle + \langle a_{i}, \bar{x} - x_{i} \rangle.$$

We deduce,

$$\sup_{v \in N_{O}^{P}(x_{i})} \langle a_{i}, v \rangle \leq \langle a_{i}, r(z_{i} - \bar{x}) \rangle + \langle a_{i}, r(\bar{x} - x_{i}) \rangle.$$

Passing to a subsequence, we may assume $a_i \rightarrow a$ for some nonzero vector $a \in N_M(\bar{x})$. Observe $\bar{v} + \delta a \in N_Q(x_i)$ for all small $\delta > 0$. Consequently for all sufficiently small $\delta > 0$, there exist vectors $v_i \in N_Q(x_i)$ with $v_i \rightarrow \bar{v} + \delta a$. Observe

$$\langle a_i, v_i \rangle \leq \langle a_i, r(z_i - \bar{x}) \rangle + \langle a_i, r(\bar{x} - x_i) \rangle.$$

Letting *i* tend to ∞ , we obtain $\langle a, \bar{v} + \delta a \rangle \leq \langle a, \bar{v} \rangle$, which is a contradiction.

 $4 \Rightarrow 1$: Choose $r, \epsilon > 0$ so as to ensure

$$\bar{x} + r^{-1}\bar{v} \in \operatorname{int}\left(\bigcup_{x \in M \cap B_{\epsilon}(\bar{x})} (x + N_Q(x))\right).$$

Consider any sequence of points $x_i \in \mathbf{R}^n$ and vectors $v_i \in N_Q(x_i)$, with $x_i \to \bar{x}$ and $v_i \to \bar{v}$. Then for all large indices *i*, the inclusion

$$x_i + r^{-1}v_i \in \bigcup_{x \in M \cap B_{\epsilon}(\bar{x})} (x + N_Q(x)),$$

holds. Shrinking *r* and ϵ , from prox-regularity of *Q*, we deduce $x_i \in M$ for all large indices *i*. Hence *M* is identifiable at \bar{x} for \bar{v} .

Consider a convex set Q containing a point \bar{x} , and let $\bar{v} \in N_Q(\bar{x})$ be a normal vector. Then the arguments (3) \Rightarrow (4) and (4) \Rightarrow (1) show that a manifold $M \subset Q$ is identifiable at \bar{x} for \bar{v} if and only if the inclusion

$$\bar{x} + \bar{v} \in \operatorname{int}\left(\bigcup_{x \in M} (x + N_Q(x))\right),$$

holds. The region $\bigcup_{x \in M} (x + N_Q(x))$ is formed by attaching cones $N_Q(x)$ to each point $x \in M$. This set is precisely the set of points in \mathbb{R}^n whose projections onto Q lie in M.

References

- Al-Khayyal, F., Kyparisis, J.: Finite convergence of algorithms for nonlinear programs and variational inequalities. J. Optim. Theory Appl. 70(2), 319–332 (1991)
- Andersen, K.D., Christiansen, E., Conn, A.R., Overton, M.L.: An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms. SIAM J. Sci. Comput. 22(1), 243–262 (2000). (electronic)
- 3. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)
- 4. Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)
- Burke, J.V.: On the identification of active constraints. II. The nonconvex case. SIAM J. Numer. Anal. 27(4), 1081–1103 (1990)
- Burke, J.V., Moré, J.J.: On the identification of active constraints. SIAM J. Numer. Anal. 25(5), 1197– 1211 (1988)
- Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Prog. 39(1), 93–116 (1987)
- Clarke, F.H., Ledyaev, Yu., Stern, R.I., Wolenski, P.R.: Nonsmooth Analysis and Control Theory Texts in Mathematics, vol. 178. Springer, New York (1998)
- Coste, M.: An Introduction to Semialgebraic Geometry. RAAG Notes, p. 78. Institut de Recherche Mathématiques de Rennes, Oct 2002
- Daniilidis, A., Drusvyatskiy, D., Lewis, A.S.: Orthogonal invariance and identifiability. Under review, arXiv:1304.1198 [math.OC] (2013)
- 11. Drusvyatskiy, D.: Slope and Geometry in Variational Mathematics. Ph.D. thesis, Cornell University (2013)
- Drusvyatskiy, D., Lewis, A.S.: Optimality, identifiability, and sensitivity. arXiv:1207.6628 [math.OC] (2012)
- Dunn, J.C.: On the convergence of projected gradient processes to singular critical points. J. Optim. Theory Appl. 55(2), 203–216 (1987)
- 14. Facchinei, F., Pang, J.: Finite Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research. Springer, New York (2003)
- 15. Ferris, M.C.: Finite termination of the proximal point algorithm. Math. Prog. **50**(3 Ser. A), 359–366 (1991)
- Flåm, S.D.: On finite convergence and constraint identification of subgradient projection methods. Math. Prog. 57, 427–437 (1992)
- Hare, W., Sagastizábal, C.: Benchmark of some nonsmooth optimization solvers for computing nonconvex proximal points. Pac. J. Optim. 2(3), 545–573 (2006)
- Hare, W., Sagastizábal, C.: Computing proximal points of nonconvex functions. Math. Prog. 116(1–2, Ser. B), 221–258 (2009)
- 19. Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York (2003)
- Lee, S., Wright, S.J.: Manifold identification in dual averaging for regularized stochastic online learning. J. Mach. Learn. Res. 13, 1705–1744 (2012)
- 21. Lewis, A.S.: Active sets, nonsmoothness, and sensitivity. SIAM J. Optim. 13, 702–725 (2002)
- Lewis, A.S., Zhang, S.: Partial smoothness, tilt stability, and generalized Hessians. SIAM J. Optim. 23(1), 74–94 (2013)
- Mifflin, R., Sagastizábal, C.: Primal-dual gradient structured functions: second-order results; links to epi-derivatives and partly smooth functions. SIAM J. Optim. 13(4), 1174–1194 (2003)
- Mifflin, R., Sagastizábal, C.: VU-smoothness and proximal point results for some nonconvex functions. Optim. Methods Softw. 19(5), 463–478 (2004)
- Mifflin, R., Sagastizábal, C.: A VU-algorithm for convex minimization. Math. Prog. 104(2–3, Ser. B):583–608 (2005)
- 26. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory Grundlehren Der Mathematischen Wissenschaften, vol. 330. Springer, Berlin (2005)
- Poliquin, R.A., Rockafellar, R.T.: Amenable functions in optimization. Nonsmooth optimization: methods and applications (Erice, pp. 338–353, 1991). Gordon and Breach, Montreux (1992)
- Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Am. Math. Soc. 348, 1805–1838 (1996)

- Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352(11), 5231–5249 (2000)
- Robinson, S.M.: Some continuity properties of polyhedral multifunctions. In: Mathematical Programming at Oberwolfach, volume 14 of Mathematical Programming Studies, pp. 206–214. Springer, Berlin Heidelberg (1981). doi:10.1007/BFb0120929
- Rockafellar, R.T., Dontchev, A.L.: Implicit Functions and Solution Mappings, Monographs in Mathematics. Springer, Dordrecht (2009)
- Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998)
- van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J. 84, 497– 540 (1996)
- Wright, S.J.: Identifiable surfaces in constrained optimization. SIAM J. Control Optim. 31, 1063–1079 (1993)