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Abstract. Variational analysis has come of age. Long an elegant theoretical toolkit for variational
mathematics and nonsmooth optimization, it now increasingly underpins the study of algorithms, and
a rich interplay with semi-algebraic geometry illuminates its generic applicability. As an example,
alternating projections – a rudimentary but enduring algorithm for exploring the intersection of two
arbitrary closed sets – concisely illustrates several far-reaching and interdependent variational ideas.
A transversality measure, intuitively an angle and generically nonzero, controls several key properties:
the method’s linear convergence rate, a posteriori error bounds, sensitivity to data perturbations, and
robustness relative to problem description. These linked ideas emerge in a wide variety of compu-
tational problems. Optimization in particular is rich in examples that depend, around critical points,
on “active” manifolds of nearby approximately critical points. Such manifolds, central to classical
theoretical and computational optimization, exist generically in the semi-algebraic case. We discuss
examples from eigenvalue optimization and stable polynomials in control systems, and a prox-linear
algorithm for large-scale composite optimization applications such as machine learning.
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1. Introduction: the Banach fixed point theorem

Our topic — sensitivity and iterative algorithms for numerical inversion and optimization —
has deep roots in the Banach fixed point theorem, so we begin our quick introduction there.
Given a Euclidean space E (a finite-dimensional real inner product space), we seek to invert
a map F : E ! E. In other words, given a data vector y 2 E, we seek a solution vector
x 2 E satisfying F (x) = y. We analyze this problem around a particular solution x̄ 2 E for
data ȳ = F (x̄). A good exposition on the idea of inversion, close in spirit to our approach
here, is the monograph of Dontchev and Rockafellar [26].

Given a constant ⇢ such that the map I � ⇢F (where I is the identity) has Lipschitz
modulus ⌧ = lip(I � ⇢F )(x̄) < 1 (meaning that the map is locally a strict contraction),
Banach’s 1922 argument [2] shows that the Picard iteration

x
k+1 = x

k

� ⇢(F (x
k

)� y) (for k = 0, 1, 2, . . .)
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converges linearly to a solution x̂ of the equation F (x) = y, for any data vector y near ȳ,
when initiated near x̄. Furthermore, by starting su�ciently near x̄, we can ensure an upper
bound on the linear rate arbitrarily close to ⌧ : in other words, for any constant ⌧̄ > ⌧
we know ⌧̄�k|x

k

� x̂| ! 0. This construction shows that the inverse map F�1 agrees
(graphically) around the point (ȳ, x̄) with a single-valued function having Lipschitz modulus
⇢

1�⌧

. We thus see the sensitivity of solutions to data perturbations, and error bounds on the
distance from approximate solutions x to the true solution in terms of the a posteriori error
F (x)� y.

Similar classical arguments show robustness in the problem description: for linear maps
A : E ! E with norm less than the bound ⇢

1�⌧

, the perturbed map F + A retains (locally)
a Lipschitz inverse. Less classically, as we shall see (though related to the Eckart-Young
theorem [40]), the bound ⇢

1�⌧

is optimal.
Consider the even simpler case when the map F is linear, self-adjoint, and positive

semidefinite, with maximum and minimum eigenvalues ⇤ and � respectively. In the generic
case when F is actually positive definite, we could choose ⇢ =

1
⇤ , and then ⌧ = 1 � �

⇤ .
The Picard iteration becomes simply the method of steepest descent for the convex quadratic
function 1

2 hx, Fxi � hy, xi, with constant step size. The key constant 1
1�⌧

controlling the
algorithm’s convergence rate, sensitivity, error bounds and robustness, is just ⇤

�

, the con-
dition number of F . This constant is also closely associated with the linear convergence
rate of other algorithms, such as steepest descent with exact line search, and the method of
conjugate gradients.

A broad paradigm, originating with Demmel [22], relates the computational di�culty
of a problem instance (here indicated by convergence rate) with the distance to the nearest
“ill-posed” instance (in this case one where Lipschitz invertibility breaks down). An ex-
tensive theory of Renegar (see [65]), analogous to the theory above for convex quadratic
minimization, concerns feasibility and optimization problems with constraints of the form
y 2 Fx+K, for linear maps F and convex cones K: in that case, the algorithms in question
are interior-point methods [60].

Over the next couple of sections, we illustrate and study these ideas more broadly. In
each case, we consider a computational problem involving inversion or optimization (which
amounts to inverting a gradient-type mapping), and study a “regularity” modulus at a par-
ticular solution. We observe how that modulus controls error bounds, sensitivity analysis,
robustness in the problem description, and the local linear convergence rate of simple itera-
tive algorithms.

2. Variational analysis and alternating projections

We next consider the problem of set intersection: given two nonempty closed sets X and
Y in the Euclidean space E, we simply seek a point z 2 X \ Y . Like our first example,
this problem involves a kind of inversion: we seek a point z such that (0, 0) lies in the set
(X � z)⇥ (Y � z), a set we can view as a function of z.

We denote the distance from a point y 2 E to X by d
X

(y), and the set of nearest points
(or projection) by P

X

(y). We consider the method of alternating projections, which simply
repeats the iteration

x
k+1 2 P

X

(y
k

), y
k+1 2 P

Y

(x
k+1).
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For convex sets, this method has a long history dating back at least to a 1933 work of von
Neumann [76], with a well understood convergence theory: a good survey is [3]. While
typically slow, its simplicity lends it enduring appeal, even for nonconvex sets. Robust
control theory, for example, abounds in low-rank matrix equations, and projecting a matrix
M onto the (nonconvex) set of matrices of rank no larger than r is easy: we simply zero out
all but the r largest singular values in the singular value decomposition of M (an approach
tried in [38], for example). Furthermore, for our current purposes, the method of alternating
projections perfectly illustrates many core ideas of variational analysis, as well as our broad
thesis.

Central to our discussion is the notion of transversality. If x is a nearest point in the set
X to a point y 2 E, then any nonnegative multiple of the vector y � x is called a proximal
normal to X at x: such vectors comprise a cone Np

X

(x). We say that X and Y intersect
transversally at a point z̄ in their intersection when there exists an angle ✓ > 0 such that the
angle between any proximal normal to X and proximal normal to Y , both at points near z̄,
is always less than ⇡ � ✓. The supremum of such ✓ is the transversality angle. When X and
Y are smooth manifolds, transversality generalizes the classical notion [47]. We then have
the following special case of a result from [28].

Theorem 2.1 (Convergence of alternating projections). Initiated near any transversal inter-
section point for two closed sets, the method of alternating projections converges linearly to
a point in the intersection. If the transversality angle is ¯✓ > 0, then we can ensure an upper
bound on the convergence rate arbitrarily close to cos

2
(

✓̄

2 ) by initiating su�ciently near the
intersection point.

Notable in this result (unlike all previous analysis, such as [52]) is the absence of any as-
sumptions on the two intersecting sets, such as convexity or smoothness. Central to the
proof is the Ekeland variational principle [35].

Modern variational analysis grew out of attempts to expand the broad success of convex
analysis — an area for which Rockafellar’s seminal monograph [67] remains canonical —
and to unify it with classical smooth analysis. Classical analysis relies crucially on limiting
constructions: for example, the definition of transversally intersecting smooth manifolds
(a special case of our property) involves their tangent spaces. The more general property
described above also has a limiting flavor, and we can express it more succinctly using a
limiting construction. This construction originated in Clarke’s 1973 thesis [16, 17], in a
convexified form, and a couple of years later, in the raw form we describe here (including
implications for transversality) in work reported in Mordukhovich’s paper [57] along with
contemporaneous joint studies with Kruger ranging from [59] to [45]. It is fundamental
to variational analysis: the expository monographs [8, 18, 58, 68] each provide excellent
surveys and historical discussion, [7] is a gentler introduction, and [43, p. 112] recounts
some early history. The monograph [26] is particularly attuned to our approach here.

A limit of proximal normals to the set X at a sequence of points approaching a point
x 2 X is simply called a normal at x. Such vectors comprise a closed cone N

X

(x), possibly
nonconvex, called the normal cone. With this notation, transversality at the point z̄ is simply
the property

N
X

(z̄) \ �N
Y

(z̄) = {0},

and the transversality angle is the minimal angle between pairs of vectors in the cones N
X

(z̄)
and �N

Y

(z̄).
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The idea of a normal vector to a closed set X ⇢ E is a special case of the idea of a
“subgradient” of a lower semicontinuous extended-real-valued function on E. For simplicity
of exposition, in this essay we confine ourselves to properties of normals, but many of the
results that we present extend to subgradients.

The terminology of “normals” we use here is consistent with classical usage for smooth
manifolds and convex sets, a fact fruitfully seen in a broader context. A set X ⇢ E is
nonempty, closed and convex if and only if its projection mapping P

X

is everywhere single-
valued. More generally [64], X is prox-regular at a point x 2 X when P

X

is everywhere
single-valued nearby. In that case, the limiting construction above is superfluous: all normals
are proximal, so the cones N

X

(x) and Np

X

(x) coincide (and are closed and convex). Prox-
regularity applies more broadly than convexity, to smooth manifolds, for example. A set
M ⇢ E is a C(2) manifold around a point x̄ 2 M if it can be described locally as F�1

(0),
where the map F : E ! F is twice continuously di↵erentiable, with surjective derivative at
x̄. In that case, classical analysis shows M is prox-regular at x̄.

For convex sets X and Y , transversality fails at a common point exactly when there exists
a separating hyperplane through that point; a small translation of one set then destroys the
intersection. The following result [45], a local generalization of the separating hyperplane
theorem, hints at the power of transversality.

Theorem 2.2 (Extremal principle). On any neighborhood of a point where two closed sets
intersect transversally, all small translations of the sets must intersect.

This principle is a unifying theme in the exposition [58], for example. One proof proceeds
constructively, using alternating projections [52].

Another consequence of transversality is the existence of an error bound, discussed in
[41, p. 548], estimating the distance to the intersection of the two sets in terms of the dis-
tances to each separately. Notice, in the product space E ⇥ E, we have the relationship
d
X⇥Y

(z, z) =
p

d2
X

(z) + d2
Y

(z) for any point z 2 E.

Theorem 2.3 (Error bound). If closed sets X and Y intersect transversally at a point z̄, then
there exists a constant ⇢ > 0 such that all points z near z̄ satisfy

d
X\Y

(z)  ⇢d
X⇥Y

(z, z).

Intuitively, when the transversality angle is small, we expect to need a large constant ⇢ in
the error bound above. We can make this precise through a single result, discussed in [52],
subsuming the preceding two.

Theorem 2.4 (Sensitivity). Sets X and Y intersect transversally at a point z̄ if and only if
there exists a constant ⇢ > 0 such that all points z near z̄ and all small translations X 0 of
X and Y 0 of Y satisfy

d
X

0\Y

0
(z)  ⇢d

X

0⇥Y

0
(z, z).

The infimum of such ⇢ is (1� cos

¯✓)�
1
2 , where ¯✓ is the transversality angle.

We see a pattern of ideas analogous to those for inversion via the Picard iteration: an
algorithm whose linear convergence rate is governed by a sensitivity modulus. To pursue the
analogy intuitively a little further, when the transversality angle ¯✓ is small, we expect a small
change in the problem description to destroy transversality. To illustrate, suppose z̄ = 0,
and at that point choose unit normals u and v to the sets X and Y respectively with an angle
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of ⇡ � ¯✓ between them. Now consider the orthogonal map R on the space E rotating the
u-v plane through an angle ¯✓ and leaving its orthogonal complement invariant, and so that
Ru = �v. The sets RX and Y are no longer transversal at zero, since Ru is normal to
RX . A natural way to measure the change in the problem description is to view the original
problem as (I, I)z 2 X ⇥ Y , and the perturbed problem as (R�1, I)z 2 X ⇥ Y , the size
of the change being the norm kI � R�1k = 2 sin

✓̄

2 . In Section 4, where we consider the
broader pattern, we see that in fact a somewhat smaller change will destroy transversality.
However, rather than pursue the analogy further now, we first consider whether transversality
is a realistic assumption in concrete settings.

3. Generic transversality of semi-algebraic sets

Like most areas of analysis, the reach of general variational analysis is limited by patholog-
ical examples. In our present context, for example, consider the set intersection problem in
R3

= R2 ⇥R, for the two sets X = R2 ⇥ {0} and

Y =

�

(w, r) : r � f(w)
 

,

where the function f is a famous 1935 example of Whitney [77] that is continuously di↵er-
entiable and has an arc of critical points with values ranging from �1 to 1. Thus for every
number s in the interval [�1, 1] there exists a critical point w with f(w) = s: hence the
vector (0,�1) is normal to Y at the point (w, s), so clearly the intersection of the translated
set X + (x, s) (for any point x 2 R2) and the set Y is not transversal at the point (w, s).
We have arrived at an example of two closed sets for which, after translations, the failure of
transversality is not uncommon.

On the other hand, in concrete computational settings we do not expect to encounter
Whitney’s example. To be more precise, we take as an illustrative model of “concrete”
computation the world of semi-algebraic sets. We view the Euclidean space E as isomorphic
to the space Rn (for some dimension n), and consider finite unions of sets, each defined
by finitely-many polynomial inequalities. This world, and its generalizations in models of
“tame” geometry first promoted by Grothendieck [39], strike happy compromises between
broad generality and good behavior. Concise and clear surveys appear in [19, 20, 74].

On the one hand, semi-algebraic sets comprise a rich class: in particular, they may be
neither convex nor smooth. They are, furthermore, often easy to recognize without recourse
to the basic definition, due to the Tarski-Seidenberg Theorem: the projection of a semi-
algebraic set onto a subspace is semi-algebraic. Applying this principle repeatedly shows
that sets like the cone of real positive semidefinite symmetric matrices and sets of matrices
of bounded rank are semi-algebraic.

On the other hand, semi-algebraic sets cannot be too pathological (or “wild”, in
Grothendieck’s terminology). For example, although nonsmooth in general, they stratify
into finite unions of analytic manifolds, so have a natural notion of dimension, namely the
largest dimension of any manifold in a stratification. Another important example for us con-
cerns the term “generic”. In this essay, we call a property that depends on a data vector y
in a Euclidean space E generic when it holds except for y in a set Z ⇢ E of measure zero.
Unlike the general case, if Z is semi-algebraic, then the following properties are equivalent:

• Z has measure zero.
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• Z has dimension strictly less than that of E.

• the complement of Z is dense.

• the complement of Z is topologically generic.

We call semi-algebraic sets Z with these properties negligible.
No semi-algebraic analog can exist of the example we constructed from Whitney’s func-

tion. Specifically, we have the following result [28], a special case of a powerful generaliza-
tion we discuss later.

Theorem 3.1 (Generic transversality). Suppose X and Y are semi-algebraic subsets of E.
Then for all vectors z outside a negligible semi-algebraic subset of E, transversality holds
at every point in the intersection of the sets X � z and Y .

Practical variational problems are often highly structured, involving sparse data, for ex-
ample. Nonetheless, this result is reassuring: it suggests that, for concrete intersection prob-
lems with sets subject to unstructured perturbations, transversality is a reasonable assump-
tion.

4. Measuring invertibility: metric regularity

Our sketch hints at an intriguing web of ideas concerning computational inversion:

• Sensitivity of solutions to data perturbation

• Linear error bounds for trial solutions in terms of measured error

• Robustness in problem description

• Local linear convergence of simple solution algorithms.

A single modulus (a condition number or angle in our examples) quantifies all four prop-
erties. We call problem instances well-posed when the modulus is finite, and, within broad
problem classes, this property is generic. As we now describe, these interdependent ideas
are very pervasive indeed.

To capture the abstract idea of computational inversion, we consider two Euclidean
spaces E and F and a set-valued mapping � on E whose images are subsets of F: we
write � : E !! F. Given a data vector ȳ 2 F, our problem is to find a solution x 2 E to the
generalized equation ȳ 2 �(x). This model subsumes, of course, the example of a classical
equation, when � is single-valued and smooth, but it is much more versatile than its abstract
simplicity might suggest, modeling inequalities rather than just equations, for instance.

To illustrate the power of the approach, among many further examples, we keep in mind
two in particular. The first we have seen already. Given two sets X and Y in the space E, if
we consider the mapping

� : E !! E2 defined by �(z) = (X � z)⇥ (Y � z), (4.1)

then the problem 0 2 �(z) is just set intersection.
For the second example, we return to the normal cone N

X

(x) to a nonempty closed set
X in E, but now thought of as a mapping N

X

: E !! E (defining N
X

(x) = ; for x 62 E).
Solutions x 2 E of the generalized equation ȳ 2 N

X

(x) are critical points for the linear
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optimization problem sup

X

hȳ, ·i. This terminology is in keeping with the classical notion
when X is a smooth manifold, while for convex X , critical points are just maximizers. For
simplicity, this essay concentrates on linear rather than general optimization. However, that
restriction involves little loss of generality: for example, minimizing a function f : E ! R
is equivalent to a linear optimization problem over the epigraph of f :

inf{⌧ : (x, ⌧) 2 epi f}, where epi f =

�

(x, ⌧) 2 E⇥R : ⌧ � f(x)
 

.

The fundamental idea, unifying the kinds of error bounds and sensitivity analysis we
have illustrated so far, is metric regularity of the mapping � at a point x̄ 2 E for a data
vector ȳ 2 �(x̄): the existence of a constant ⇢ > 0 such that

d��1(y)(x)  ⇢d�(x)(y) for all (x, y) near (x̄, ȳ). (4.2)

We call ȳ a critical value if � is not metrically regular for ȳ at some point in E.
Inequality (4.2) is a locally uniform linear bound on the error between a trial solution

x and the true solution set ��1
(y) for data y, in terms of the measured error from y to

the trial image �(x). It captures both error bounds (where y = ȳ) and sensitivity analysis
(where y varies). In highlighting metric regularity, we are implicitly supposing inversion to
be computationally hard: the set �(x) is more tractable than the set ��1

(y).
The mapping � is closed when its graph

gph� =

�

(x, y) 2 E⇥ F : y 2 �(x)
 

is closed. It is semi-algebraic when its graph is semi-algebraic, and then its graphical di-
mension is the dimension of its graph. Around any point (x̄, ȳ) 2 gph� we define three
constants:

• The modulus is the infimum of the constants ⇢ > 0 such that the metric regularity
inequality (4.2) holds.

• The radius is the infimum of the norms of linear maps G : E ! F such that the
mapping �+G is not metrically regular at x̄ for ȳ +Gx̄.

• The angle is the transversality angle for the sets gph� and E⇥{ȳ} at the point (x̄, ȳ).

These quantities are strongly reminiscent of the linked ideas opening this section. The first
constant quantifies error bounds and sensitivity. The second concerns how robust the prob-
lem is under linear perturbations: within that class, it measures the distance to the nearest
ill-posed (metrically irregular) instance. By Theorem 2.1, the third quantity controls the lo-
cal linear convergence rate of at least one simple conceptual algorithm for finding a solution
x near x̄ to the generalized equation ȳ 2 �(x): alternating projections on the sets gph� and
E⇥ {ȳ}.

In this essay we concentrate on what we loosely call “simple” algorithms, relying only
on basic evaluations and properties of the mapping �. By contrast, Newton-type schemes
use, or assume and approximate, tangential (“higher-order”) properties of gph�. For an
extensive discussion relating metric regularity and the convergence of Newton-type methods,
see [26]. The conceptual algorithm above belongs to the class of proximal point methods,
which minimize functions f using the iteration

x
k+1 2 argmin

�

f(x) + |x� x
k

|2
 

.
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In this case, f(x) = d2�(x)(ȳ).
Between the three diverse quantities we have introduced, we have the following extraor-

dinarily simple and general relationship.

Theorem 4.1 (Metric regularity). At any point in the graph of any closed set-valued mapping
we have

radius =

1

modulus
= tan(angle).

The first equality is [25, Theorem 1.5], while the second is a version of the “coderivative
criterion” for metric regularity (whose history is discussed in [68, p. 418]). For reasons
of space, we omit a dual “derivative criterion”, expressible using tangents in the place of
normals: see [24] for a discussion.

For instance, consider our motivating example, the intersection problem for two sets X
and Y discussed in Section 2. Equation (4.1) describes the corresponding mapping. Theorem
2.4 (Sensitivity) and a calculation [52] shows that the modulus is (1 � cos

¯✓)�
1
2 , where ¯✓

is the transversality angle for X and Y at the intersection point. The radius is thereforep
2 sin

✓̄

2 . The proximal point method above is that for minimizing the function d2
X

+ d2
Y

.
We consider our earlier example of normal cone operators shortly. First, however, we re-

turn to the classical single-valued case. When the mapping � is linear, standard linear alge-
bra shows that metric regularity is equivalent to surjectivity, and the Eckart-Young Theorem
identifies the radius as just the smallest singular value of �. More generally, for continuously
di↵erentiable �, the Lusternik-Graves Theorem amounts to the fact that the modulus of �
at any point x̄ agrees with that of its linear approximation there (see [26]), and hence equals
the reciprocal of the smallest singular value of the derivative of � at x̄.

This classical case also guides us on the question of whether metric regularity is a generic
property. In this case, the set of critical values C ⇢ F is just the image under the mapping
� of the set in E where the derivative of � is not surjective. The example of Whitney that
we discussed earlier shows that C may be large (in that case an interval in R) even for
continuously di↵erentiable �. However, assuming � is su�ciently smooth, Sard’s theorem
[69] guarantees that C has measure zero. In this sense, metric regularity is typical.

To address this question for set-valued mappings, we consider the semi-algebraic world,
in which we have the following striking result of Io↵e [42].

Theorem 4.2 (Semi-algebraic Sard). The set of critical values of any semi-algebraic set-
valued mapping is semi-algebraic and negligible.

In computational practice, generic results like this one may often be of limited consequence,
since generalized equations often involve highly structured data. Nonetheless, like its spe-
cial case, Theorem 3.1 (Generic transversality), the result provides a reassuring baseline:
for concrete generalized equations with unstructured data, metric regularity is a reasonable
assumption.

5. Interlude: nonsmooth optimization via quasi-Newton methods

Metric regularity spans a broad range of inversion and optimization problems. Its suggestive
links to convergence rates tempt us to study linearly convergent algorithms, whenever we
encounter them, through the lens of metric regularity. An important recurrent theme in the
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work of the late Paul Tseng, for example, was the use of error bounds in linear convergence
results [56].

An intriguing case is the popular BFGS method [61] (named for its inventors, Broyden,
Fletcher, Goldfarb and Shanno) for minimizing a function f : Rn ! R. The BFGS al-
gorithm is a quasi-Newton method, so called by association with the Newton iteration for
minimizing a C(2) function f :

x
k+1 = x

k

�r2f(x
k

)

�1rf(x
k

).

The BFGS method replaces the inverse Hessian by an approximation H
k

in the space of
n-by-n symmetric matrices Sn, and involves a step length ↵

k

> 0:

x
k+1 = x

k

� ↵
k

H
k

rf(x
k

).

We then choose H
k+1 to be the minimizer over the positive-definite matrices of the strictly

convex function
H 7! trace(H�1

k

H)� ln detH (5.1)

(see [36]), subject to a linear constraint called the secant condition:

H
�

rf(x
k+1)�rf(x

k

)

�

= x
k+1 � x

k

.

The secant condition forces H
k+1 to behave like the true inverse Hessian in the direction

of the last step taken, while the objective (5.1) keeps H
k+1 close to H

k

, since its uncon-
strained minimizer is at H

k

. A simple formula [61] expresses H
k+1 explicitly as a rank-two

perturbation of H
k

.
The step length ↵

k

is chosen by a line search on the univariate function

↵ 7! h(↵) = f
�

x
k

� ↵H
k

rf(x
k

)

�

,

aiming to satisfy two conditions (called the Armijo and Wolfe conditions):

h(↵) < h(0) + c1h
0
(0)↵ and h0

(↵) > c2h
0
(0).

The constants c1 < c2 in the interval (0, 1) are fixed at the outset. The Armijo condition re-
quires the decrease in the value of h to be a reasonable fraction of its instantaneous decrease
at zero, while the Wolfe condition prohibits steps that are too small, by requiring a reason-
able reduction in the rate of decrease in h, and ensures the existence of a positive-definite
H

k+1 satisfying the secant condition. A simple bisection scheme finds a suitable step ↵
k

by maintaining the endpoints of a search interval such that the Armijo condition holds on
the left and fails on the right, checking both conditions at the midpoint, and then halving the
interval accordingly. For a thorough description, see [53].

The BFGS algorithm has been a method of choice for smooth minimization for several
decades. It is robust and fast, typically converging superlinearly to a local minimizer. Given
its motivation — approximating a Hessian — it seems astonishing that the algorithm also
serves as an excellent general-purpose method for nonsmooth nonconvex minimization. In
principle the algorithm might encounter a point x

k

at which the function f is not di↵eren-
tiable, and thereby break down, but with generic initialization, no such breakdowns seem to
occur.

A systematic study [53] investigated this phenomenon, and we return to an example
from that study later in this work. In general, the BFGS method, when applied to minimize a
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semi-algebraic Lipschitz function and with generic initialization, always seems to generate a
sequence of function values (including all those computed in the line search) that converges
to a stationary value — the value of the function at a point near which convex combinations
of gradients are arbitrarily small. Furthermore, for nonsmooth stationary values, that con-
vergence is linear! Our current context demands the obvious question: does some condition
number or modulus of metric regularity govern the convergence rate of the BFGS method
on nonsmooth problems? We seem far from any understanding of this question.

6. Strong regularity and second-order properties

One way to strengthen the metric regularity property is especially important for sensitivity
analysis and numerical methods. A set-valued mapping � : E !! F is clearly metrically
regular at a point x̄ for a value ȳ when the graph of the inverse mapping �

�1 coincides
locally with the graph of a single-valued Lipschitz map G : F ! E around the point (ȳ, x̄).
In that case, we call � strongly metrically regular (terminology deriving from Robinson
[66]); the regularity modulus coincides with the Lipschitz modulus lipG(ȳ). We call ȳ a
weakly critical value if there exists a point in E at which � is not strongly metrically regular
for ȳ.

We began, in Section 1, with an example of strong metric regularity: a single-valued
map � : E ! E such that I � ⇢� is, locally, a strict contraction. A related example derives
from the setting of the classical inverse function theorem: a continuously di↵erentiable map
� : E ! E is strongly metrically regular at points where the derivative of � is invertible.

Less classically, suppose the set M ⇢ E is a C(2) manifold around a point x̄ 2 M, and
consider the mapping � defined in terms of the normal cone NM by

�(x) =

⇢

x+NM(x) (x 2 M)

; (x 62 M).

Strong metric regularity holds at x̄ for x̄, because around the point (x̄, x̄), the inverse map-
ping �

�1 agrees graphically with the projection operator PM, which is single-valued and
Lipschitz.

The previous section included a conceptual algorithm for solving metrically regular gen-
eralized equations, whose convergence rate is controlled by the modulus. Assuming, instead,
strong metric regularity (of the mapping � at the point x̄, for the value 0, say), Pennanen [62]
linked the modulus to the convergence rates of algorithms closer to computational practice
(in “multiplier methods”). For example, for any constant c larger than twice the modulus,
there exists a neighborhood U of x̄ such that, with initial point x0 2 U , the proximal-point-
type iteration

x
k

� x
k+1 2 c�(x

k+1), with x
k+1 2 U (6.1)

always generates sequences converging linearly to a solution of the generalized equation
0 2 �(x). (The bound on the rate behaves, as c ! 1, like

p
5
c

times the modulus.) In
keeping with our focus on simple algorithms, we pass by the strong connections between
strong metric regularity and Newton methods (most importantly in numerical optimization
via sequential quadratic programming). That line of investigation, first pursued in [44], is
discussed at length in the monograph [26].
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Unlike critical values, weakly critical values may be common, even for semi-algebraic
mappings. For example, mapping every point to the whole range space F results in every
value being weakly critical. As the next result [32] makes clear, however, this behavior can
only result from a large graph.

Theorem 6.1 (Strong semi-algebraic Sard). If a set-valued mapping �:E !! F is semi-
algebraic and has graphical dimension no larger than dimF, then its set of weakly critical
values is semi-algebraic and negligible.

This result applies to single-valued semi-algebraic maps � : E ! E in particular. More
interesting for optimizers, however, is the following corollary [27, 30].

Theorem 6.2 (Normal cone mapping). For any closed semi-algebraic set X ⇢ E, the nor-
mal cone mapping N

X

: E !! E has graphical dimension equal to dimE, and hence its set
of weakly critical values is semi-algebraic and negligible.

This result suggest that, for concrete linear optimization problems over a set X ⇢ E
with unstructured objective hȳ, ·i and solution x̄, strong metric regularity of the normal cone
mapping N

X

is a reasonable assumption. As the next result [31] reveals, this type of prop-
erty is closely related to second-order conditions in optimization, classically guaranteeing
quadratic growth via a Hessian condition. Following our pared-down approach, we focus on
linear optimization, but, as before, we could consider a more general problem of the form
inf

X

f as seeking a point (x, ⌧) in the set epi f \ (X ⇥R) to maximize the linear function
�⌧ .

Theorem 6.3 (Strong regularity and quadratic growth). Given a closed set X and a vector
ȳ 2 E, suppose that the point x̄ 2 X is a local maximizer of the linear function hȳ, ·i over
X . Consider the following three properties:

• The normal cone mapping N
X

is strongly metrically regular at x̄ for ȳ.

• For some scalar  > 0 and neighborhood U of x̄, “uniform quadratic growth” holds:
for all vectors y near ȳ, there exists a point x 2 X \ U so

hy, x0i  hy, xi � |x0 � x|2 for all x0 2 X \ U. (6.2)

• The “negative definite” condition holds:

(z, w) 2 NgphN

X

(x̄, ȳ) and w 6= 0 =) hz, wi < 0.

In general, the first condition implies the second two, and so, if X is semi-algebraic, then for
all ȳ outside a negligible semi-algebraic set, all three conditions hold. If, on the other hand,
X is prox-regular at x̄, then all three conditions are equivalent.

This result has multiple roots, and deserves some comments. Bonnans and Shapiro
include a careful study of uniform quadratic growth in their monograph [6]. Geometri-
cally, condition (6.2) describes a ball with surface containing the point x, center on the ray
x � R+y, and containing the set X around x. It is natural to include the final special case
of a prox-regular set, because the first condition alone turns out to imply a local form of
prox-regularity [31]. Assuming prox-regularity, a fourth equivalent notion is tilt stability
[63].
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The link with second-order conditions is not surprising, because the regularity modulus
of the normal cone mapping is related via Theorem 4.1 (Metric regularity) to the transver-
sality angle at the intersection point (x̄, ȳ) for the sets gphN

X

and E ⇥ {ȳ}, which in turn
is just the minimal angle between the subspace {0}⇥ F and the cone

NgphN

X

(x̄, ȳ)

appearing in the third condition. Mordukhovich [58] uses exactly this iterated normal cone
construction to define his generalized Hessian.

For a semi-algebraic set X , the result above, while interesting, dramatically understates
the good behavior of N�1

X

: it will typically be single-valued and not just Lipschitz but ana-
lytic. We explore far-reaching consequences next.

7. Identifiability and the active set philosophy

Given a closed set X ⇢ E and a data vector ȳ 2 E, consider once again the linear optimiza-
tion problem

sup

X

hȳ, ·i. (7.1)

Recall that a point x 2 X is critical when ȳ 2 N
X

(x).
A wide variety of iterative methods for the linear optimization problem generate asymp-

totically critical sequences (x
k

) in X for ȳ, meaning that some sequence of normals y
k

2
N

X

(x
k

) converges to ȳ (implying in particular that any limit point of (x
k

) is critical for
the problem (7.1)). We aim to profit from this behavior by simplifying the possibly compli-
cated underlying set X . We first illustrate with two examples: alternating projections, and
proximal point methods.

Suppose we seek a critical point for our linear optimization problem by applying the
proximal point method (6.1) to the mapping defined on E by x 7! �(x) = N

X

(x) � ȳ.
Assume the normal cone mapping N

X

is strongly metrically regular at x̄ for ȳ. We arrive at
the following relationship between iterates, in a neighborhood of a solution x̄:

1

c
(x

k

� x
k+1) + ȳ 2 N

X

(x
k+1).

This uniquely defines a sequence in a neighborhood of any fixed solution that converges,
providing the constant c is large enough. Since the left-hand side must therefore converge to
ȳ, the sequence of iterates (x

k

) is asymptotically critical.
As another example, given two closed sets X and Y in E, we could rewrite the set

intersection problem as the linear optimization problem sup{�⌧ : (x, y, ⌧) 2 S}, where
S ⇢ E2 ⇥ R is the set defined by the constraint ⌧ � 1

2 |x � y|2. A quick calculation
shows that the method of alternating projections generates two sequences of points, x

k

2 X
and y

k

2 Y , satisfying

(0, x
k

� x
k+1,�1) 2 N

S

(s
k

), where s
k

=

⇣

x
k+1, yk,

1

2

|x
k+1 � y

k

|2
⌘

.

Under reasonable conditions — those of Theorem 2.1 (Convergence of alternating projec-
tions), for example — we know that both sequences converge to a point z 2 X \ Y . Hence
the sequence (s

k

) is asymptotically critical for the problem.
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We now introduce a simple but powerful variational idea for the set X . We call a subset
M ⇢ X identifiable at a point x̄ 2 X for the vector ȳ 2 E if every asymptotically critical
sequence for ȳ converging to x̄ must eventually lie in M. If M is also a C(2) manifold at x̄,
then we simply call it an identifiable manifold at x̄ for ȳ. Such a subset hence balances two
competing demands: as a subset of the typically nonsmooth set X , it must be small enough
to be a smooth manifold, and yet large enough to capture the tail of every asymptotically
critical sequence.

The existence of an identifiable manifold seems, at first sight, a demanding condition.
The next result [29], on the other hand, shows that such a manifold uniquely captures im-
portant sensitivity information about how critical points for the linear optimization problem
(7.1) vary under data perturbation. Furthermore, its existence forces the critical point x̄ 2 X
for the vector ȳ 2 E to be nondegenerate: ȳ must lie not just in the normal cone N

X

(x̄),
but in its relative interior — its interior relative to its span. It also forces a local form of
prox-regularity [29], rather as in the Section 6, so for transparency we simply assume prox-
regularity.

Theorem 7.1 (Identifiability, uniqueness, and sensitivity). Suppose the set X ⇢ E is prox-
regular at the point x̄ 2 X . If X has an identifiable manifold M at x̄ for the vector ȳ 2 E,
then that manifold is locally unique. Indeed, for any su�ciently small neighborhood U of ȳ,
the manifold M coincides locally around x̄ with the set N�1

X

(U). Furthermore, x̄ must then
be a nondegenerate critical point for ȳ.

To illustrate, consider the case when the set X is a polyhedron. If x̄ is a nondegenerate
critical point for the problem sup

X

hȳ, ·i, then the set of maximizers (or in other words the
face of X exposed by the vector ȳ) is an identifiable manifold at x̄ for ȳ. We discuss more
varied examples in the following sections.

A set X may easily have no identifiable manifold at the critical point x̄ in question, even
when X is closed, convex and semi-algebraic, and x̄ is nondegenerate. An example is the
set

X =

�

(u, v, w) 2 R3
: w2 � u2

+ v4, w � 0

 

,

at the point x̄ = (0, 0, 0) for the vector ȳ = (0, 0,�1). However, as we shall see shortly, at
least for semi-algebraic examples such as this one, such behavior is unusual. Furthermore,
as the next result [29] makes clear, the existence of an identifiable manifold has broad and
powerful consequences for optimization.

Theorem 7.2 (Identifiability, active sets, and partial smoothness). Suppose the set X ⇢ E
is prox-regular at the point x̄ 2 X , and has an identifiable manifold M there for the vector
ȳ 2 E. Then the following properties hold:

• Smooth reduction: The graphs of the normal cone mappings N
X

and NM coincide
around the point (x̄, ȳ).

• Sharpness: The normal cone N
X

(x̄) spans the normal space NM(x̄).
• Active set philosophy: For any small neighborhood V of x̄, if the vector y 2 E is

near ȳ, then the two optimization problems of maximizing the linear function hy, ·i
over the sets X \ V and M \ V are equivalent.

• Second-order conditions: The rate of quadratic growth

lim inf

x!x̄

hȳ, x̄� xi
|x̄� x|2
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is independent of whether the limit is taken over x 2 X or x 2 M.

Given the multiple flavors of this result, some commentary is useful. Perhaps most strik-
ing is the “active set” result, which reduces the original optimization problem over the poten-
tially nonsmooth and high-dimensional set X to the restricted optimization problem over the
smooth and potentially lower-dimensional subset M. Exactly this phenomenon drives the
elimination of inequality constraints inherent in classical active set methods for optimization
[61], and also the big reduction in dimension crucial to “sparse optimization” in contempo-
rary machine learning and compressed sensing applications. In a huge recent literature, a
particularly pertinent example is [80].

Underlying the active set assertion is the “smooth reduction” result that the mappings N
X

and NM graphically coincide, locally. Since M is a smooth manifold, its normal cone map-
ping is easy to understand through classical analysis. In particular, second-order properties
like the negative definite condition in Theorem 6.3 (Strong regularity and quadratic growth),
which may in general appear formidably abstract, now become purely classical [55]. For
example, the lim inf in the final second-order condition above, when computed over M,
simply involves a Hessian computation for the function hȳ, ·i restricted to the manifold M.

The “sharpness” property at the point x̄ is geometric in essence: we call the set X sharp
(or “V-shaped”) there around the manifold M. In [50], extending Wright’s notion of an
“identifiable surface” for active set methods in convex optimization [79], the set X is called
partly smooth at the point x̄ relative to the C(2) manifold M when this sharpness property
holds, the normal cone mapping N

X

is continuous at x̄ when restricted to M , and Clarke
regularity holds on M. This latter property concerns tangent directions z 2 E at any point
x 2 X (limits of directions to nearby points in X): it requires hy, zi  0 for all normals
y 2 N

X

(x).
Partial smoothness is closely related to identifiability. In general, consider a point x̄ in a

set X and a proximal normal ȳ 2 Np

X

(x̄). On the one hand, suppose that the critical point
x̄ is nondegenerate for ȳ, and partial smoothness holds relative to a C(2) manifold M. In
particular, X must then be Clarke regular at x̄. However, if we strengthen this assumption
slightly, from Clarke to prox-regularity, then M must be an identifiable manifold. On the
other hand, suppose conversely that M is an identifiable manifold. As we have seen, x̄ must
then be nondegenerate, and furthermore a local version of partial smoothness must hold [29].

The existence of an identifiable manifold, as Theorem 7.2 makes clear, is a powerful
property. Remarkably, according to the following result [32], for semi-algebraic optimiza-
tion this property holds generically.

Theorem 7.3 (Generic identifiability). Given any closed semi-algebraic set X ⇢ E, there
exists an integer K such that, for all vectors y 2 E outside some negligible semi-algebraic
subset of E, the following properties hold. The linear optimization problem

sup

X

hy, ·i.

has no more than K local maximizers. At each local maximizer x 2 X , the normal cone
mapping is strongly metrically regular for y; there exists an identifiable manifold M at
x for y, and the normal cone mappings N

X

and NM coincide around the point (x, y).
Furthermore, x is a nondegenerate critical point, and X is sharp around M there: in other
words, y lies in the interior of the normal cone N

X

(x) relative to its span, which is just the
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normal space NM(x). In addition, the following quadratic growth condition holds:

lim inf

x

0!x

x

02X

hy, x� x0i
|x� x0|2 > 0.

The key ingredients of the proof have appeared through our discussion. Generic strong
metric regularity follows from Theorem 6.2, and in that case, the inverse image of a small
neighborhood of y under the normal cone mapping N

X

(or in other words the set of nearby
approximately critical points) will generically comprise an identifiable manifold. The conse-
quences then flow from Theorems 6.3, 7.1, and 7.2. For convex sets X , this result appeared
in [5].

In this result, we can view the existence of an identifiable manifold in conjunction with
nondegeneracy and the quadratic growth condition as comprising the natural “second-order
su�cient conditions” for our optimization problem. Classically, the generic validity of such
conditions has a long history, dating back to [70]. Here we have taken a fresh, abstract
approach, assuming nothing about the structure of the problem beyond its concrete (semi-
algebraic) nature.

8. Optimization over stable polynomials

We have argued that ideas of identifiable manifolds and active set methods in optimization
merge seamlessly. Less standard, but an elegant computational illustration of the appearance
of an identifiable manifold, is a problem of Blondel [4]. The original question (with generous
prizes of Belgian chocolate) highlighted the di�culty of simultaneous plant stabilization in
continuous-time control.

The crucial idea of stability in dynamical systems and control theory involves stable and
strictly stable polynomials p(z) (for the complex variable z 2 C): polynomials with all
zeroes in the closed or open left half-planes respectively. Blondel’s problem seeks stable
polynomials p, q, r with real coe�cients and satisfying

r(z) = (z2 � 2�z + 1)p(z) + (z2 � 1)q(z),

for a real parameter � 2 [0.9, 1). If � = 1, then r(1) = 0, so no solution exists.
An optimization approach to this problem in [10], for any fixed parameter value �, varies

a cubic polynomial p and scalar q to minimize numerically a real variable ↵ under the con-
dition that the two polynomials z 7! p(z + ↵) and z 7! r(z + ↵) are both stable. The
numerical results in [10] strongly suggest that when � 2 [0.9, 0.96], the minimum value ↵̄ is
negative, as required for stability. If, furthermore, � is close to, and no larger than, the value
¯� =

1
2

p

2 +

p
2 ⇡ 0.924, then the optimal polynomials p̄ and r̄ are not only stable but have

a persistent structure: p̄ is strictly stable, and r̄ is a multiple of the polynomial z 7! (z� ↵̄)5.
This structure defines a manifold M in the space of variables (↵, p, q, r), which, once di-
vined numerically, leads to a solution to Blondel’s problem in closed form for such �. Not
surprisingly, M is the identifiable manifold for our optimization problem.

Underlying this striking appearance of an identifiable manifold is a remarkable property
of stable polynomials. To understand this property, we first identify monic polynomials p
of degree n with vectors p̃ in the space Cn (with the usual inner product), via the corre-
spondence p(z) = zn +

P

j<n

p̃
j

zj , and thereby consider them as constituting a Euclidean
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space. Within that space, we then consider the set of stable polynomials �

n

. The basic
variational geometry of this nonconvex set is challenging. Around any polynomial with a
multiple imaginary zero, �

n

is nonsmooth, and indeed, with a suitable interpretation, non-
lipschitz. Notice, for example, that monic polynomials p(z) near the polynomial zn have
zeroes whose dependence on the coe�cient vector p̃ is nonlipschitz.

On the other hand, despite these structural challenges, the set of monic stable polynomi-
als is certainly semi-algebraic. Theorem 7.3 (Generic identifiability) therefore implies the
generic existence of an identifiable manifold around solutions of linear optimization prob-
lems over stable polynomials. However, the following beautiful result of Burke and Overton
[13] holds not just generically, but always.

Theorem 8.1. The set of monic stable polynomials of degree n is Clarke regular everywhere.

The techniques of [13] (which treat regions more general than the left half-plane) show
more. For any monic stable polynomial p, the normal cone N�

n

(p) depends on the “pattern”
of imaginary zeroes of p (which we specify simply by listing the multiplicities of those
zeroes as we move down the imaginary axis). Using the language of partial smoothness
from Section 7, we arrive at the following result.

Theorem 8.2 (Partial smoothness of the stable polynomials). Around any polynomial in
the set of monic stable polynomials �

n

, the subset of polynomials with the same pattern of
imaginary zeroes constitute a manifold, with respect to which �

n

is partly smooth.

It is exactly this property that underlies the identifiable manifold in [10] for Blondel’s prob-
lem. The set of stable n-by-n matrices — those whose eigenvalues all lie in the left half plane
— enjoys parallel properties around any stable nonderogatory matrix (one whose eigenval-
ues all have geometric multiplicity one) [11, 12]. One explanation [51] is to note that the
characteristic polynomial map from the space of matrices to monic polynomials has surjec-
tive derivative at any nonderogatory matrix, enabling a standard calculus rule.

9. An eigenvalue optimization example

We can be confident of the generic existence of an identifiable manifold for a semi-algebraic
optimization problem, by Theorem 7.3 (Generic identifiability), under no assumptions what-
soever about the problem’s presentation. Optimization algorithms sometimes reveal clues
about the identifiable manifold as they proceed. For the polynomial stabilization exam-
ple in Section 8, numerical results from a simple general-purpose nonsmooth optimization
method point to the identifiable manifold, helped along by our understanding of the poten-
tial structure for such manifolds. The BFGS method that we discussed in Section 5 naturally
accumulates identifiable manifold information as it nears an optimal solution.

Suppose the BFGS method for minimizing a function f : Rn ! R converges to a local
minimizer x̄ 2 Rn at which there exists an identifiable manifold M. By this, we mean that
the set

��

x, f(x)
�

: x 2 M
 

is an identifiable manifold of the epigraph epi f , at the point
�

x̄, f(x̄)
�

, for the vector (0,�1). We deduce a dichotomy: on the one hand, the restriction of
f to the manifold M is smooth, and on the other hand, the sharpness condition in Theorem
7.2 (Identifiability, active sets, and partial smoothness) shows that the gradient rf jumps
as we move orthogonally across M. The inverse Hessian approximation H

k

should reflect
this dichotomy: a basis of eigenvectors spanning an approximation to the tangent space to



Nonsmooth optimization: conditioning, convergence and semi-algebraic models 887

M at x̄ corresponds to a well-scaled set of eigenvalues, whereas the eigenvectors spanning
the orthogonal complement correspond to eigenvalues converging to zero. In numerical
experiments on semi-algebraic Lipschitz functions, we indeed see exactly this behavior [53].

The following example from [1] is illuminating:

inf

n

q

Y

i=1

�
i

(A �X) : X 2 Sp

+, Xii

= 1 for all i
o

.

Here, Sp

+ denotes the cone of p-by-p positive semidefinite matrices, A 2 Sp is a given
data matrix, � denotes the componentwise (Hadamard) matrix product, and �

i

denotes the
ith largest eigenvalue (counted by multiplicity). It is not hard to frame this optimization
problem as the unconstrained minimization of a suitable function f , expressed in terms of
the nonsmooth nonconvex function

Q

q

i=1 �i

on the space Sp: see [53] for the modeling
details.

The results from multiple runs of the BFGS method on an example with p = 20 and q =

10 are typical for eigenvalue optimization [53]. Generic symmetric matrices have no multiple
eigenvalues, but optimal solutions of semidefinite programs (see [72]) and more general
eigenvalue optimization problems usually do, precisely due to their identifiable manifolds.
That is the case here: as observed in Section 5, the BFGS trial function values consistently
converge linearly, and at termination, the nine eigenvalues �6,�7,�8, . . . ,�14 of the matrix
A �X are coalescing.

Given a permutation-invariant function h : Rp ! R, that function of the vector �(Z) 2
Rp with components the eigenvalues of a matrix variable Z 2 Sp inherits many proper-
ties from h. One important example is convexity [48], a generalization of von Neumann’s
characterization of unitarily invariant matrix norms [75], but the list of such properties is
extensive [49]. In particular [21], given a matrix ¯Z 2 Sp, if h has an identifiable manifold
M at the point �( ¯Z), then at ¯Z the composite function h

�

�(·)
�

has an identifiable manifold
{Z 2 Sn

: �(Z) 2 M}.
The permutation-invariant function h : Rp ! R here is h(x) =

Q

q

i=1[x]i, where the
map x 7! [x] rearranges the components of the vector x 2 Rp into nonincreasing order. For
this function h we can easily check in the example that the set

�

x 2 R20
: [x]5 > [x]6 = [x]7 = · · · = [x]14 > [x]15

 

is an identifiable manifold. Hence
�

Z 2 S20
: �5(Z) > �6(Z) = �7(Z) = · · · = �14(Z) > �15(Z)

 

is an identifiable manifold for our objective function
Q10

i=1 �i

. Classical matrix analysis [46,
p. 141] shows that this manifold of symmetric matrices with an eigenvalue of multiplicity
nine has codimension 1

29(9 + 1)� 1 = 44.
Examining the BFGS output [53] and counting the number of eigenvalues of the inverse

Hessian approximations H
k

that converge to zero reveals the answer 44 — exactly the codi-
mension of the identifiable manifold at the optimal solution. To confirm, around the final
iterate we can plot the behavior of the objective function along the eigenvectors of H

k

. Sure
enough, along those eigenvectors corresponding to the vanishing eigenvalues, the objective
function is V-shaped; along other eigenvectors, it is smooth. To summarize, with no a priori
input about the underlying structure of the problem, and no a posteriori interpretation, the
BFGS method nonetheless accurately approximates the geometry of the identifiable mani-
fold.
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10. Identifiability and a prox-linear algorithm

We have argued that, independent of the presentation of an optimization problem, an identi-
fiable manifold is typically there to be found, and is a powerful tool once known. However,
the manner in which a particular algorithm profits from such knowledge will likely depend
on the explicit structure of the underlying problem. The classical example is the active
set methodology for optimization under inequality constraints, which considers equality-
constrained subproblems based on an estimate of the “active set” of constraints — those that
are tight at optimality. We end this survey with a discussion of a practical algorithm [54],
designed for large-scale applications in areas such as machine learning, and well-suited to
the application of identifiability.

Given two Euclidean spaces E and F and a closed set Y ⇢ F, we consider optimization
problems of the following form:

inf

x2E

�

f(x) : g(x) 2 Y
 

, (10.1)

where the functions f : E ! R and g : E ! F are C(2) smooth. Crucially, we suppose that
the set Y is, in some sense, simple. We define “simple” operationally: we assume that we
can solve relatively easily prox-linear subproblems of the form

inf

d2E

�

˜f(d) + µ|d|2 : g̃(d) 2 Y
 

, (10.2)

for a�ne functions ˜f : E ! R and g̃ : E ! F, and a prox parameter µ > 0. In the algorithm
we describe, ˜f and g̃ are the linear approximations to f and g at the current iterate x

k

:

˜f(d) = f(x
k

) +Df(x
k

)d and g̃(d) = g(x
k

) +Dg(x
k

)d.

Consider again the example of optimization under inequality constraints, when the set
Y is just a positive orthant. The corresponding prox-linear subproblem reduces to projec-
tion onto a polyhedron, a relatively easy problem computationally. Simpler still is the l1-
constrained least squares problem

inf

x2Rn

�

|Ax� b|2 : |x|1  ⌧
 

,

for given ⌧ > 0, used to find sparse approximate solutions to huge linear systems Ax = b in
popular procedures such as LASSO and LARS [15, 23, 34, 71]. Corresponding prox-linear
subproblems at the point x have the form

inf

d2Rn

�

2hAx� b, Adi+ µ|d|2 : |x+ d|1  ⌧
 

. (10.3)

This problem reduces to projection onto the l1-ball, for which very fast algorithms are avail-
able: simple O(n log n) methods appear in [33, 73], and [33] describes an approach in ex-
pected linear time. (The computational simplicity of the singly-constrained convex program
(10.3) is not surprising: its Lagrangian is separable in the components d

i

, so can be min-
imized in linear time.) The nuclear-norm-constrained least squares approach for low-rank
matrix equations is similar [14]. This time the corresponding subproblem is projection onto
the nuclear-norm-ball (consisting of matrices whose singular values sum to at most one),
which again is relatively easy: we simply replace the vector of singular values appearing in
the singular value decomposition by its projection onto the l1-ball.
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Returning to the general problem (10.1), we consider a local minimizer x̄ at which the
set Y is prox-regular and satisfies the following standard constraint qualification:

spanN
Y

�

g(x̄)
�

\ Null
�

Dg(x̄)⇤
�

= {0}. (10.4)

This condition implies that x̄ must satisfy the natural first-order optimality condition: there
exists a Lagrange multiplier y 2 F (in fact unique) such that

y 2 N
Y

�

g(x̄)
�

and Df(x̄) +Dg(x̄)⇤y = 0. (10.5)

Furthermore, for any point x 2 E near x̄, if the prox parameter µ is large enough, then the
prox-linear subproblem (10.2) has a unique small local minimizer d(x), and in fact d(x) =
O(|x� x̄|).

The basic structure of the algorithm we describe is standard in optimization. The prox
parameter µ controls the size of the trial step suggested by the prox-linear subproblem. When
µ is large enough, we can correct the trial step to generate a reasonable fraction of the
improvement predicted by linearization. If that proves impossible, we retrench, rejecting the
trial step and increasing µ.

To be more precise, suppose the current iterate is x 2 E, and the current value of the
prox parameter is µ > 0. We first calculate the trial step d = d(x), the appropriate local
minimizer for the prox-linear subproblem (10.2), so in particular

g(x) +Dg(x)d 2 Y (10.6)

holds. We then calculate the new iterate x+ 2 E by trying to correct the trial point x + d,
aiming at three conditions. First, the correction should be not too large relative to the step:

�

�x+ � (x+ d)
�

�  1

2

|d|.

Secondly, the new iterate should be feasible: g(x+
) 2 Y . Thirdly, the actual decrease in the

objective should be at least a reasonable fraction of that predicted by linearization:

f(x)� f(x+
)

f(x)� f(x+ d)
� 1

2

.

Assuming µ is su�ciently large, the constraint qualification (10.4) ensures that such a cor-
rection x+ exists. If we find it, we accept it as our new current iterate and proceed; if not, we
reject it, double µ, and try the whole process again. A standard argument shows a rudimen-
tary convergence result: any limit point of the sequence of iterates must satisfy the first-order
optimality condition.

The ideas behind this algorithm date back three decades [9, 37]. An implementable ver-
sion in general must overcome two hurdles. The first — that the prox-linear subproblem may
have several local minimizers — may arise, but only for nonconvex sets Y . The second con-
cerns the correction mechanism, which we leave unspecified. When the map g is linear, or in
particular just the identity, the algorithm is workable without correction. The algorithm we
have described for the special case inf

Y

f , for closed convex Y and smooth f (which covers
l1-constrained least squares, for example), is closely related to the successful SPARSA code
for compressed sensing [78]. Some kind of correction step is crucial when the map g is
nonlinear, no matter how large the prox parameter µ. In particular, the linearized constraint
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(10.6) does not guarantee the feasibility condition g(x+ d) 2 Y . Even when the trial step is
feasible, we may want to enhance it using second-order information, leading us back to the
idea of identifiability.

The basic prox-linear algorithm that we have described is versatile: it is often simple to
implement and applicable to large-scale problems. In general, however, its convergence is
slow. For example, consider unconstrained minimization of a strictly convex quadratic: in
this simple case, f(x) = hx,Axi for a positive-definite self-adjoint map A : E ! E , the
map g is just the identity, and the set Y is just E. The prox-linear algorithm then becomes
the method of steepest descent for f with a fixed step size, an algorithm that, as we observed
in the introduction, converges linearly but slowly when the map A is ill-conditioned. If
our algorithm can readily access second-order information, we might hope to accelerate
convergence.

So far we have supposed that the set Y is simple enough to render the prox-linear sub-
problems relatively easy. Now assume we know more, namely the structure of the set’s
identifiable manifolds. For example, the identifiable manifolds of the l1-ball in Rn are sim-
ply its interior along with the sets of vectors x with norm |x|1 = 1 and constant sign pattern
(sgnx

i

), where sgn � = �/|�|, or zero if � = 0.
This structural information about the set Y allows us to impose a second-order optimal-

ity condition of the kind guaranteed generically by Theorem 7.3 (Generic identifiability).
Specifically, consider any point x̄ 2 E satisfying feasibility (g(x̄) 2 Y ), the constraint qual-
ification (10.4), and the first-order optimality condition (10.5), and now suppose furthermore
that Y has an identifiable manifold M at the point g(x̄) for the normal vector y and that the
objective f grows quadratically on the manifold g�1

(M) around x̄. This latter condition is
classical, amounting to the requirement that the Hessian of the Lagrangian function f+hy, gi
at x̄ be positive definite on the tangent space to M at x̄.

From the second-order optimality condition we deduce powerful consequences. First,
around the critical point x̄, the objective f must in fact grow at least quadratically not just
on the identifiable manifold M but on the whole set Y . Secondly, initiated nearby, the prox-
linear algorithm must converge to x̄. Thirdly, the sequence of trial iterates g(x

k

)+Dg(x
k

)d
k

in Y generated by the prox-linear subproblems is asymptotically critical for the Lagrange
multiplier y, and hence eventually lies in M. The algorithm thus identifies M, in principle
allowing an eventual reduction of the original optimization problem to the classical equality-
constrained problem inf{f(x) : g(x) 2 M}, and thereby opening up the possibility of
second-order methods and accelerated convergence, as in [80] for the LASSO problem.

11. Afterthoughts and acknowledgements

Variational analysis and nonsmooth optimization deserve a wide audience. A flourishing
toolkit of elegant theory for several decades, the discipline’s more computational impact is
only now coming into focus. In its full generality (skirted here) the field can seem at first
formidably technical. However, as this essay has tried to emphasize, the core ideas — the
normal cone and metric regularity, for example — are intuitive and powerful in both the-
ory and algorithms. Semi-algebraic variational analysis makes for an illuminating concrete
testing ground for the theory. The reach of variational analysis in applications ranges from
its historical roots in optimal control and the calculus of variations, through more recent do-
mains such as eigenvalue optimization and robust control, and on to burgeoning areas like
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compressed sensing and machine learning. The field is thriving.
The material in this essay strongly reflects what I have tried to learn from the many

co-authors and mentors with whom I have been lucky enough to work. Among them, I
would especially like to mention Jon Borwein (who taught me variational analysis), Jim
Burke and Michael Overton (my enthusiastic companions watching theory made manifest
on a computer screen), Jim Renegar (an inspiring source of encouragement), Jérôme Bolte
and Aris Daniilidis (with whom I first explored the semi-algebraic world), and most recently
Dima Drusvyatskiy and Alex Io↵e. Thanks too to Asen Dontchev, Mike Todd, and Steve
Wright for their broad support, and their helpful suggestions on this manuscript.

The author is grateful to the Dipartimento di Ingegneria Informatica Automatica e Ges-
tionale at the Università di Roma La Sapienza for its hospitality during the writing of this
paper.
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