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1 Introduction

A principal goal of variational analysis is the search for generalized critical points of
nonsmooth functions f : Rn → R. For example, given a locally Lipschitz function
f , we might be interested in points x ∈ Rn having zero in the “Clarke generalized
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6 D. Drusvyatskiy, A. S. Lewis

gradient” (or “subdifferential”) ∂c f (x), a set consisting of convex combinations of
limits of gradients of f at points near x [14].

Adding a linear perturbation, we might seek critical points of the function x �→
f (x) − vT x for a given vector v ∈ Rm , or, phrased in terms of the graph of the
subdifferential mapping ∂c f , solutions to the inclusion

(x, v) ∈ gph ∂c f.

More generally, given a smooth function G : Rm → Rn , we might be interested in
solutions (x, y) ∈ Rm × Rn to the system

(G(x), y) ∈ gph ∂c f and ∇G(x)∗y = v (1)

(where ∗ denotes the adjoint). Such systems arise naturally when we seek critical
points of the composite function x �→ f (G(x)) − vT x .

Generalized critical points of smooth functions f are, of course, simply the critical
points in the classical sense. However, the more general theory is particularly interest-
ing to optimization specialists, because critical points of continuous convex functions
are just minimizers [34, Proposition 8.12], and more generally, for a broader class of
functions (for instance, those that are Clarke regular [14]), a point is critical exactly
when the directional derivative is non-negative in every direction.

The system (1) could, in principle, be uninformative if the graph gph ∂c f is large.
In particular, if the dimension (appropriately defined) of the graph is larger than n,
then we could not typically expect the system to be a very definitive tool, since it
involves m + n variables constrained by only m linear equations and the inclusion.
Such examples are not hard to construct: indeed, there exists a function f : R → R
with Lipschitz constant one and with the property that its Clarke subdifferential is the
interval [−1, 1] at every point [32]. Alarmingly, in a precise mathematical sense, this
property is actually typical for such functions [10].

Optimization theorists often consider subdifferentials that are smaller than Clarke’s,
the “limiting” subdifferential ∂ f being a popular choice [11,15,28,34]. However, the
Clarke subdifferential can be easier to approximate numerically (see [12]), and in
any case the potential difficulty posed by functions with large subdifferential graphs
persists with the limiting subdifferential [7].

Notwithstanding this pathology, concrete functions f : Rn → R encountered in
practice have subdifferentials ∂c f whose graphs are, in some sense, small and this
property can be useful, practically. For instance, Robinson [31] considers algorithmic
aspects of functions whose subdifferential graphs are everywhere locally Lipschitz
homeomorphic to an open subset of Rn . As above, dimensional considerations sug-
gest reassuringly that this property should help the definitive power of critical point
systems like (1), and Robinson furthermore argues that it carries powerful computa-
tional promise. An example of the applicability of Robinson’s techniques is provided
by Minty’s theorem, which states that the graph of the subdifferential of a proper,
lower semicontinuous, convex function f : Rn → R is Lipschitz homeomorphic to
Rn [27].
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Semi-algebraic functions have small subdifferentials 7

When can we be confident that a function has a subdifferential graph that is, by some
definition, small? The study of classes of functions that are favorable for subdifferential
analysis, in particular excluding the pathological examples above, is well-developed.
The usual starting point is a unification of smooth and convex analysis, arriving at
such properties as amenability [34, Chapter 10.F.], prox-regularity [30], and cone-
reducibility [6, Section 3.4.4]. Using Minty’s theorem, Poliquin and Rockafellar [30]
showed that prox-regular functions, in particular, have small subdifferentials in the
sense of Robinson. Aiming precisely at a class of functions with small subdifferen-
tials (in fact minimal in the class of upper semicontinuous mappings with nonempty
compact convex images), [8] considers “essential strict differentiability”.

In this work we take a different, very concrete approach. We focus on the dimen-
sion of the subdifferential graph, unlike the abstract minimality results of [8], but
we consider the class of semi-algebraic functions—those functions whose graphs are
semi-algebraic, meaning composed of finitely-many sets, each defined by finitely-
many polynomial inequalities—and prove that such functions have small subdiffer-
entials in the sense of dimension: the Clarke subdifferential has n-dimensional graph.
This result subsumes neither the simple case of a smooth function, nor the case of a
convex function, neither of which is necessarily semi-algebraic. Nonetheless, it has
a certain appeal: semi-algebraic functions are common, they serve as an excellent
model for “concrete” functions in variational analysis [22], and in marked contrast
with many other classes of favorable functions, such as amenable functions, they may
not even be Clarke regular. Furthermore, semi-algebraic functions are easy to recog-
nize (as a consequence of the Tarski–Seidenberg theorem on preservation of semi-
algebraicity under projection). For instance, observe that the spectral radius function
on n × n matrices is neither Lipschitz nor convex, but it is easy to see that it is
semi-algebraic.

To illustrate our results, consider the critical points of the function x �→ f (x)−vT x
for a semi-algebraic function f : Rn → [−∞,+∞]. As a consequence of the subd-
ifferential graph being small, we show that for a generic choice of the vector v, the
number of critical points is finite. More precisely, there exists a number N , and a
semi-algebraic set S ⊂ Rn of dimension strictly less than n, such that for all vectors v

outside S, there exist at most N critical points. A result of a similar flavor can be found
in [23], where criticality of so called “constraint systems” is considered. Specifically,
[23] shows that if a semi-algebraic constrained minimization problem is “normal”,
then it has only finitely many critical points. Furthermore, it is shown that normality is
a generic property. To contrast their approach to ours, we should note that [23] focuses
on perturbations to the constraint structure, whereas we address linear perturbations
to the function itself.

To be concrete, we state our results for semi-algebraic functions. Analogous results,
with essentially identical proofs, hold for functions definable in an “o-minimal struc-
ture” and, more generally, for “tame” functions. (In the case of tame functions, “finite-
ness” of critical points should be replaced by “local isolation” in Proposition 4.3 and
Corollaries 4.4, 5.8, 5.9.) In particular, our results hold for globally subanalytic func-
tions, discussed in [36]. For a quick introduction to these concepts in an optimization
context, see [22].
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8 D. Drusvyatskiy, A. S. Lewis

2 Preliminaries

2.1 Variational analysis

In this section, we summarize some of the fundamental tools used in variational
analysis and nonsmooth optimization. We refer the reader to the monographs of
Rockafellar–Wets [34], Borwein–Zhu [11], Mordukhovich [28,29], and Clarke–
Ledyaev–Stern–Wolenski [15], for more details. Unless otherwise stated, we follow
the terminology and notation of [34].

Consider the extended real line R := R ∪{−∞}∪{+∞}. We say that an extended-
real-valued function is proper if it is never {−∞} and is not always {+∞}.

For a function f : Rn → R, we define the domain of f to be

dom f := {x ∈ Rn : f (x) < +∞},

and we define the epigraph of f to be

epi f := {(x, r) ∈ Rn × R : r ≥ f (x)}.

A set-valued mapping F from Rn to Rm , denoted by F : Rn ⇒ Rm , is a mapping
from Rn to the power set of Rm . Thus for each point x ∈ Rn, F(x) is a subset of Rm .
For a set-valued mapping F : Rn ⇒ Rm , we define the domain of F to be

dom F := {x ∈ Rn : F(x) �= ∅},

and we define the graph of F to be

gph F := {(x, y) ∈ Rn × Rm : y ∈ F(x)}.

Definition 2.1 Consider a set-valued mapping F : Rn ⇒ Rm .

(1) F is outer semicontinuous at a point x̄ ∈ Rn if for any sequence of points xr ∈ Rn

converging to x̄ and any sequence of points yr ∈ F(xr ) converging to ȳ, we must
have ȳ ∈ F(x̄).

(2) F is inner semicontinuous at x̄ if for any sequence of points xr ∈ Rn converging
to x̄ and any point ȳ ∈ F(x̄), there exists a sequence yr ∈ Rm converging to ȳ
such that yr ∈ F(xr ) for all r .

If both properties hold, then we say that F is continuous at x̄ .

Definition 2.2 Consider a set S ⊂ Rn and a point x̄ ∈ S. The regular normal cone to
S at x̄ , denoted N̂S(x̄), consists of all vectors v ∈ Rn such that

〈v, x − x̄〉 ≤ o(|x − x̄ |) for x ∈ S,
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Semi-algebraic functions have small subdifferentials 9

where we denote by o(|x − x̄ |) for x ∈ S a term with the property that

o(|x − x̄ |)
|x − x̄ | → 0

when x
S→ x̄ with x �= x̄ .

Given a closed set S, the mapping x �→ N̂S(x) does not necessarily have a closed
graph. To correct for that, the following definition is introduced.

Definition 2.3 Consider a set S ⊂ Rn and a point x̄ ∈ S. The limiting normal cone

to S at x̄ , denoted NS(x̄), consists of all v ∈ Rn such that there are sequences xr
S→ x̄

and vr → v with vr ∈ N̂S(xr ).

For a set S ⊂ Rn , we denote its topological closure by cl S and its convex hull by
conv S.

Definition 2.4 Consider a set S ⊂ Rn and a point x̄ ∈ S. The Clarke normal cone to
S at x̄ , denoted N c

S(x̄), is defined by

N c
S(x̄) = cl conv NS(x̄).

We summarize some simple facts about normal cones that we will need.

Theorem 2.5 Consider a set S ⊂ Rn and a point x̄ ∈ S.

(1) N̂S(x̄) ⊂ NS(x̄) ⊂ N c
S(x̄).

(2) NS(x̄), N̂S(x̄), and N c
S(x̄) are closed cones. N̂S(x̄) and N c

S(x̄) are, in addition,
convex.

(3) For a set F ⊂ Rn containing x̄ such that S ⊂ F, we have N̂F (x̄) ⊂ N̂S(x̄).

Definition 2.6 (Clarke regularity of sets) A set S ⊂ Rn is said to be Clarke regular
at a point x̄ ∈ S if it is locally closed at x̄ and every limiting normal vector to S at x̄
is a regular normal vector, that is NS(x̄) = N̂S(x̄).

Given any set S ⊂ Rn and a mapping f : S → ˜S, where ˜S ⊂ Rm , we say that f
is smooth if for each point x̄ ∈ S, there is a neighbourhood U of x̄ and a C1 mapping
f̂ : Rn → Rm that agrees with f on S ∩ U . If a smooth function f is bijective and its
inverse is also smooth, then we say that f is a diffeomorphism.

What we call smooth is usually referred to as C1 smooth. Since in this work we
will not need higher order of smoothness, no ambiguity should arise.

Definition 2.7 ([25, Proposition 8.12]) Consider a set M ⊂ Rn . We say that M is
a manifold (or “embedded submanifold”) of dimension r if for each point x̄ ∈ M ,
there is an open neighbourhood U around x̄ such that M ∩ U = F−1(0), where
F : U → Rn−r is a smooth map with ∇F(x̄) of full rank. In this case, we call F a
local defining function for M around x̄ .

Theorem 2.8 ([34, Example 6.8]) If M is a manifold, then for every point x̄ ∈ M, the
manifold M is Clarke regular at x̄ and NM (x̄) is equal to the normal space to M at
x̄ , in the sense of differential geometry.
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10 D. Drusvyatskiy, A. S. Lewis

Normal cones allow us to study geometric objects. We now define subdifferentials,
which allow us to analyze behaviour of functions.

Definition 2.9 Consider a function f : Rn → R and a point x̄ ∈ Rn where f is finite.
The regular, limiting, and Clarke subdifferentials of f at x̄ , respectively, are defined
by

∂̂ f (x̄) = {v ∈ Rn : (v,−1) ∈ N̂epi f (x̄, f (x̄))},
∂ f (x̄) = {v ∈ Rn : (v,−1) ∈ Nepi f (x̄, f (x̄))},

∂c f (x̄) = {v ∈ Rn : (v,−1) ∈ N c
epi f (x̄, f (x̄))}.

For x such that f (x) is not finite, we follow the convention that ∂̂ f (x) = ∂ f (x) =
∂c f (x) = ∅.

Definition 2.10 (Subdifferential regularity) A function f : Rn → R is called subdif-
ferentially regular at x̄ if f (x̄) is finite and epi f is Clarke regular at (x̄, f (x̄)) as a
subset of Rn × R.

Theorem 2.11 ([34, Exercise 8.8, Corollary 10.9]) Consider the function h = f + g,
where f : Rn → R is finite at x̄ and g : Rn → R is smooth on a neighbourhood of x̄ .
Then we have

∂̂h(x̄) = ∂̂ f (x̄) + ∇g(x̄), ∂h(x̄) = ∂ f (x̄) + ∇g(x̄).

Furthermore, h is subdifferentially regular at x̄ if and only if f is subdifferentially
regular at x̄ .

For a set S ⊂ Rn , we define δS : Rn → R to be a function that is 0 on S and +∞
elsewhere. We call δS the indicator function of the set S.

Theorem 2.12 ([34, Exercise 8.14]) Consider the indicator function δS of a set S ⊂
Rn. Then we have

∂δS(x̄) = NS(x̄), ∂̂δS(x̄) = N̂S(x̄).

Furthermore, δS is subdifferentially regular at x̄ if and only if S is Clarke regular at
x̄ .

2.2 Semi-algebraic geometry

A semi-algebraic set S ⊂ Rn is a finite union of sets of the form

{x ∈ Rn : P1(x) = 0, . . . , Pk = 0, Q1(x) < 0, . . . , Ql(x) < 0},

where P1, . . . , Pk, Q1, . . . , Ql are polynomials in n variables. In other words, S is a
union of finitely many sets, each defined by finitely many polynomial equalities and
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Semi-algebraic functions have small subdifferentials 11

inequalities. A map F : Rn ⇒ Rm is semi-algebraic if gph F ⊂ Rn+m is a semi-
algebraic set. Semi-algebraic sets enjoy many nice structural properties. We discuss
some of these properties in this section. See the monographs of Basu-Pollack-Roy [1],
Lou van den Dries [37], and Shiota [36]. For a quick survey, see the article of van
den Dries-Miller [38] and the surveys of Coste [16,17]. Unless otherwise stated, we
follow the notation of [38] and [17].

A fundamental fact about semi-algebraic sets is provided by the Tarski–Seidenberg
Theorem [17, Theorem 2.3]. It states that the image of any semi-algebraic set S ⊂ Rn ,
under a projection to any linear subspace of Rn , is a semi-algebraic set. From this result,
it follows that a great many constructions preserve semi-algebraicity. In particular, for
a semi-algebraic function f : Rn → R, it is easy to see that the set-valued mappings
∂̂ f, ∂ f , and ∂c f are semi-algebraic. See for example [22, Proposition 3.1].

The most striking and useful fact about semi-algebraic sets is that they can be
partitioned into finitely many semi-algebraic manifolds that fit together in a regular
pattern. The particular stratification that we are interested in is defined below.

Definition 2.13 Consider a semi-algebraic set Q in Rn . A Whitney stratification of
Q is a finite partition of Q into semi-algebraic manifolds Mi (called strata) with the
following properties:

(1) For distinct i and j , if Mi ∩ cl M j �= ∅, then Mi ⊂ cl M j \ M j .
(2) For any sequence of points (xk) in a stratum M j converging to a point x in a

stratum Mi , if the corresponding normal vectors yk ∈ NM j (xk) converge to a
vector y, then y ∈ NMi (x).

Observe that property 1 of Definition 2.13 gives us topological information on how
the strata fit together, while property 2 gives us control over how sharply the strata fit
together. Property 1 is called the frontier condition and property 2 is called Whitney
condition (a). We should note that Whitney stratification, as defined above, is normally
referred to as C1-Whitney stratification. Furthermore, Whitney condition (a) is usually
stated somewhat differently. The equivalence is noted in [21]. One simple example of
this type of a stratification to keep in mind throughout the discussion is the partition
of a polytope into its open faces.

Definition 2.14 Given finite collections {Bi } and {C j } of subsets of Rn , we say that
{Bi } is compatible with {C j } if for all Bi and C j , either Bi ∩ C j = ∅ or Bi ⊂ C j .

As discussed above, the following theorem is true.

Theorem 2.15 ([38, Theorem 4.8]) Let Q, C1, . . . , Cl be semi-algebraic sets in Rn.
Then Q admits a Whitney stratification that is compatible with C1, . . . , Cl .

The notion of a stratification being compatible with some predefined sets might not
look natural; in fact, it is crucial since this property enables us to construct refinements
of stratifications.

We will have occasion to use the following result.

Theorem 2.16 ([38, Theorem 4.8]) Consider a semi-algebraic set S in Rn and a semi-
algebraic map f : S → Rm. Let A be a finite collection of semi-algebraic subsets of S
and B a finite collection of semi-algebraic subsets of Rm. Then there exists a Whitney
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12 D. Drusvyatskiy, A. S. Lewis

stratification A′ of S that is compatible with A and a Whitney stratification B′ of Rm

compatible with B such that for every stratum Q ∈ A′, we have that the restriction
f |Q is smooth and f (Q) ∈ B′.

In particular, it follows that semi-algebraic maps are “generically” (in a sense about
to be made clear) smooth.

Definition 2.17 Let A ⊂ Rn be a nonempty semi-algebraic set. Then we define the
dimension of A, dim A, to be the maximal dimension of a stratum in any Whitney
stratification of A. We adopt the convention that dim ∅ = −∞.

It can be easily shown that the dimension does not depend on the particular strati-
fication. See [37, Chapter 4] for more details.

Theorem 2.18 Let A and B be nonempty semi-algebraic sets in Rn. Then the following
hold.

(1) If A ⊂ B, then dim A ≤ dim B.
(2) dim A = dim cl A.
(3) dim(cl A \ A) < dim A.
(4) If f : A → Rn is a semi-algebraic mapping, then dim f (A) ≤ dim A. If f is one-

to-one, then dim f (A) = dim A. In particular, semi-algebraic homeomorphisms
preserve dimension.

(5) dim A ∪ B = max{dim A, dim B}.
(6) dim A × B = dim A + dim B.

We will need the following simple proposition.

Proposition 2.19 Consider a Whitney stratification {Mi } of a semi-algebraic set Q ⊂
Rn. Let M j be a stratum of maximal dimension. Then for any point x̄ ∈ M j , there
exists a neighbourhood B ⊂ Rn around x̄ so that

B ∩ Q = B ∩ M j .

Proof Assume otherwise. Then there is a sequence xr ∈ Q converging to x̄ with
xr /∈ M j . Since there are finitely many strata, we can assume that the whole sequence
is contained in some stratum M . It follows that x̄ lies in the closure of M . By the frontier
condition of the Whitney stratification, it must be that dim M j < dim M , which is a
contradiction since the stratum M j was chosen to have maximal dimension. ��

A set U ⊂ Rn is said to be “generic”, if it is large in some precise mathematical
sense, depending on context. Two popular choices are that of U being a full-measure
set, meaning its complement has Lebesgue measure zero, and that of U being topo-
logically generic, meaning it contains a countable intersection of dense open sets. In
general, these notions are very different. However for semi-algebraic sets, the situation
simplifies drastically. Indeed, if U ⊂ Rn is a semi-algebraic set, then the following
are equivalent.

• U is full-measure.
• U is topologically generic.
• The dimension of U c is strictly smaller than n.
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Semi-algebraic functions have small subdifferentials 13

We will say that a certain property holds for a generic vector v ∈ Rn if the set of
vectors for which this property holds is generic in the sense just described. Generic
properties of semi-algebraic optimization problems will be discussed in Sect. 4.

Definition 2.20 Let A ⊂ Rm be a semi-algebraic set. A continuous semi-algebraic
mapping p : A → Rn is semi-algebraically trivial over a semi-algebraic set C ⊂ Rn

if there is a semi-algebraic set F and a semi-algebraic homeomorphism h : p−1(C) →
C×F such that p|p−1(C) = proj◦h, or in other words the following diagram commutes:

We call h a semi-algebraic trivialization of p over C .

Henceforth, we use the symbol ∼= to indicate that two semi-algebraic sets are semi-
algebraically homeomorphic.

Remark 2.21 If p is trivial over some semi-algebraic set C , then we can decompose
p|p−1(C) into a homeomorphism followed by a simple projection. Also, since the
homeomorphism h in the definition is surjective and p|p−1(C) = proj ◦ h, it follows
that h(p−1(c)) = {c} × F for any c ∈ C . Thus for any point c ∈ C , we have
p−1(c) ∼= F and p−1(C) ∼= C × p−1(c).

The following is a simple example of semi-algebraic triviality.

Example 2.22 We follow the notation of Definition 2.20. Consider the semi-algebraic
function p : R → R defined by p(x) = x2. Now consider the semi-algebraic mapping

h : R\{0} → R++ × {±1}, x �→ (x2, sgn x).

It is easy to check that h is a semi-algebraic homeomorphism, and furthermore we
have p = proj ◦ h when restricted to R \ {0}. Thus h is a semi-algebraic trivialization
of p over R++.

Definition 2.23 In the notation of Definition 2.20, a trivialization h is compatible
with a semi-algebraic set B ⊂ A if there is a semi-algebraic set H ⊂ F such that
h(B ∩ p−1(C)) = C × H .

If h is a trivialization over C then, certainly, for any set B ⊂ A we know h restricts
to a homeomorphism from B∩ p−1(C) to h(B∩ p−1(C)). The content of the definition
above is that if p is compatible with B, then h restricts to a homeomorphism between
B ∩ p−1(C) and C × H for some semi-algebraic set H ⊂ F . Here is a simple example.

Example 2.24 Let the semi-algebraic functions p and h be as defined in Example 2.22.
Now notice that h(R++ ∩ p−1(R++)) = R++ × {+1}. Thus h is compatible with
R++.
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14 D. Drusvyatskiy, A. S. Lewis

The following result will be used extensively in the rest of this work. See [37,
Chapter 9, Theorem 1.2] for more details.

Theorem 2.25 (Hardt triviality) Let A ⊂ Rn be a semi-algebraic set and p : A →
Rm, a continuous semi-algebraic mapping. There is a finite partition of the image
p(A) into semi-algebraic sets C1, . . . , Ck such that p is semi-algebraically trivial
over each Ci . Moreover, if Q1, . . . , Ql are semi-algebraic subsets of A, we can require
each trivialization hi : p−1(Ci ) → Ci × Fi to be compatible with all Q j .

Example 2.26 Consider the following elaboration on Example 2.22. Let the semi-
algebraic functions p and h be defined as in Example 2.22. We saw that h is a semi-
algebraic trivialization of p over R++. Let f : {0} → {0} × {0} be the zero map.
Observe f is a semi-algebraic trivialization of p over {0}. Thus {R++, {0}} is a partition
of p(R) guaranteed to exist by Theorem 2.25.

Given a continuous semi-algebraic function p, Theorem 2.25 states that we can
partition the image of p into semi-algebraic sets C1, . . . , Ck , so that for each index
i = 1, . . . , k, the restricted mapping p|p−1(Ci )

has a very simple form. By applying
Theorem 2.25 to various naturally occurring mappings, many interesting results can be
obtained. See [37, Chapter 9] for more details. In particular, by applying this theorem
to the projection map we can break up semi-algebraic sets into simple building blocks
that have product structure and analyze each one separately. This type of reasoning
leads to the following corollary.

Corollary 2.27 Let F : Rn ⇒ Rm be a semi-algebraic set-valued mapping. Then
there exists a partition of the domain of F into semi-algebraic sets X1, X2, . . . , Xk

with the following properties:

(1) For each index i = 1, 2, . . . k, there exists a semi-algebraic set Yi ⊂ Rm and a
semi-algebraic homeomorphism θi : gph F |Xi → Xi × Yi satisfying

θi ({x} × F(x)) = {x} × Yi for all x ∈ Xi .

Consequently, for all x ∈ Xi , we have F(x) ∼= Yi and

gph F |Xi
∼= Xi × F(x).

(2) If in addition, ˜F : Rn ⇒ Rm is another semi-algebraic set-valued mapping with
˜F(x) ⊂ F(x), then we may also require that for each index i = 1, 2, . . . , k,
there exists a semi-algebraic set ˜Yi ⊂ Yi , such that θi (gph ˜F |Xi ) = Xi × ˜Yi .
Consequently, for all x ∈ Xi , we have ˜F(x) ∼= ˜Yi and

gph ˜F |Xi
∼= Xi × ˜F(x).

Proof Assume that we are given semi-algebraic set-valued maps F and ˜F such that
˜F(x) ⊂ F(x) for all x ∈ Rn . If ˜F was not given, proceed with the proof with ˜F(x) = ∅
for all x ∈ Rn . Consider gph F ⊂ Rn × Rm . Let p : gph F → Rn be the projection
onto the first n coordinates. By applying Theorem 2.25 to p, we get a partition of the
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Semi-algebraic functions have small subdifferentials 15

domain of F into semi-algebraic sets X1, X2, . . . , Xk such that p is semi-algebraically
trivial over each Xi and each trivialization is compatible with gph ˜F . Thus there exist
semi-algebraic sets Y1, Y2, . . . , Yk ⊂ Rm and ˜Y1, ˜Y2, . . . , ˜Yk ⊂ Rm with ˜Yi ⊂ Yi , such
that for each i , there is a semi-algebraic homeomorphism θi : p−1(Xi ) → Xi × Yi ,
where we have

θi (gph ˜F ∩ p−1(Xi )) = Xi × ˜Yi ,

projXi
◦ θi = p|p−1(Xi )

. (2)

Observe that p−1(Xi ) = gph F |Xi and since gph ˜F is contained in gph F , it follows
that gph ˜F ∩ p−1(Xi ) = gph ˜F |Xi . Thus to summarize, we have

gph F |Xi
∼= Xi × Yi , (3)

gph ˜F |Xi
∼= Xi × ˜Yi .

Finally, from (2) and (3), it follows that for all points x ∈ Xi , we have

θi ({x} × F(x)) = {x} × Yi ,

completing the proof. ��
The following proposition appears in [2,3]; as observed there, this result is an easy

and important consequence of Theorem 2.25, and even though we will not have occa-
sion to use it in this work, we include it and its proof below as an elegant illustration.

Proposition 2.28 Let F : Rn ⇒ Rm be a semi-algebraic set-valued mapping. Then
there exists a finite partition of the domain of F into semi-algebraic sets X1, . . . , Xk,
such that for each index i = 1, . . . , k, the restricted mapping F |Xi is inner semicon-
tinuous. If in addition, the mapping F is compact-valued, then we can also require
the restricted mapping F |Xi to be outer semicontinuous for each index i = 1, . . . , k.
(In fact, the partition guaranteed to exist by Corollary 2.27 is one such partition.)

Proof Applying Corollary 2.27 to the mapping F , we get a finite partition of the
domain of F into semi-algebraic sets X1, . . . , Xk , so that, in particular, property 1
of the corollary holds. To see the inner semicontinuity of the restricted map F |Xi ,
consider any point (x̄, ȳ) ∈ gph F |Xi , and any sequence of points xr → x̄ in the set
Xi . We want to construct a sequence of points yr ∈ F(xr ) converging to ȳ. Notice
that θi (x̄, ȳ) = (x̄, ŷ) for some point ŷ ∈ Yi . Since (xr , ŷ) → (x̄, ŷ), we deduce
θ−1

i (xr , ŷ) → θ−1
i (x̄, ŷ) = (x̄, ȳ). But for each index r , we know θ−1

i (xr , ŷ) =
(xr , yr ) for some point yr ∈ F(xr ), so the result follows.

Assume now that F is compact-valued. Consider any point x̄ ∈ Xi and any sequence
of points (xr , yr ) → (x̄, ȳ), where ȳ is some point in Rm and yr ∈ F(xr ) for each
r . We want to argue that ȳ is in F(x̄). Consider the sequence (x̄, projYi

(θi (xr , yr ))).
Observe that this sequence is contained in {x̄} × Yi , which is a compact set since
it is homeomorphic to F(x̄). Thus, without loss of generality, we can assume that
(x̄, projYi

(θi (xr , yr ))) converges to (x̄, ŷ) for some point ŷ ∈ Yi . So we have

(xr , yr ) = θ−1
i (xr , projYi

(θi (xr , yr ))) → θ−1
i (x̄, ŷ) ∈ {x̄} × F(x̄).
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16 D. Drusvyatskiy, A. S. Lewis

By the uniqueness of the limit, we must have ȳ ∈ F(x̄). ��
As a consequence of Proposition 2.28, it follows that any semi-algebraic set-valued

mapping F : Rn → Rm is generically inner semicontinuous. If, in addition, F is
compact-valued, then F is generically continuous. In fact, we can do better. If we
require the mapping F just to be closed-valued, then we can still partition its domain
into semi-algebraic sets X1, . . . , Xk , such that for each index i = 1, . . . , k, the
restricted mapping F |Xi is continuous. To see this, we need the following theorem
that appears in [34, Theorem 5.55], and is attributed to [13,24,35]. Recall that given
a topological space X , a subset A of X is meager if it is a union of countably many
nowhere dense subsets of X.

Theorem 2.29 (Kuratowski) Consider a set X ⊂ Rn and a closed-valued set-valued
mapping F : X ⇒ Rm. Assume that F is either outer semicontinuous or inner semi-
continuous relative to X. Then the set of points where F fails to be continuous relative
to X is meager in X.

It is easy to see that if a semi-algebraic set S is meager in another semi-algebraic set
X , then the dimension of S is strictly less than the dimension of X (see [4] for more
details).

Proposition 2.30 Let F : Rn ⇒ Rm be a semi-algebraic closed-valued set-valued
mapping. Then there exists a finite partition of the domain of F into semi-algebraic
sets X1, . . . , Xk, such that for each index i = 1, . . . , k, the restricted mapping F |Xi

is continuous.

Proof Applying Proposition 2.28 to the mapping F , we get a partition of the domain
of F into semi-algebraic sets X1, . . . , Xk , so that the restricted map F |Xi is inner
semicontinuous. Fix some set Xi . Let S0 := Xi and let S1 ⊂ Xi be the set of points at
which F |S0 fails to be continuous. By Theorem 2.29, it follows that dim S1 < dim S0.
Now by applying this argument inductively, we can create a sequence of semi-algebraic
sets S0 ⊃ · · · ⊃ Sk , for some integer k, such that the collection {S j \ S j+1}k−1

j=0 is a
partition of Xi and F is continuous when restricted to each S j \ S j+1. By applying
this argument to all the sets Xi , for i = 1, . . . , k, we get the result. ��
Remark 2.31 In fact, it is shown in Daniilidis–Pang [18] that closed-valued semi-
algebraic maps are generically strictly continuous (see [34] for the definition). Their
proof of this rather stronger result requires more sophisticated tools.

Finally, we have the following result:

Theorem 2.32 ([38, Theorem 4.4]) Let A be a semi-algebraic subset of Rn × Rm.
There is an integer β such that for every point x ∈ Rn, the number of connected
components of the set Ax = {y ∈ Rm : (x, y) ∈ A} is no greater than β.

The following is a simple special case of Theorem 2.32. We record it here for
convenience.

Remark 2.33 Let F : Rn ⇒ Rm be a semi-algebraic mapping. Applying Theo-
rem 2.32 to gph F ⊂ Rn × Rn , we deduce that there is an integer β such that for
every x ∈ Rn , the number of connected components of F(x) is no greater than β.
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Semi-algebraic functions have small subdifferentials 17

3 Main results

Definition 3.1 Consider a Whitney stratification A of a semi-algebraic set Q ⊂ Rn .
We define the normal bundle NA associated with the stratification A to be the union
of the normal bundles of each stratum, that is

NA =
⋃

M∈A
gph NM =

⋃

M∈A
{(x, y) ∈ Rn × Rn : x ∈ M, y ∈ NM (x)}.

In the definition above, since there are finitely many strata and for each stratum
M ∈ A, the semi-algebraic set gph NM is n-dimensional, we deduce that the normal
bundle NA is a semi-algebraic set of dimension n.

Proposition 3.2 Consider a semi-algebraic set Q ⊂ Rn and suppose it admits a
Whitney stratification A = {Mi }. Then for any stratum Mi and any point x̄ ∈ Mi , the
Clarke normal cone, N c

Q(x̄), is contained in the normal space, NMi (x̄). Consequently,
the inclusion gph N c

Q ⊂ NA holds and so the graph of the Clarke normal cone has
dimension no greater than n.

Proof Observe that for any stratum M j , we have the inclusion M j ⊂ Q. Hence for
any point x ∈ M j , the inclusion

N̂Q(x) ⊂ N̂M j (x) = NM j (x) (4)

holds. Now fix some stratum Mi and a point x̄ ∈ Mi . We claim that the limiting normal
cone NQ(x̄) is contained in NMi (x̄). To see this, consider a vector v ∈ NQ(x̄). By
definition of the limiting normal cone, there exist sequences (xr ) and (vr ) such that

xr
Q→ x̄ and vr → v with vr ∈ N̂Q(xr ). Since there are finitely many strata, we can

assume that there is some stratum M j such that the entire sequence (xr ) is contained
in M j . From (4), we deduce N̂Q(xr ) ⊂ NM j (xr ), and hence vr ∈ NM j (xr ). Therefore
by Whitney condition (a), we have v ∈ NMi (x̄). Since v was arbitrarily chosen from
NQ(x̄), we deduce NQ(x̄) ⊂ NMi (x̄) and thus N c

Q(x̄) = cl conv NQ(x̄) ⊂ NMi (x̄),
as we needed to show. ��

Shortly, we will generalize this result to the graph of the Clarke subdifferential. We
need the following simple result. We provide a proof for completeness.

Proposition 3.3 Let A ⊂ Rn be a semi-algebraic set and p : A → Rm, a continuous
semi-algebraic mapping. Let D be the image set of the mapping p. Then we have the
inequality,

dim D + min
x∈D

dim p−1(x) ≤ dim A ≤ dim D + max
x∈D

dim p−1(x).

In particular, if there exists an integer k such that the set p−1(x) is k-dimensional for
every point x ∈ D, then the equality,

dim A = dim D + k,

holds.
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18 D. Drusvyatskiy, A. S. Lewis

Proof Applying Theorem 2.25 to the mapping p, we obtain a finite partition of the
set D into semi-algebraic sets {Ci } such that p−1(Ci ) ∼= Ci × p−1(c), for any c ∈ Ci .
Let Ci be a partitioning set satisfying dim A = dim p−1(Ci ), and let c be any point
in Ci . Then we have

dim A = dim p−1(Ci ) = dim Ci + dim p−1(c) ≤ dim D + max
x∈D

dim p−1(x).

Let C j be a partitioning set satisfying dim D = dim C j , and let c be any point in C j .
Then we obtain

dim A ≥ dim p−1(C j ) = dim C j + dim p−1(c) ≥ dim D + min
x∈D

dim p−1(x),

as we needed to show. ��
We record the following simple and intuitive corollary for reference.

Corollary 3.4 Let F : Rn ⇒ Rm be a semi-algebraic set-valued mapping and let
D := dom F. Then we have the inequality,

dim D + min
x∈D

dim F(x) ≤ dim gph F ≤ dim D + max
x∈D

dim F(x).

In particular, if there exists an integer k such that the set F(x) is k-dimensional for
every point x ∈ D, then the equality,

dim gph F = dim D + k,

holds.

Proof This is an easy consequence of Corollary 2.27. ��
Theorem 3.5 Let f : Rn → R be a semi-algebraic function. Then the graph of the
Clarke subdifferential, gph ∂c f , has dimension no greater than n.

Proof Let F := epi f and

A := {(x, r, y) ∈ Rn × R × Rn+1 : ((x, r), y) ∈ gph N c
F , r = f (x), yn+1 < 0}.

Using Proposition 3.2, we see

dim A ≤ dim gph N c
F ≤ n + 1. (5)

Consider the continuous semi-algebraic map

φ : A → Rn × Rn

(x, f (x), y) �→
(

x, π
( y

|yn+1|
)

)

,
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Semi-algebraic functions have small subdifferentials 19

where π : Rn+1 → Rn is the canonical projection onto the first n coordinates. Observe
that the image of φ is exactly the graph of the Clarke subdifferential ∂c f . Furthermore,
for any pair (x, v) ∈ gph ∂c f , we have

φ−1(x, v) = {x} × { f (x)} × R+(v,−1),

and hence dim φ−1(c) = 1 for any point c in the image of φ. By Proposition 3.3, we
deduce

dim gph ∂c f + 1 = dim A ≤ n + 1,

where the last inequality follows from (5). Hence, we obtain dim gph ∂c f ≤ n, as we
needed to show. ��

Shortly we will show that for a proper semi-algebraic function f : Rn → R, both
gph ∂c f and gph ∂ f have dimension exactly equal to n. In the case that the domain
of f is full-dimensional, this fact is easy to show. The argument is as follows. By
Theorem 2.16, the domain of f can be partitioned into semi-algebraic manifolds {Xi }
such that f |Xi is smooth. Let Xi be the manifold of maximal dimension. Observe that
for x ∈ Xi , we have ∂ f (x) = {∇ f (x)} and it easily follows that dim gph ∂ f |Xi = n.
Thus we have

n ≤ dim gph ∂ f ≤ dim gph ∂c f ≤ n,

where the last inequality follows from Theorem 3.5, and hence there is equality
throughout. The argument just presented no longer works when the domain of f
is not full-dimensional. A slightly more involved argument is required. We record the
following simple observation for reference.

Proposition 3.6 Consider a smooth manifold M ⊂ Rn and a smooth real-valued
function f : M → R. Define a function h : Rn → R agreeing with f on M and
equaling plus infinity elsewhere. Then h is subdifferentially regular throughout M.
Furthermore, at any point x̄ ∈ M, we have

∂h(x̄) = NM (x̄) + ∇g(x̄),

where g : Rn → R is any smooth function agreeing with f on M on a neighbourhood
of x̄ . Consequently, ∂h(x̄) is nonempty with dimension n − dim M.

Proof Observe that near the point x̄ , we have h = δM + g. Combining Theorem 2.8
and Theorem 2.12, we have that the function δM is subdifferentially regular at x̄ . By
Theorem 2.11, it follows that h is subdifferentially regular at x̄ and

∂h(x̄) = ∂δM (x̄) + ∇g(x̄) = NM (x̄) + ∇g(x̄),

as we needed to show. ��
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20 D. Drusvyatskiy, A. S. Lewis

Theorem 3.7 Let f : Rn → R be a proper semi-algebraic function. Then the graphs
of the regular, limiting, and Clarke subdifferentials have dimension exactly n.

Proof We know

dim gph ∂̂ f ≤ dim gph ∂ f ≤ dim gph ∂c f ≤ n,

where the last inequality follows from Theorem 3.5. Thus if we show that the dimension
of gph ∂̂ f is no less than n, we will be done. With that aim, applying Theorem 2.16 to
the function f , we obtain a Whitney stratification {Mi } of the domain of f such that
for every stratum Mi , the restriction f |Mi is smooth. Let M j be a stratum of dom f
of maximal dimension.

Now consider the function h : Rn → R, which agrees with f on M j and is plus
infinity elsewhere. By Proposition 2.19, the functions h and f coincide on a neigh-
bourhood of x̄ . Applying Proposition 3.6, we deduce that f is subdifferentially regular
at x̄ and ∂ f (x̄) is nonempty with dimension n − dim M j . Since the point x̄ was arbi-
trarily chosen from M j , we deduce dim ∂̂ f (x) = n − dim M j for any point x ∈ M j .
Thus applying Corollary 3.4 to the semi-algebraic set-valued map ∂̂ f |M j , we deduce

dim gph ∂̂ f |M j = dim M j + n − dim M j = n, and hence the result follows. ��
More refined, local versions of Theorem 3.7 are investigated in [19].
Theorem 3.5 shows that for a semi-algebraic function f : Rn → R, the Clarke

subdifferential ∂c f is small in a dimensional sense. If f is also Lipschitz, it is small
in another sense, that we now discuss: we relate our results to the notion of a min-
imal cusco ( Convex Upper Semicontinuous nonempty compact valued set-valued
mapping), introduced in [8]. To that effect, consider a set A ⊂ Rn and a set-valued
mapping F : A ⇒ Rm . We say that F is upper semicontinuous at some point x̄ ∈ A if
every open set U containing F(x̄) also contains F(z) for all points z ∈ A close to x̄ . If
a map is closed-valued and upper semicontinuous, then it is outer semicontinuous. On
the other hand, if a map is outer semi-continuous and locally bounded, then it is upper
semicontinuous. See [11, Section 5.1.4] for more details. In particular, for a Lipschitz
function f , the Clarke subdifferential ∂c f is upper semi-continuous [14, Proposition
2.1.5]. The mapping F : A ⇒ Rm is said to be a cusco if it is upper-semicontinuous
on A and F(x) is a nonempty compact convex set for each point x ∈ A. A minimal
cusco is a cusco, whose graph does not strictly contain the graph of any other cusco.
Let U ⊂ Rn be an open set and consider a semi-algebraic locally Lipschitz func-
tion f : U → R. It follows by a direct application of [8, Corollary 2.2] and generic
smoothness of f that the the set-valued mapping ∂c f is, in fact, a minimal cusco.

It is tempting to think that in the semi-algebraic setting, the graph of an arbitrary
minimal cusco should have small dimension. However, it is not hard to see that this
is not the case. For instance, we will now exhibit a semi-algebraic minimal cusco
F : R3 ⇒ R3, whose graph is 4-dimensional. Thus semi-algebraic minimal cuscos
with low dimensional graphs, such as the Clarke subdifferential of a semi-algebraic
locally Lipschitz function f defined on an open set, are somewhat special.

To simplify notation, we let [y < 0, z < 0] be an alias for the set {(x, y, z) ∈
R3 : y < 0, z < 0} and we reserve analogous notation for relaters ‘>’ and ‘=’.

123



Semi-algebraic functions have small subdifferentials 21

Consider the semi-algebraic set-valued mapping F : R3 ⇒ R3, defined as follows

F |[y>0,z>0] = {(0, 0, 0)}, F |[y<0,z>0] = {(0, 0, 1)},
F |[y<0,z<0] = {(0, 1, 0)}, F |[y>0,z<0] = {(1, 0, 0)},
F |[y>0,z=0] = conv {(0, 0, 0), (1, 0, 0)}, F |[y=0,z>0] = conv {(0, 0, 1), (0, 0, 0)},
F |[y<0,z=0] = conv {(0, 1, 0), (0, 0, 1)}, F |[y=0,z<0] = conv {(1, 0, 0), (0, 1, 0)},
F |[y=0,z=0] = conv {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}.

It is easy to verify that F is indeed a minimal cusco with a 4-dimensional graph. In
particular, Theorem 3.7 implies that F is not the Clarke subdifferential mapping ∂c f
for any semi-algebraic function f : R3 → R.

4 Consequences

Definition 4.1 Consider a function f : Rn → R. We say that a point x ∈ Rn is
Clarke-critical for the function f if 0 ∈ ∂c f (x), and we call such a critical point x
nondegenerate if the stronger property 0 ∈ ri ∂c f (x) holds.

Recall that for a proper convex function f : Rn → R and a point x̄ ∈ dom f , the
subdifferentials ∂̂ f (x̄), ∂ f (x̄), and ∂c f (x̄) all coincide and are equal to the convex
subdifferential of f at x̄ . So in this case, the notions of Clarke-criticality and Clarke-
nondegeneracy reduce to more familiar notions from Convex Analysis. The importance
of nondegeneracy for the sensitivity analysis of convex functions is well known: in
[26], for example, it is an underlying assumption for a pioneering conceptual approach
to superlinearly convergent convex minimization algorithms. Consider the following
largely classical theorem (see [4, Proposition 1] and [20]).

Theorem 4.2 Let f : Rn → R be a proper convex function. Consider the collection
of perturbed functions hv(x) = f (x) − 〈v, x〉, parametrized by vectors v ∈ Rn. Then
for a full measure set of vectors v ∈ Rn, the function hv has at most one minimizer,
which furthermore is nondegenerate.

Shortly, we will prove that a natural analogue of Theorem 4.2 holds for arbitrary
semi-algebraic functions, with no assumption of convexity. We will then reference an
example of a locally Lipschitz function that is not semi-algebraic, and for which the
conclusion of our analogous result fails, thus showing that the assumption of semi-
algebraicity is not superfluous. In what follows, for a set S, the number of elements in
S will be denoted by S#. We begin with the following simple proposition.

Proposition 4.3 Let F : Rn ⇒ Rm be a semi-algebraic set-valued mapping whose
graph has dimension no greater than n. Then there exists β ∈ N such that for a generic
set of points c ∈ Rn, we have F(c)# ≤ β.

Proof Let D = dom F . If the dimension of D is strictly less than n, then we are done
since then the complement of D is a set satisfying the claimed property with β = 0.
Thus assume that D has dimension n. Applying Corollary 2.27 to the mapping F , we
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22 D. Drusvyatskiy, A. S. Lewis

get a finite partition of D into semi-algebraic sets {Ci }, such that

gph F |Ci
∼= Ci × F(c)

for any c ∈ Ci . Let Ci be a partitioning set of maximal dimension. So dim Ci = n
and we have

n ≥ dim gph F |Ci = n + dim F(c)

For any c ∈ Ci . Thus dim F(c) = 0 and since F(c) is a semi-algebraic set, it must be
finite. Since this argument holds for any Ci of maximal dimension, we have that for a
generic vector c, the set F(c) is finite. Observe that if F(c) is a finite non-empty set,
then F(c)# is equal to the number of connected components of F(c). By Remark 2.33,
there exists β ∈ N such that for all c ∈ Rn , the number of connected components of
F(c) is no greater than β. So in particular, for generic c, we have F(c)# ≤ β. ��
Corollary 4.4 Let f : Rn → R be a semi-algebraic function and consider the collec-
tion of perturbed functions hv(x) = f (x) − 〈v, x〉, parametrized by vectors v ∈ Rn.
Then there exists a positive integer β, such that for generic v ∈ Rn, the number of
Clarke-critical points of the perturbed function hv is no greater than β.

Proof Observe

0 ∈ ∂chv(x) ⇔ v ∈ ∂c f (x) ⇔ x ∈ (∂c f )−1(v).

Thus the set (∂c f )−1(v) is equal to the set of Clarke-critical points of the function hv .
By Theorem 3.5, we have dim gph ∂c f ≤ n, hence dim gph (∂c f )−1 ≤ n. Applying
Theorem 4.3 to (∂c f )−1, we deduce that there exists a positive integer β, such that for
generic v, we have ((∂c f )−1(v))# ≤ β. The result follows. ��
Corollary 4.5 Let f : Rn → R be a semi-algebraic function and consider the collec-
tion of perturbed functions hv(x) = f (x) − 〈v, x〉, parametrized by vectors v ∈ Rn.
Then for generic v ∈ Rn, every Clarke-critical point of the function hv is nondegen-
erate.

Corollary 4.5 follows immediately from the observation

0 ∈ ri ∂chv(x) ⇔ v ∈ ri ∂c f (x),

and the following result.

Corollary 4.6 Let f : Rn → R be a semi-algebraic function. Then for generic v ∈
Rn, we have that

x ∈ (∂c f )−1(v) �⇒ v ∈ ri ∂c f (x).

Proof Let D = dom ∂c f . Consider the semi-algebraic set-valued mapping

˜F : Rn ⇒ Rn, x �→ rb ∂c f (x).
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Our immediate goal is to show that the dimension of gph ˜F is no greater than n −1.
Observe that for each x ∈ Rn , we have ˜F(x) ⊂ ∂c f (x). Applying Corollary 2.27 to
the mapping ∂c f , we get a finite partition of D into semi-algebraic sets {Xi }, such that

gph ∂c f |Xi
∼= Xi × ∂c f (x)

and

gph ˜F |Xi
∼= Xi × ˜F(x)

for any x ∈ Xi (for each i). By Theorem 3.5, we have that

n ≥ dim gph ∂c f |Xi = dim Xi + dim ∂c f (x).

Since ˜F(x) = rb ∂c f (x), it follows that

dim ˜F(x) ≤ dim ∂c f (x) − 1.

Therefore

dim gph ˜F |Xi = dim Xi + dim ˜F(x) ≤ dim Xi + dim ∂c f (x) − 1 ≤ n − 1.

Thus

dim gph ˜F = dim
(

⋃

i

gph ˜F |Xi

)

≤ n − 1.

And so if we let

π : gph ˜F → Rn

be the projection onto the last n coordinates, we deduce that dim π(gph ˜F) ≤ n − 1.
Finally, observe

π(gph ˜F) =
{

v ∈ Rn : v ∈ rb ∂c f (x) for some x ∈ Rn
}

,

and so the result follows. ��
Remark 4.7 Observe that if a convex function has finitely many minimizers then, in
fact, it has a unique minimizer. Thus, for a proper convex semi-algebraic function,
Corollaries 4.4 and 4.5 reduce to Theorem 4.2.

Remark 4.8 In Corollaries 4.4 and 4.5, if the function f is not semi-algebraic, then
the results of these corollaries can fail. In fact, these results can fail even if the function
f is locally Lipschitz continuous. For instance, there is a locally Lipschitz function
f : R → R such that ∂c f (x) = [−x, x] for every x ∈ R. See the article of Borwein-
Moors-Wang [9]. For all v ∈ R, the perturbed function hv has infinitely many critical
points, and for all v ∈ R \ {0}, the function hv has critical points that are degenerate.
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5 Composite optimality conditions

Consider a composite optimization problem min
x

g(F(x)). It is often computationally

more convenient to replace the criticality condition 0 ∈ ∂(g◦F)(x) with the potentially
different condition 0 ∈ ∇F(x)∗∂g(F(x)), related to the former condition by an appro-
priate chain rule. See for example the discussion of Lagrange multipliers in [33]. Thus
it is interesting to study the graph of the set-valued mapping x �→ ∇F(x)∗∂g(F(x)).

5.1 Dimensional analysis of the chain rule

The following is a standard result in subdifferential calculus.

Theorem 5.1 [34, Theorem 10.6] Consider a function g : Rm → R and a smooth
mapping F : Rn → Rm. Then at any point x̄ ∈ Rn, one has

∂̂(g ◦ F)(x̄) ⊃ ∇F(x̄)∗∂̂g(F(x̄)).

Now assuming that the functions g and F in the theorem above are semi-algebraic,
we immediately deduce, using Theorem 3.5, that the dimension of the graph of the
mapping x �→ ∇F(x̄)∗∂̂g(F(x̄)) is at most n.

One can ask what happens more generally in the case of the limiting and Clarke
subdifferentials. It is well known that the inclusion

∂(g ◦ F)(x̄) ⊃ ∇F(x̄)∗∂g(F(x̄))

is only guaranteed to hold under certain conditions [34, Theorem 10.6]. The Clarke
case is similar [14, Theorem 2.3.10]. Hence, a priori, the dimension of the graph of the
set-valued mapping x �→ ∇F(x)∗∂g(F(x)) is unclear. In this section, we will show
that if g is lower semicontinuous, then this dimension is no greater than n and we will
derive some consequences.

The proofs of Proposition 3.2 and Theorem 3.5 are self contained and purely geo-
metric. There is, however, an alternative approach using [5, Proposition 4], which will
be useful for us. We state this proposition now. We denote the linear subspace of Rn

parallel to a nonempty convex set S ⊂ Rn by par S.

Proposition 5.2 [5, Proposition 4] Consider a proper, lower semicontinuous, semi-
algebraic function g : Rm → R. Then there exists a Whitney stratification {Mi } of the
domain of g such that for each stratum Mi and for any point x ∈ Mi , the inclusion
par ∂cg(x) ⊂ NMi (x) holds.

Before proceeding, we record the following special case of Theorem 5.1. Consider
a smooth function F : Rn → Rm and a nonempty set Q ⊂ Rm . Consider any point
x̄ ∈ Rn . Applying Theorem 5.1 to the indicator function of Q, we deduce

N̂F−1(Q)(x̄) ⊃ ∇F(x̄)∗ N̂Q(F(x̄)).
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If we let Q = F(X), for some set X ⊂ Rn , then we obtain

N̂F−1(F(X))(x̄) ⊃ ∇F(x̄)∗ N̂F(X)(F(x̄)). (6)

Theorem 5.3 Consider a proper, lower semicontinuous, semi-algebraic function
g : Rm → R and a smooth semi-algebraic mapping F : Rn → Rm. Then the graph
of the semi-algebraic set-valued mapping x �→ ∇F(x)∗∂cg(F(x)) has dimension no
greater than n.

Proof Consider the Whitney stratification {Mi } of dom g that is guaranteed to exist
by applying Proposition 5.2 to the function g. Now applying Theorem 2.16 to the
mapping F , we obtain a Whitney stratification {Xi } of Rn and a Whitney stratification
{K j } of Rm compatible with {Mi } such that for each index i , we have F(Xi ) = K j

for some index j . Fix some stratum X and a point x̄ ∈ X . If F(X) is not a subset of
the domain of g, then clearly ∇F(·)∗∂cg(F(·))|X ≡ ∅. Hence, we only consider X
such that F(X) ⊂ dom g. Let M be the stratum satisfying F(X) ⊂ M . Observe by
our choice of the stratification {Mi }, we have

∇F(x̄)∗∂cg(F(x̄)) ⊂ ∇F(x̄)∗v + ∇F(x̄)∗NM (F(x̄)),

for some vector v ∈ Rm . Hence we have the inclusions

par ∇F(x̄)∗∂cg(F(x̄)) ⊂ ∇F(x̄)∗NM (F(x̄)) ⊂ ∇F(x̄)∗NF(X)(F(x̄)), (7)

where the last inclusion follows since the manifold F(X) is a subset of M . Combining
(6) and (7), we obtain

par ∇F(x̄)∗∂cg(F(x̄)) ⊂ N̂F−1(F(X))(x̄) ⊂ NX (x̄),

where the last inclusion follows since the manifold X is a subset of F−1(F(X)). So
we deduce

dim ∇F(x̄)∗∂cg(F(x̄)) ≤ n − dim X.

Since the point x̄ was arbitrarily chosen from X , we conclude, using Corollary 3.4,
the inequality dim gph ∇F(·)∗∂cg(F(·))|X ≤ n. Taking the union over the strata {Xi }
yields

dim gph ∇F(·)∗∂cg(F(·)) ≤ n,

as we claimed. ��
Observe that Theorem 5.3 is a generalization of Theorem 3.5. This can easily be

seen by taking F to be the identity map in Theorem 5.3.

Remark 5.4 Consider a proper, lower semicontinuous, semi-algebraic function
g : Rm → R and a smooth semi-algebraic mapping F : Rn → Rm satisfying
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dom g ◦ F = F−1(dom g) �= ∅. A natural question, in line with Theorem 3.7, is
whether the graph of the mapping x �→ ∇F(x)∗∂cg(F(x)) has dimension exactly n.
In fact, there is no hope for that to hold generally. For instance, it is possible to have
∂cg(y) = ∅ for every point y in the image of F . This example, however motivates the
following easy proposition.

Proposition 5.5 Consider a proper, lower semicontinuous, semi-algebraic function
g : Rm → R and a smooth semi-algebraic mapping F : Rn → Rm. Assume that the
set F−1(dom ∂̂g) has a nonempty interior. Then the graph of the set-valued mapping
∇F(·)∗∂̂g(F(·)) has dimension exactly n. Analogous results hold in the limiting and
Clarke cases.

Proof We show the theorem only for the case of the regular subdifferential. The
proof remains unchanged for the other cases. Clearly, as a result of Theorem 5.3,
it is sufficient to show that the inequality, dim gph ∇F(·)∗∂̂g(F(·)) ≥ n, holds. To
that effect, consider an open set N contained in the interior of the set F−1(dom ∂̂g).
Then for any point x ∈ N , the set ∂̂g(F(x)) is nonempty. Hence, the the map x �→
∇F(x)∗∂̂g(F(x)) has nonempty values on N . In particular, letting π : Rn ×Rn → Rn

be the projection onto the first n coordinates, we see

π(gph ∇F(·)∗∂̂g(F(·))|N ) = N .

Hence we conclude dim gph ∇F(·)∗∂̂g(F(·))|N ≥ dim N = n, thus completing the
proof. ��

The following easy result, which we state without proof, gives a different approach.

Proposition 5.6 Consider a proper, continuous, semi-algebraic function g : Rm → R
and a smooth semi-algebraic mapping F : Rn → Rm. If the constraint qualification
of [34, Theorem 10.6] holds at some point x ∈ F−1(dom g), then the graph of the set-
valued mapping ∇F(·)∗∂g(F(·)) has dimension exactly n. An analogous statement
holds in the Clarke case.

5.2 Consequences

Let F : Rn → Rm be a smooth mapping and g : Rm → R a proper lower semicon-
tinuous function. (For simplicity, here we assume that the mapping F is defined on
all of Rn . However the whole section extends immediately to a mapping F defined
only on an open subset U ⊂ Rn .) Consider the following collection of composite
minimization problems, parametrized by vectors v ∈ Rn .

(P(v)) min
x∈Rn

g(F(x)) − 〈v, x〉

For a point x̄ to be a minimizer for P(v), the inclusion v ∈ ∂(g◦F)(x̄) must necessarily
hold. As discussed in the beginning of the section, it is often more convenient to
replace this condition with the potentially different condition v ∈ ∇F(x̄)∗∂g(F(x̄)).
This motivates the following definition.
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Definition 5.7 We say that a point x is Clarke critical for the problem (P(v)) if the
inclusion v ∈ ∇F(x)∗∂cg(F(x)) holds, and we call such a critical point x nonde-
generate for the problem (P(v)) if the stronger property v ∈ ri ∇F(x)∗∂cg(F(x))

holds.

We are now in position to state a natural generalization of Corollaries 4.4 and 4.5.

Corollary 5.8 Let F : Rn → Rm be a semi-algebraic smooth function and g : Rm →
R a proper lower semicontinuous semi-algebraic function. Consider the following
collection of optimization problems, parametrized by vectors v ∈ Rn.

(P(v)) min
x∈Rn

g(F(x)) − 〈v, x〉

Then there exists a positive integer β, such that for a generic vector v ∈ Rn, the number
of Clarke-critical points for the problem (P(v)) is no greater than β. Furthermore,
for a generic vector v ∈ Rn, every Clarke-critical point for the problem (P(v)) is
nondegenerate.

Proof Observe that by Theorem 5.3, the graph of the mapping x �→ ∇F(x)∗∂cg(F(x))

has dimension no greater than n. The proof now proceeds along the same lines as the
proofs of Corollaries 4.4 and 4.5. ��

Observe that Corollaries 4.4 and 4.5 can be considered as special cases of Corol-
lary 5.8, in which the map F is the identity map.

A noteworthy illustration of Corollary 5.8 is the problem of constrained mini-
mization, which we discuss now. Let f : Rn → R be a semi-algebraic function and
D ⊂ Rn a closed semi-algebraic set. Consider the following collection of constrained
minimization problems, parametrized by vectors v ∈ Rn .

(P ′(v)) min f (x) − 〈v, x〉
s.t. x ∈ D

Observe that (P ′(v)) is equivalent to the problem min
x∈Rn

g(F(x)) − 〈v, x〉, where we

define F(x) = (x, x) and g(x, y) = f (x) + δD(y).
Hence, in the sense of composite minimization, it is easy to check that a point

x ∈ D is Clarke critical for the problem (P ′(v)) if v ∈ ∂c f (x) + N c
D(x), and such

a critical point x is nondegenerate for the problem (P ′(v)) if the stronger property
v ∈ ri ∂c f (x) + ri N c

D(x) holds.

Corollary 5.9 Let f : Rn → R be a semi-algebraic function and let D be a closed,
semi-algebraic set. Consider the following collection of optimization problems, para-
metrized by vectors v ∈ Rn.

(P(v)) min f (x) − 〈v, x〉
s.t. x ∈ D

Then there exists a positive integer β, such that for a generic vector v ∈ Rn,
the number of Clarke-critical points for the problem (P(v)) is no greater than β.
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Furthermore, for a generic vector v ∈ Rn, every Clarke-critical point for the problem
(P(v)) is nondegenerate.

Proof This follows directly from Corollary 5.8. ��
Acknowledgments Thanks to Alex D. Ioffe for suggesting the extension we pursue in Sect. 5.
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