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We explore how randomization can help asymptotic convergence proper-
ties of simple directional search-based optimization methods. Specifically,
we develop a cheap, iterative randomized Hessian estimation scheme. We
then apply this technique and analyse how it enhances a random directional
search method. Then, we proceed to develop a conjugate-directional search
method that incorporates estimated Hessian information without requiring
the direct use of gradients.

Keywords: derivative-free optimization; directional search; quasi-Newton;
random search; steepest descent

AMS Subject Classifications: 90C56; 90C53; 65K 05

1. Introduction and motivation

Stochastic techniques in directional search algorithms have been well-studied in
solving optimization problems, often where the underlying functions themselves are
random or noisy. Some of these algorithms are based on directional search methods
that obtain a random search direction which approximates a gradient in expectation:
for some background on this class of algorithms, see [4, Ch. 6] or [12, Ch. 5]. For
many algorithms, the broad convergence theory, combined with inherent computa-
tional simplicity, makes them particularly appealing, even for noiseless, deterministic
optimization problems.

In this work, we avoid any direct use of gradient information, relying only on
function evaluations. In that respect, the methods we consider have the flavour of
derivative-free algorithms. Our goal, however, is not the immediate development of a
practical, competitive, derivative-free optimization algorithm: our aim is instead
primarily speculative. In contrast with much of the derivative-free literature, we
make several impractical assumptions that hold throughout this article. We assume
that the function we seek to minimize is twice differentiable and that evaluations of
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that function are reliable, cheap and accurate. Further, we assume that derivative
information is neither available directly nor via automatic differentiation, but it is
well-approximated by finite differencing. Again, for the purposes of speculation,
we assume that any line search subproblem is relatively cheap to solve when
compared to the cost of approximating a gradient. This last assumption is based on
the fact that, asymptotically, the computational cost of a line search should be
independent of the problem dimension, being a one-dimensional optimization
problem, while the number of function evaluations required to obtain a gradient
grows linearly with the problem dimension, based on previous assumptions. Within
this narrow framework, we consider the question as to whether, in principle,
randomization can be incorporated to help simple iterative algorithms achieve good
asymptotic convergence.

Keeping this narrow framework in mind, this article is organized as follows.
In the remainder of this section, we consider a randomized directional search
algorithm that chooses a search direction uniformly at random from the unit sphere
and apply it to convex quadratic functions, comparing convergence results with a
traditional gradient descent algorithm. In Section 2, we introduce a technique of
randomized Hessian estimation and prove some basic properties. In Section 3, we
consider algorithmic applications of our randomized Hessian estimation method.
In particular, we show how Hessian estimates can be used to accelerate the uniformly
random search algorithm introduced in this section and, additionally, how
randomized Hessian estimation can also be used to develop a conjugate direction-
like algorithm.

To illustrate the use of randomization, consider the following basic algorithm:
at each iteration, choose a search direction uniformly at random on the unit
sphere and perform an exact line search. Note that this algorithm has been widely
studied, with analysis appearing in [5] and [11], among others. Further, it was
shown to be linearly convergent for twice differentiable functions under
conditions given in [10].

Consider applying this algorithm to the problem of minimizing a convex
quadratic function f(x) =3x"A4x+ b"x where 4 is a symmetric, positive-definite,
n x n matrix. First, defining the energy norm by |x||; = vxTA4x, observe that if the
unique minimizer of f'is x* = —A4~'h, then the identity

J() = (") = 3 = x)TA(x = x%) = Gl = x5 (1.1
holds. Observe that if the current iterate is x, then the new iterate is given by

o d"Ax+b)

X, =X T Ad d (1.2)

and the new function value is

(dT(Ax + b))

Sl =100 =2
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The difference between the current function value and the optimal value is reduced
by the ratio

f@4)—f(ﬁ):1__ (d"(Ax + b))
S(x) = f(x*) 2(dTAd)(f(x) — f(x*))
(dT(Ax + b))

(@ Ad)(x = x)TA(x = x)
(dTA(x — x*))*
(@ Ad)(A(x — x*)" A1 (A(x — x*)))
1 A(x — x*) \2

<1-—(d" )

K(A) ( [ A(x — x*)]|
where «(4)=||A|||A”"| denotes the condition number of A. Observe that the
distribution of d is invariant under orthogonal transformations. Therefore, let U be
any orthogonal transformation satisfying U( ng:ﬁ*gu) = ¢y, the first standard basis
vector. From this, we have

2 2
7 Alx —x%) B o Al —x%)
E[<d ||A(x—x*)||) 'X} ‘E[((U D ||A(x—x*)||> 'X}

= E[d{]

= (24)]

where the first equality follows from the invariance of the distribution of d and the
third equality follows from the fact that each component of d is identically
distributed. We deduce

b

B/ (e =0 = (1= o

U = £ (1.3)
with equality when A4 is a multiple of the identity matrix, in which case «(A4)=1.
Compare this with the steepest descent algorithm. A known result about the
steepest descent algorithm in [1] says that given an initial iterate x and letting X be the
new iterate constructed from an exact line search in the negative gradient direction,

K(4) — 1 1
k(A) + 1 K(A)

Further, for most initial iterates x, this inequality is asymptotically tight if this
procedure is iteratively repeated. Consider the following asymptotic argument,
applying the assumptions made earlier in this section. Supposing derivative
information is only available through — and well-approximated by — finite
differencing then we can perform an exact (or almost-exact) line search in some
constant number, O(1), of function evaluations. It follows that each iteration of
random search takes O(1) function evaluations. However, since derivative

S® =16 = ( ) ()16 = (1= 0( 1)) e,
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information is only available via finite differencing, computing a gradient takes O(n)
function evaluations. Letting x be the iterate after performing O(n) iterations of
random search, we obtain that

LA A T A S e
E[f(x)—f(x*)lx}‘(l ) =)

Essentially, the expected improvement of random search is on the same order of
magnitude as steepest descent when measured on a cost per function evaluation
basis. This simple example suggests that randomization techniques may be an
interesting ingredient in the design and analysis of iterative optimization algorithms.

2. Randomized Hessian estimation

In this section, we will consider arbitrary twice-differentiable functions /: R” — R. As
in the previous section, assume that these functions can be evaluated exactly, but
derivative information is only available through finite differencing. In particular, for
any vector veR”, suppose we can use finite differencing to well-approximate the
second derivative of fat x in the direction v via the formula

f(x+ev) = 2f(x) + f(x — ev) 2.1

VIV (x)y &~ 5
€

for some sufficiently small € > 0. In particular, note that by choosing %n(n—k 1)
suitable directions v, we could effectively approximate the entire Hessian V2f{x).

In Section 1, we considered a framework in which computational costs of an
algorithm are measured by the number of function evaluations required and we will
continue with that throughout this article. In particular, it was shown that under this
framework, the steepest descent algorithm, asymptotically, achieves improvement on
the same order of magnitude as a uniformly random search algorithm when applied
to convex quadratics. Ideally, we would like to extend these methods of analysis to
algorithms that incorporate additional information about a function’s behaviour.
For example, instead of calculating a complete Hessian matrix at each iteration,
Newton-like methods rely on approximations to the Hessian matrix which are
iteratively updated, often from successively generated gradient information. To
consider a similar approach in the context of random search, suppose we begin with
an approximation to the Hessian matrix, denoted B, and some unit vector v € R".
Consider the new matrix B, obtained by making a rank-one update so that the new
matrix B, matches the true Hessian in the direction v, i.e.

B, = B+ (vI(V*f(x) — Bww'. (2.2)

This rank-one update results in the new matrix B, having the property that v’
B,v=v"V*f(x)v. Note that if this update is performed using the approximate second
derivative via Equation (2.1), then this costs only three function evaluations.
The following result on the space of symmetric n x n matrices, S", equipped
with the usual trace inner product and the induced Frobenius norm will be our
primary tool.
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THEOREM 2.1  Given any matrices H, B €S", if the random vector d € R" is uniformly
distributed on the unit sphere, then the matrix

B, = B+ (d"(H — B)d)dd"
satisfies
B+ — H|l < |B—H|

and

E[|B; — H]) < (1 - )IB = HIP.

n(n 4+ 2)
Proof Since we can rewrite the update in the form
(B, — H) = (B— H) — (dT(B - H)d) dd”,

we lose no generality in assuming H =0. Again, we lose no generality in assuming
I|B] =1, and proving

IBill <1 and E[IB4[*] <1

n(n+2)
From the equation
B, = B — (d"Bd)dd",
we immediately deduce
IBLI? = I1BI* — (d"Bd)* = 1 — (d"Bd)* < 1.

To complete the proof, we need to bound the quantity E[(d’Bd)*]. We can
diagonalize the matrix B= U’(Diag 1)U where U is orthogonal and the vector of
eigenvalues A €R” satisfies ||A[|=1 by assumption. Using the fact that the
distribution of d is invariant under orthogonal transformations, we obtain

E[(d"Bd)*] = E[(d" U (Diag 1)Ud)*] = E[(d"(Diag 1)d)’]
n 2
_ E[( 3 x,-d?) ] _ E[ YR+ Y A,—A,-dfdf}
i=1 i i#]
= E[4)]+ ( > ik )E[d%d%]
i#]
by symmetry. Since we know that
2
0< <ZA,‘) = Z)»,z + Z)\i)»j =1+ Z)“i)\ja
i i i#] i#]
it follows that

E[(d"Bd)"] > E[d}] — E[d}d5].
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Standard results on integrals over the unit sphere in R” gives the formula

"(2)
/ xVdo =277 ,
Ixll=1 F(—“;”)

where do denotes an (n — 1)-dimensional surface element and I" denotes the Gamma
function. We deduce

4 S n
Jii=1 do F(§+ 2) F(%) (§+ 1) o onn+2)
Furthermore,
2
1=(X &) =X dt+> da,
i i i+
SO using symmetry again shows
1 = nE[d}] + n(n — 1)E[d>d3).
From this we deduce
1 — nE[d}] 1
E d2d2 == 1 = .
47 d] nn—1) n(n+2)
Therefore, this shows that
3 1 2
E[(d"Bd)*] > —~ =
I )]_n(n+2) nn+2) nn+2)°
SO
2
E[IB.*] <1~
1B P) =1
as required. |

To continue, note that iterating this procedure generates a random sequence of
Hessian approximations which, as shown further, converges almost surely to the true
Hessian.

CorOLLARY 2.2 Given any matrices H, ByeS", consider the sequence of matrices
B eS" for k=0,1,2,..., defined iteratively by
Bisr = B+ (@ (H = Bd*)d (@,

where the random vectors d°, d', d*, ... € R" are independent and uniformly distributed
on the unit sphere. Then the errors ||B,— H|| decrease monotonically, and B, — H
almost surely.

Proof Again we lose no generality in assuming H=0. By the previous result, it
follows that the random variables || B;|* form a supermartingale which is bounded
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above by ||Boll>. By classical supermartingale convergence results (see e.g. [2]), it
follows that || B> — Y almost surely for some random variable ¥ > 0. It remains to
be shown that ¥ =0 almost everywhere.

Clearly, the random variables B; are uniformly bounded. Furthermore, if we
define a measure on the space of symmetric 7 X n matrices, yy, by

vx(U) = pr{By € U}

for any measurable set U, then the previous result implies

Bl = [ E[18e1?1B = X] a1

< [ (1= )10

= (1 —m)E[annz].

Now by monotone convergence we have

E[Y] = E[lim || B¢ "] = lim E[J| B[] = 0,

so Y =0 almost everywhere as required. |

In a more realistic framework for optimization, we wish to approximate a
limiting Hessian. In the context of randomized algorithms, such as the ‘random
search’ algorithm described in Section 1, the iterates generated by the algorithm are
now random. By using Hessian information at each iterate to update our Hessian
estimate, we now have to consider that the corresponding sequence of Hessians used
is now itself random, though ideally approaching a limiting Hessian, in addition to
considering the random sequence of Hessian estimates generated by the estimation
procedure of Theorem 2.1. To account for this in the following theorem, recall that

E[|X|] is a norm on the space of random matrices. Applying properties of norms
to this function, as the next result shows, we obtain convergence of the random
Hessian estimates to the limiting Hessian.

THEOREM 2.3  Consider a sequence of random matrices H,€S" for k=1,2.3,...,
with each E[||H||%] finite, and a fixed matrix H € S" such that E[|H; — H||*]— 0.
Consider a sequence of random matrices B, €S" for k=0,1,2, ..., with E[||BO||2] finite,
related by the iterative formula

By = B+ ((d")T(Hk — Bd*)d ",

where the random vectors d°, d', d 2_, ... €R" are independent and uniformly distributed
on the unit sphere. Then E[| By — H|*]— 0.

Proof By Corollary 2.2, we know for each k=0, 1,2, ... the inequality
1Bert — Hell® < || Bx — Hell?

holds. Hence by induction it follows that E[||B,’] is finite for all k> 0.
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/ 2
= €O

E[|| Biy1 — Hyl|By, Hy] < r*1|Bx — Hy .

Define a number

By Theorem 2.1, we have

Once again, define a measure y, by
Yk(S) = pr{(B, Hy) € S}
for any measurable set S. Then we have
E[|| Bey1 — Hill’] = / E[l| Bi1 — Hil*|(Bx, Hy) = (B, H)Idyx(B, H)

< f 2118 — HI dye(B. H)
— PE[|By — i)

Applying the triangle inequality property of norms gives

VEUBes — 171 < nJEB — 712+ (1 + )y BN Hy — AP,

Now fix any number € > 0. By assumption, there exists an integer k such that for all

integers k > k we have
a-n\
— e(l—r
E[||H — H|*] < ( ) :

2(1+7)

Hence, for all k > IE, we deduce

VEIBe 1 — AP < r/ELIB. — A1)+

e(l1—r)
T

For such k, if E[||Bx — H||?] < €2, then

VB — Py = <

whereas if E[|| By — H||*] > €2, then

VLB — 7)< 08— A1+ s — )

_1+r
T2

E[||B; — H|*].

Consequently, E[|| B, — H||?] < € for all large k. Since € > 0 was arbitrary, the result
follows. |



17:19 1 April 2010

Downl oaded By: [Lewis, A S.] At:

Optimization 9

3. Applications to algorithms
3.1. Random search, revisited

Return to the convex quadratic function f(x):%xTijthx considered in
Section 1, where A is a positive definite, n x n matrix and x* is the unique
minimizer. Recall that if we consider the iterative algorithm given by Equation (1.2),

letting d be a unit vector uniformly distributed on the unit sphere and letting

dT(Ax + b)

d’Ad 9

Xy =X —
then it was shown in inequality (1.3) that

1

B/ () =/ = (1=

)@ =),

Now, suppose that H is a positive-definite estimate of the matrix 4 and consider the
Cholesky factor matrix C such that CC”= H~"'. Suppose that instead of performing
an exact line search in the uniformly distributed direction d, we instead perform the
line search in the direction Cd. From this we obtain

o) =/ (d"CT(Ax + b))’
S(x) = f(x%) 2(dTCTACA)(f(x) — f(x*))
(dTCT(Ax + b))

C(dTCTACA)(x — x*) T A(x — x*))
- (d"(CTA(x — x*))
(dT(CTAC)d)((CTA(x — x*)) (CTAC) (CTA(x — x*)))

T ok 2
<1_ 1 " C A(x — x*) ,
k(CTAC) ICTA(x — x*)||

allowing us to conclude that

1

B/ (o) /0 = (1= e

)@ = .

This provides the same convergence rate as performing the random search algorithm
given by Equation (1.2) on the function g(x) =4x7(CTAC)x + b"x. Consider an
implementation of this algorithm using the Hessian approximation technique
described in Section 2. Given a current iterate x;_; and Hessian approximation B;_j,
we can proceed as follows. First, form the new Hessian approximation By given by
Equation (2.2), choosing the update vector uniformly at random from the unit
sphere. Observe that by Corollary 2.2, if A is positive definite, then B; be will be
positive definite as well almost surely for all sufficiently large &, in which case, obtain
the Cholesky factorization B,:l = CkaT. Otherwise, one suggested heuristic,
implemented below, is to obtain the projection of B; onto the positive semi-definite
cone, denoted B[, and perform the Cholesky factorization CxC] = (Bf +el)~" for
some € > 0. Finally, we can find the next iterate x; by a line search in the direction
Crd. where d,. is uniformly distributed on the unit sphere.
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Since B;, — A4 almost surely by Corollary 2.2, it follows C; — A~ almost surely
as well. Therefore, it follows that
ELf (o) SO 1 1

fo0 S S T mcracy T e

Thus, the uniformly random search algorithm incorporating the Hessian update
provides linear convergence with asymptotic rate 1 — %, independent of the
conditioning of the original matrix.

Below are two examples of the algorithm’s behaviour with a convex quadratic
function f(x)=0.5x"Ax+b"x, where b=[1,1,...,1]". The first example uses a
Hilbert Matrix of size 7 (with condition number on the order of 10*) while the second
uses the matrix 4 =Diag(1,7,7%...,7°. In each case, we compare uniformly the
random search with the Cholesky-weighted random search described earlier, using
the projection heuristic when the Hessian estimate is not positive definite.
Additionally, each search vector and Hessian update vector, when applicable, was
chosen independently in each example and, when applicable, an exact Hessian
update was implemented.

Hilbert matrix Diag(1,7,7%...7%
10 v " : . . 10° v . : : . . .
ithout Hessian
10° b Without Hessian
2
y | —

E', 0t \ { & \

% 100 _ _ ‘\ . % 107°} ~\

B 16°%t Yih Hessten:: { With Hessian §

o] \ o \\
L 1] 16" \
10"t L \\
g™ . L 2 . L 10" L " L L ) L . i

0 200 400 600 800 1000 1200 1] 100 200 300 400 500 600 700 8OO
Iteration Iteration

3.2. A conjugate directions algorithm

Coordinate descent algorithms have a long and varied history in differentiable
minimization. In the worst case, examples of continuously differentiable functions
exist in [9] where a coordinate descent algorithm will fail to converge to a first-order
stationary point. On the other hand, for twice-differentiable, strictly convex
functions, variants of coordinate descent methods were shown to be linearly
convergent in [6]. In either case the simplicity of such algorithms, along with the lack
of a need for gradient information, often makes them appealing.

Let us briefly return to the example of a convex quadratic function

f(x) =3xTAx + bTx. Consider algorithms, similar to coordinate descent algorithms,

that choose search directions by cycling through some fixed set W={w,...,w,},
performing an exact line search at each iteration. If the search directions in W
happen to be A-conjugate, satisfying w! Aw; = 0 for all i#, then we actually reach
the optimal solution in n iterations. Alternatively, if our set of search directions fails

to account for the function’s second-order behaviour, convergence can be
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significantly slower. Explicitly generating a set of directions that are conjugate with
respect to the Hessian requires knowledge of the function’s Hessian information.
Methods were proposed in [8], and expanded upon in [3,7,13] among others, that
begin as coordinate descent algorithms and iteratively adjust the search directions,
gradually making them conjugate with respect to the Hessian matrix. Further, these
adjustments are based on the results of previous line searches without actually
requiring full knowledge of the Hessian or any gradients.

We propose an alternative approach for arbitrary twice-differentiable functions.
If an estimate of the Hessian was readily available, we could take advantage of it
by generating search directions iteratively that are conjugate with respect to
the estimate. This suggests that we can design an algorithm using the Hessian
estimation technique in Section 2 to dynamically generate new search directions that
have the desired conjugacy propertiecs. We can formalize this in the following
algorithm.

Algorithm 3.1 Let f be a twice-differentiable function, x( an initial starting point, B,
and initial Hessian estimate and {v_,, v_¢—1),...,v_1} an initial set of search
directions. For k=0,1,2,...

(1) Compute the vector vy that is By-conjugate to vi_i, ..., Vi_ni1-

(2) Compute x;,; as a result of ¢ (two-way) line search in the direction vy.

(3) Compute B,,; according to Equation (2.2), letting d, be uniformly
distributed on the unit sphere and computing

Bis1 = By + (de(Vf(Xps1) — Bo)dy)didy.

One simple initialization scheme takes By=/7and {v_,,...,v_1} ={ey,...,e,}, the
standard basis vectors.

Since By is our Hessian approximation at the current iterate x;, a reasonable
initial step size is given by xj | = X — fxVi, where t; = Vﬁrvgk(ff), corresponding to an
exact line search in the direction v, of the quadratic model. The advantage to this
approach is that each iteration requires only directional derivatives and, being highly
iterative, this interpolates nicely with the Hessian update derived in Section 2.
Specifically, when using the fixed step size mentioned earlier, each iteration takes
exactly five function evaluations: f(x;), fxy £ evy), and f(x; + ed;) where v, and dj
are the search direction and the random unit vector, respectively.

The essence of this algorithm lies in using our randomized Hessian estimation
technique to update a quadratic model and then performing a line search. Since we
are relying solely on function evaluations, this algorithm has the ‘flavour’ of
derivative-free optimization. However, it should be noted that a different perspective
can be taken with regards to this algorithm, permitting a comparison with Newton-
like methods.

Typical Newton-like methods maintain, along with the current iterate x;, a
(positive-definite) Hessian estimate B; and proceed by performing some type of line
search in the direction —B;'V/(x;). For simplicity, consider a step size of 1, ie.
Xir1 =Xk — Bi'Vf(x¢). Recall that computing B 'V/(x), equivalent to solving
the system By, = Vf(x;) for y, can be done indirectly by searching in » different
B-conjugate directions.
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Specifically, suppose we have a set of directions {vy, ..., v,} that are Bi-conjugate,
satisfying viTBkv] = 0 for all i #4/ and take x" = x4, our current iterate. Fori=1,...,n,
let xi = xi=1 — 1 WGwW v;. Then it follows that

TB Vi

n TV ‘
K= - Zwvi = xx — B{'Vf (),

T .
' v Bvi

the Newton-like step. Given this interpretation of Newton-like methods, consider the
version of Algorithm 3.1 where, at each iteration, the step size is fixed beforehand at
f =% TVIZ(:A) Then one can interpret Algorithm 3.1 as an iterated version of a
Newton-like method. Specifically, while the Newton-like method indirectly involves
computing the quantities v/ Vf(x;) and v/ Byy; with the iterate x, and Hessian
estimate By fixed, Algorithm 3.1 allows for a dynamically changing gradient and
Hessian approximation at each conjugate direction step.

Given this connection between Algorithm 3.1 and traditional Newton-like
methods, it seems natural to expect superlinear convergence under similar
assumptions. This is demonstrated in the next theorem.

Tueorem 3.2 Consider the strictly convex quadratic function f(x) = —xTAx+bT
where A is a positive definite matrix. Then for any initial point X, lmtlal Hessian
estimate By and initial search directions, Algorithm 3.1 is n-step superlinearly
convergent almost surely when implemented with an exact line search.

The proof of this result can be found in the Appendix.

In the following example, we again consider two convex quadratic functions
2xTAx + bTx where, again, 4 is a Hllbert matrix of dimension 7 and 4 = Diag(1,7,
72,..., 7%, respectively with 5=[1, 1,...,1]". The above algorithm was implemented
Wlth an exact line search and exact directional second derivatives.

. Hilbert matrix Diag(1,7,72,...7%

10 m’ - -

i
o mo ﬂ\
.

g g i
& i o 5° .
£ P 8
g m—m 's g-10-|0 -
o] A o \

“]-‘5 L3 lu—l‘.’n [ ‘»

3
g2 . \ . . . 1 \ i . . y
0 200 400 600 800 1000 1200 0 100 200 30 400 500 600
Iteration Iteration

Additionally, we considered two examples of this algorithm on a variant of the
Rosenbrock function, given by

n—1

09 =3[0 =0 + 100k — 7],

i=1
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for n=2,3. It was implemented with e=10"%, initial iterate [0,0,...,0] and a
backtracking line search with initial step size equal to that suggested by the exact
quadratic model, estimated via finite differencing, thereby making each iteration
require five function evaluations plus any extra cost incurred by the line search.
Below, we plot the difference between the present and optimal function against the
number of function evaluations required.

Rosenbrock function

Optimality gap
5‘I

1] 50 100 150 200 250 300
Function evaluations

4. Conclusion

Randomization provides an interesting perspective for a variety of algorithms.
Consider the perspective adhered to in this article in which our cost measure is the
number of function evaluations required, assuming line searches are relatively cheap
being a one-dimensional optimization problem, and with derivative information only
available through (and well-approximated by) finite differencing. It was then shown
in Section 1 that random search is comparable to steepest descent. Then, using the
Hessian estimation technique introduced in Section 2, Section 3 demonstrated how
these techniques can be used to accelerate random search. Finally, we devised a
conjugate directions algorithm that incorporates second derivative information
without directly requiring gradient information while sharing certain behaviours
with more traditional Newton-like methods.

We make no claim that the conceptual techniques described earlier, in their pure
form, are competitive with already-known derivative-based or derivative-free
algorithms. We simply intend to illustrate how incorporating randomization
provides a novel approach to the design of algorithms, even in very simple
optimization schemes, suggesting that it may deserve further consideration. Note
that all the algorithms considered in this paper, at each iteration, require only
directional derivative or directional second-order information, creating a connection
between the realms of derivative-free and derivative-based algorithms when this
derivative information is well-approximated by finite differencing.
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Appendix

The appendix to this article is dedicated to prove Theorem 3.2, the superlinear convergence of
Algorithm 3.1 on convex quadratic functions. Before doing so, we define some notation. For a
matrix, A, the spectral norm of A is the quantity || A4||» := max |l 4x|| and the Frobenius norm
of A is given by ||A|lf:= /¥,;a. If A is invertible, then lA~ |, can also be expressed as the
smallest constant K such that ||4x|, > %||x||2 for all vectors x. Let Diag(A4) be the matrix
whose diagonal matches that of 4 and whose non-diagonal entries are zero. Further, these
norms satisfy

41, < 141l < V/nllAll, (A1)

IAXN? < Amax(ADIXN < max(A)* X113 (A2)
and

Amin(A)Ix13 < [1x11% (A3)
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where Apax(A) and Ayin(A) are the maximum and minimum eigenvalues of A4, respectively.
The proof of Theorem 3.2 will be broken into several lemmas, as follows.

Lemma A4 Let A be positive definite and {vy,...,v,} be unit norm vectors satisfying
I Av;| < e for all i#]. Then, for all € >0 sufficiently small, the matrix V =[vi,va,...,v,] is
invertible and ||V =" is uniformly bounded above.

Proof Consider any y € R” such that | y||=1. Then,
1Vyl3 = »y"vVvy
= TV AH A (A
= |4V Tyl
> Amin(A" DA VYI?  (by inequality (A.3))

1 Ty, T
= ViAVy
rmax(A)” ’

= I(A) [y Diag(VTAV) y + y[VT AV — Diag(V" 4V)]y]
max
)\min(A) — ne
Amax(4)

with the last inequality coming from the fact that

n
' Diag(Tav)y =3 yivi v
i=1

inequality (A.3) and the fact that |v] Av;| < € for all i#j. From the above bound and the
alternative definition of ||V~ !||,, it follows that

Amax (4
” V_l “% < max( ) )
)"min(A) — ne
In particular, for € sufficiently small, the result follows. | |
Lemma A5 Let A be positive definite and {vy,...,v,} be unit norm vectors satisfying

I Av;| < e for all i#]. Then, for all € > 0 sufficiently small, there exists a matrix M such that
viTMvj =0 for all i#], vl.Tle- = viTAv,- for all i and |A — M| = O(e).

Proof Let V=[vy,vs,...,v,] and recall that, by Lemma A.4, V is invertible for all € > 0
sufficiently small. Consider the matrix M defined by

M=A—VTW"AV — Diag(VTav) V=" = V- "Diag(V"av)r—".
It is clear by construction that v/ Mv; = 0 for all i #; and that v/ Mv; = v] Av;. Further, observe
that
4 =My =1V (V" AV — Diag(V AV~

< IV "INV AV — Diag(VTAV)) |l ¢

< V" 3ne
with the first inequality coming from the sub-multiplicity property for the spectral norm, the
fact that the spectral norm is invariant under matrix transposition and inequality (A.1) while
the last inequality comes from the fact that v/ Av;| < e for all i #. In particular, since | il

is bounded above for all € > 0 sufficiently small by Lemma A.4, the matrix M satisfies
|4 — M]|,=0(e) and the result follows. |

Proof of Theorem 3.2 Suppose that, at iteration k of the algorithm, By is the current Hessian
estimate. Define ¢, = || B, — A|| and note that, by inequality (A.1), || By — Al» < €.
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Consider n consecutive iterations of the algorithm, beginning at iterate x;, and ending at
iterate x;,,. Without loss of generality, assume that the respective search directions satisfy
lvill=1 for i=k,k+1,...,k+n—1. Recall that by design of the algorithm, these search
directions satisfy vlTBjy,- =0 for any je{k,k+1,....k+n—1} and ie{j—n+1,..., j—1}.
Note that this implies that for any i <je{k,k+1,....k+n—1},

vl Av;| = v Byv; + v/ (4 — B;)v;| < [villllA = B; 1 ]lv; || < ex (A.4)

by inequality (A.1) and the definition of ¢.
Ateachiterationi=k, k+1,..., k+n—1, Algorithm 3.1 obtains the new point by way of
exact line search, getting

V,-T (Ax; +b)
Xitl = Xj — W i
i i
i—1

vIi(Axi + b+ Z]'.:k ajAv;)

=Xi— T Vi
Vi AV,‘
i—1
o vUAxsc+b) Y oyl Av; .
- vl Av; ! vl Av; ”
. IVf(x . . . . .
where «; is defined by o; = —#. Expanding this over n consecutive iterations, we obtain
g . Ty,

k+n—1 VI»TV)(-(X[() k4+n—1 i—1 Ol/'ViTAV/'
SRS S CEM o) CIVEL
= i i = Vi A

In particular, this implies

k*f vI'VIf () .

X — X5 < Xk — Vi — X
” k+n ” = k ‘ V-TAV,' i
i=k i
k+n—1 i—1 T N T
DI *9
vidv, vIAdv; | '
i=k =k gAY Vi A

Let Vi=[Vk, Vit1s - - - » Vian—1]. Since B, — A almost surely by Corollary 2.2, it follows that for
k sufficiently large, €, is sufficiently small almost surely. Therefore, suppose that k is
sufficiently large so that V) is invertible by Lemma A.4 and define M as in Lemma A.5.
Recall that since vy,..., v, ,—1 are conjugate with respect to M; and v,-TAv; = Vl-TMkW, it
follows that

B k+n—1 V,va(xk)

T Ay, = llxx — M ' Vf () — x| (A.6)

Xk v —x*

i=k

Next, recall that since the algorithm is implemented with an exact line search, the objective
function is non-increasing at each iteration. Specifically, for all j, flx;;)<f(x). By
Equation (1.1), it can be seen that

M = X1 = f(xi41) = f(X) < £(x) — f(x) = Sl = x*)13.

This implies that the sequence {x,}r=¢ is bounded. Additionally, along with inequality (A.2),
this implies that for j >k we have,

I VF el < v 1S ()l

= | A(x; — x|

< Vamax(AIlx; — x4
Vimax(Alx = x4

=<
=< )‘«max(A)”xk — X*”
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Combining the above inequality, inequalities (A.3)—(A.6) and Equation (A.8), we conclude
that

nz}\max(A)

[ Xksn — X*I| < [k — MV (k) — x*|| +
)“1211in(A)

lloxk — x*lek. (A7)

Further, observe that since Vf{(x;) = Ax; + b = A(x; — x¥), it follows that

vk — M 'V (x) — x* | = (1 — M A) (e — x¥). (A8)

From this, the fact that {x; —x*},~0 is bounded, and the fact that M; — 4 almost surely, it
follows that

vk — Mg 'V () — x| — 0

almost surely. Combining this result, the fact that €, — 0 almost surely and inequality (A.7), it
follows that ||xj.,—x*|| — 0 almost surely, proving that the algorithm converges almost
surely.

Finally, consider scaling inequality (A.7) by [|x; — x*||, obtaining

_ 1% danax (A) ok
e = X1 _ v = M VY ) =l g I Yl
=l = i = 1 i — ]

Since, by Equation (A.8),

X = M Vf (o) = x* I I — M )i — x|
X — x|l llxk — x|

)

it follows that the first term converges to zero almost surely since M, — A almost surely.
Further, since ¢, — 0 almost surely, the second term converges to zero almost surely. These
two facts together imply that

||Xk+n - X*”
llxk — x*|l

almost surely: by definition, this means the algorithm is n-step superlinearly convergent almost
surely. |



