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Randomized Hessian estimation and directional search
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(Received 25 September 2008; final version received 20 May 2009)

We explore how randomization can help asymptotic convergence proper-
ties of simple directional search-based optimization methods. Specifically,
we develop a cheap, iterative randomized Hessian estimation scheme. We
then apply this technique and analyse how it enhances a random directional
search method. Then, we proceed to develop a conjugate-directional search
method that incorporates estimated Hessian information without requiring
the direct use of gradients.

Keywords: derivative-free optimization; directional search; quasi-Newton;
random search; steepest descent

AMS Subject Classifications: 90C56; 90C53; 65K05

1. Introduction and motivation

Stochastic techniques in directional search algorithms have been well-studied in
solving optimization problems, often where the underlying functions themselves are
random or noisy. Some of these algorithms are based on directional search methods
that obtain a random search direction which approximates a gradient in expectation:
for some background on this class of algorithms, see [4, Ch. 6] or [12, Ch. 5]. For
many algorithms, the broad convergence theory, combined with inherent computa-
tional simplicity, makes them particularly appealing, even for noiseless, deterministic
optimization problems.

In this work, we avoid any direct use of gradient information, relying only on
function evaluations. In that respect, the methods we consider have the flavour of
derivative-free algorithms. Our goal, however, is not the immediate development of a
practical, competitive, derivative-free optimization algorithm: our aim is instead
primarily speculative. In contrast with much of the derivative-free literature, we
make several impractical assumptions that hold throughout this article. We assume
that the function we seek to minimize is twice differentiable and that evaluations of
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that function are reliable, cheap and accurate. Further, we assume that derivative

information is neither available directly nor via automatic differentiation, but it is

well-approximated by finite differencing. Again, for the purposes of speculation,

we assume that any line search subproblem is relatively cheap to solve when

compared to the cost of approximating a gradient. This last assumption is based on

the fact that, asymptotically, the computational cost of a line search should be

independent of the problem dimension, being a one-dimensional optimization

problem, while the number of function evaluations required to obtain a gradient

grows linearly with the problem dimension, based on previous assumptions. Within

this narrow framework, we consider the question as to whether, in principle,

randomization can be incorporated to help simple iterative algorithms achieve good

asymptotic convergence.
Keeping this narrow framework in mind, this article is organized as follows.

In the remainder of this section, we consider a randomized directional search

algorithm that chooses a search direction uniformly at random from the unit sphere

and apply it to convex quadratic functions, comparing convergence results with a

traditional gradient descent algorithm. In Section 2, we introduce a technique of

randomized Hessian estimation and prove some basic properties. In Section 3, we

consider algorithmic applications of our randomized Hessian estimation method.

In particular, we show how Hessian estimates can be used to accelerate the uniformly

random search algorithm introduced in this section and, additionally, how

randomized Hessian estimation can also be used to develop a conjugate direction-

like algorithm.
To illustrate the use of randomization, consider the following basic algorithm:

at each iteration, choose a search direction uniformly at random on the unit

sphere and perform an exact line search. Note that this algorithm has been widely

studied, with analysis appearing in [5] and [11], among others. Further, it was

shown to be linearly convergent for twice differentiable functions under

conditions given in [10].
Consider applying this algorithm to the problem of minimizing a convex

quadratic function f ðxÞ ¼ 1
2 x

TAxþ bTx where A is a symmetric, positive-definite,

n� n matrix. First, defining the energy norm by kxkA ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
xTAx
p

, observe that if the

unique minimizer of f is x*¼�A�1b, then the identity

f ðxÞ � f ðx�Þ ¼ 1
2ðx� x�ÞTAðx� x�Þ ¼ 1

2kx� x�k2A ð1:1Þ

holds. Observe that if the current iterate is x, then the new iterate is given by

xþ ¼ x�
dTðAxþ bÞ

dTAd
d ð1:2Þ

and the new function value is

f ðxþÞ ¼ f ðxÞ �
ðdTðAxþ bÞÞ2

2dTAd
:
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The difference between the current function value and the optimal value is reduced

by the ratio

f ðxþÞ � f ðx�Þ

f ðxÞ � f ðx�Þ
¼ 1�

ðdTðAxþ bÞÞ2

2ðdTAd Þð f ðxÞ � f ðx�ÞÞ

¼ 1�
ðdTðAxþ bÞÞ2

ðdTAd Þððx� x�ÞTAðx� x�ÞÞ

¼ 1�
ðdTAðx� x�ÞÞ2

ðdTAd ÞðððAðx� x�ÞÞTA�1ðAðx� x�ÞÞÞ

� 1�
1

�ðAÞ

�
dT

Aðx� x�Þ

kAðx� x�Þk

�2
,

where �(A)¼kAkkA�1k denotes the condition number of A. Observe that the

distribution of d is invariant under orthogonal transformations. Therefore, let U be

any orthogonal transformation satisfying U
�

Aðx�x�Þ
kAðx�x�Þk

�
¼ e1, the first standard basis

vector. From this, we have

E

" 
dT

Aðx� x�Þ

kAðx� x�Þk

!2

jx

#
¼ E

" 
ðUTd ÞT

Aðx� x�Þ

kAðx� x�Þk

!2

jx

#

¼ E½d21�

¼
1

n
E

��X
i

d2i

��

¼
1

n
,

where the first equality follows from the invariance of the distribution of d and the

third equality follows from the fact that each component of d is identically

distributed. We deduce

E½ f ðxþÞ � f ðx�Þjx� �
�
1�

1

n�ðAÞ

�
ð f ðxÞ � f ðx�ÞÞ ð1:3Þ

with equality when A is a multiple of the identity matrix, in which case �(A)¼ 1.
Compare this with the steepest descent algorithm. A known result about the

steepest descent algorithm in [1] says that given an initial iterate x and letting x̂ be the

new iterate constructed from an exact line search in the negative gradient direction,

f ðx̂Þ � f ðx�Þ �
� �ðAÞ � 1

�ðAÞ þ 1

�2
ð f ðxÞ � f ðx�ÞÞ ¼

�
1�O

� 1

�ðAÞ

��
ð f ðxÞ � f ðx�ÞÞ:

Further, for most initial iterates x, this inequality is asymptotically tight if this

procedure is iteratively repeated. Consider the following asymptotic argument,

applying the assumptions made earlier in this section. Supposing derivative

information is only available through – and well-approximated by – finite

differencing then we can perform an exact (or almost-exact) line search in some

constant number, O(1), of function evaluations. It follows that each iteration of

random search takes O(1) function evaluations. However, since derivative

Optimization 3
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information is only available via finite differencing, computing a gradient takes O(n)
function evaluations. Letting �x be the iterate after performing O(n) iterations of
random search, we obtain that

E

"
f ð �xÞ � f ðx�Þ

f ðxÞ � f ðx�Þ
jx

#
�

�
1�

1

n�ðAÞ

�OðnÞ
¼ 1�O

	
1

�ðAÞ



:

Essentially, the expected improvement of random search is on the same order of
magnitude as steepest descent when measured on a cost per function evaluation
basis. This simple example suggests that randomization techniques may be an
interesting ingredient in the design and analysis of iterative optimization algorithms.

2. Randomized Hessian estimation

In this section, we will consider arbitrary twice-differentiable functions f :Rn
!R. As

in the previous section, assume that these functions can be evaluated exactly, but
derivative information is only available through finite differencing. In particular, for
any vector v2Rn, suppose we can use finite differencing to well-approximate the
second derivative of f at x in the direction v via the formula

vTr2f ðxÞv �
f ðxþ �vÞ � 2f ðxÞ þ f ðx� �vÞ

�2
ð2:1Þ

for some sufficiently small �4 0. In particular, note that by choosing 1
2 nðnþ 1Þ

suitable directions v, we could effectively approximate the entire Hessian r2f(x).
In Section 1, we considered a framework in which computational costs of an

algorithm are measured by the number of function evaluations required and we will
continue with that throughout this article. In particular, it was shown that under this
framework, the steepest descent algorithm, asymptotically, achieves improvement on
the same order of magnitude as a uniformly random search algorithm when applied
to convex quadratics. Ideally, we would like to extend these methods of analysis to
algorithms that incorporate additional information about a function’s behaviour.
For example, instead of calculating a complete Hessian matrix at each iteration,
Newton-like methods rely on approximations to the Hessian matrix which are
iteratively updated, often from successively generated gradient information. To
consider a similar approach in the context of random search, suppose we begin with
an approximation to the Hessian matrix, denoted B, and some unit vector v2Rn.
Consider the new matrix Bþ obtained by making a rank-one update so that the new
matrix Bþ matches the true Hessian in the direction v, i.e.

Bþ ¼ Bþ ðvTðr2f ðxÞ � BÞvÞvvT: ð2:2Þ

This rank-one update results in the new matrix Bþ having the property that vT

Bþv¼ vTr2f(x)v. Note that if this update is performed using the approximate second
derivative via Equation (2.1), then this costs only three function evaluations.
The following result on the space of symmetric n� n matrices, Sn, equipped
with the usual trace inner product and the induced Frobenius norm will be our
primary tool.
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THEOREM 2.1 Given any matrices H, B2Sn, if the random vector d2Rn is uniformly

distributed on the unit sphere, then the matrix

Bþ ¼ Bþ ðdTðH� BÞd ÞddT

satisfies

kBþ �Hk � kB�Hk

and

E½kBþ �Hk2� �
�
1�

2

nðnþ 2Þ

�
kB�Hk2:

Proof Since we can rewrite the update in the form

ðBþ �HÞ ¼ ðB�HÞ �
�
dTðB�HÞd

�
ddT,

we lose no generality in assuming H¼ 0. Again, we lose no generality in assuming

kBk¼ 1, and proving

kBþk � 1 and E½kBþk
2� � 1�

2

nðnþ 2Þ
:

From the equation

Bþ ¼ B� ðdTBd ÞddT,

we immediately deduce

kBþk
2 ¼ kBk2 � ðdTBd Þ2 ¼ 1� ðdTBd Þ2 � 1:

To complete the proof, we need to bound the quantity E[(dTBd)2]. We can

diagonalize the matrix B¼UT(Diag �)U where U is orthogonal and the vector of

eigenvalues �2Rn satisfies k�k¼ 1 by assumption. Using the fact that the

distribution of d is invariant under orthogonal transformations, we obtain

E½ðdTBd Þ2� ¼ E½ðdTUTðDiag �ÞUd Þ2� ¼ E½ðdTðDiag �Þd Þ2�

¼ E

�	Xn
i¼1

�id
2
i


2�
¼ E

�X
i

�2i d
4
i þ

X
i6¼j

�i�jd
2
i d

2
j

�

¼ E½d 4
1 � þ

	X
i6¼j

�i�j



E½d 2

1 d
2
2 �

by symmetry. Since we know that

0 �

	X
i

�i


2

¼
X
i

�2i þ
X
i6¼j

�i�j ¼ 1þ
X
i 6¼j

�i�j,

it follows that

E½ðdTBd Þ2� 	 E½d 4
1 � � E½d 2

1 d
2
2 �:
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Standard results on integrals over the unit sphere in Rn gives the formula

Z
kxk¼1

x�1 d� ¼ 2�
n�1
2

�
�
�þ1
2

�
�
�
�þn
2

� ,
where d� denotes an (n� 1)-dimensional surface element and � denotes the Gamma

function. We deduce

Eðd 4
1 Þ ¼

R
kxk¼1 x

4
1 d�R

kxk¼1 d�
¼

�
�

5
2

�
�
�

n
2þ 2

� 
 �
�

n
2

�
�
�

1
2

� ¼ 3
2 


1
2�

n
2þ 1

�

 n2

¼
3

nðnþ 2Þ
:

Furthermore,

1 ¼
�X

i

d2i

�2
¼
X
i

d 4
i þ

X
i6¼j

d 2
i d

2
j ,

so using symmetry again shows

1 ¼ nE½d 4
1 � þ nðn� 1ÞE½d 2

1 d
2
2�:

From this we deduce

E½d 2
1 d

2
2� ¼

1� nE½d 4
1 �

nðn� 1Þ
¼

1

nðnþ 2Þ
:

Therefore, this shows that

E½ðdTBd Þ2� 	
3

nðnþ 2Þ
�

1

nðnþ 2Þ
¼

2

nðnþ 2Þ
,

so

E½kBþk
2� � 1�

2

nðnþ 2Þ

as required. g

To continue, note that iterating this procedure generates a random sequence of

Hessian approximations which, as shown further, converges almost surely to the true

Hessian.

COROLLARY 2.2 Given any matrices H, B02S
n, consider the sequence of matrices

Bk2S
n for k¼ 0, 1, 2, . . . , defined iteratively by

Bkþ1 ¼ Bk þ

�
ðdkÞ

T
ðH� BkÞd

k
�
dkðdkÞ

T,

where the random vectors d 0, d1, d 2, . . .2Rn are independent and uniformly distributed

on the unit sphere. Then the errors kBk�Hk decrease monotonically, and Bk!H

almost surely.

Proof Again we lose no generality in assuming H¼ 0. By the previous result, it

follows that the random variables kBkk
2 form a supermartingale which is bounded

6 D. Leventhal and A.S. Lewis
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above by kB0k
2. By classical supermartingale convergence results (see e.g. [2]), it

follows that kBkk
2
!Y almost surely for some random variable Y	 0. It remains to

be shown that Y¼ 0 almost everywhere.
Clearly, the random variables Bk are uniformly bounded. Furthermore, if we

define a measure on the space of symmetric n� n matrices, �k, by

�kðUÞ ¼ prfBk 2 Ug

for any measurable set U, then the previous result implies

E½kBkþ1k
2� ¼

Z
E
h
kBkþ1k

2jBk ¼ X
i
d�kðXÞ

�

Z �
1�

2

nðnþ 2Þ

�
kXk2 d�kðXÞ

¼

�
1�

2

nðnþ 2Þ

�
E½kBkk

2�:

Now by monotone convergence we have

E½Y� ¼ E½lim
k
kBkk

2� ¼ lim
k

E½kBkk
2� ¼ 0,

so Y¼ 0 almost everywhere as required. g

In a more realistic framework for optimization, we wish to approximate a

limiting Hessian. In the context of randomized algorithms, such as the ‘random

search’ algorithm described in Section 1, the iterates generated by the algorithm are

now random. By using Hessian information at each iterate to update our Hessian

estimate, we now have to consider that the corresponding sequence of Hessians used

is now itself random, though ideally approaching a limiting Hessian, in addition to

considering the random sequence of Hessian estimates generated by the estimation

procedure of Theorem 2.1. To account for this in the following theorem, recall thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½kXk2�

p
is a norm on the space of random matrices. Applying properties of norms

to this function, as the next result shows, we obtain convergence of the random

Hessian estimates to the limiting Hessian.

THEOREM 2.3 Consider a sequence of random matrices Hk2S
n for k¼ 1, 2, 3, . . . ,

with each E[kHkk
2] finite, and a fixed matrix �H 2 Sn such that E½kHk � �Hk2�! 0.

Consider a sequence of random matrices Bk2S
n for k¼ 0, 1, 2, . . . , with E[kB0k

2] finite,

related by the iterative formula

Bkþ1 ¼ Bk þ

�
ðdkÞ

T
ðHk � BkÞd

k
�
dkðdkÞ

T,

where the random vectors d 0, d1, d 2, . . .2Rn are independent and uniformly distributed

on the unit sphere. Then E½kBk � �Hk2�! 0.

Proof By Corollary 2.2, we know for each k¼ 0, 1, 2, . . . the inequality

kBkþ1 �Hkk
2 � kBk �Hkk

2

holds. Hence by induction it follows that E[kBkk
2] is finite for all k	 0.
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Define a number

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

2

nðnþ 2Þ

s
2 ð0, 1Þ:

By Theorem 2.1, we have

E½kBkþ1 �Hkk
2jBk,Hk� � r2kBk �Hkk

2:

Once again, define a measure �k by

�kðSÞ ¼ prfðBk,HkÞ 2 Sg

for any measurable set S. Then we have

E½kBkþ1 �Hkk
2� ¼

Z
E½kBkþ1 �Hkk

2jðBk,HkÞ ¼ ðB,HÞ�d�kðB,HÞ

�

Z
r2kB�Hk2 d�kðB,HÞ

¼ r2E½kBk �Hkk
2�:

Applying the triangle inequality property of norms givesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½kBkþ1 � �Hk2�

q
� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½kBk � �Hk2�

q
þ ð1þ rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½kHk � �Hk2�

q
:

Now fix any number �4 0. By assumption, there exists an integer �k such that for all

integers k 	 �k we have

E½kHk � �Hk2� �

 
�ð1� rÞ

2ð1þ rÞ

!2

:

Hence, for all k 	 �k, we deduceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EkBkþ1 � �Hk2�

q
� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½kBk � �Hk2�

q
þ
�ð1� rÞ

2
:

For such k, if E½kBk � �Hk2� � �2, thenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½kBkþ1 � �Hk2�

q
�
�ð1þ rÞ

2
5 �,

whereas if E½kBk � �Hk2�4 �2, then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½kBkþ1 � �Hk2�

q
5 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½kBk � �Hk2�

q
þ
1� r

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½kBk � �Hk2�

q

¼
1þ r

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½kBk � �Hk2�

q
:

Consequently, E½kBk � �Hk2� � �2 for all large k. Since �4 0 was arbitrary, the result

follows. g
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3. Applications to algorithms

3.1. Random search, revisited

Return to the convex quadratic function f ðxÞ ¼ 1
2 x

TAxþ bTx considered in

Section 1, where A is a positive definite, n� n matrix and x* is the unique

minimizer. Recall that if we consider the iterative algorithm given by Equation (1.2),

letting d be a unit vector uniformly distributed on the unit sphere and letting

xþ ¼ x�
dTðAxþ bÞ

dTAd
d,

then it was shown in inequality (1.3) that

E½ f ðxþÞ � f ðx�Þjx� �
�
1�

1

n�ðAÞ

�
ð f ðxÞ � f ðx�ÞÞ:

Now, suppose that H is a positive-definite estimate of the matrix A and consider the

Cholesky factor matrix C such that CCT
¼H�1. Suppose that instead of performing

an exact line search in the uniformly distributed direction d, we instead perform the

line search in the direction Cd. From this we obtain

f ðxþÞ � f ðx�Þ

f ðxÞ � f ðx�Þ
¼ 1�

ðdTCTðAxþ bÞÞ2

2ðdTCTACd Þð f ðxÞ � f ðx�ÞÞ

¼ 1�
ðdTCTðAxþ bÞÞ2

ðdTCTACd Þððx� x�ÞTAðx� x�ÞÞ

¼ 1�
dTðCTAðx� x�ÞÞ
� �2

dTðCTACÞdð Þ ðCTAðx� x�ÞÞTðCTACÞ�1ðCTAðx� x�ÞÞ
� �

� 1�
1

�ðCTACÞ
dT

CTAðx� x�Þ

kCTAðx� x�Þk

	 
2

,

allowing us to conclude that

E½ f ðxþÞ � f ðx�Þjx� �
�
1�

1

n�ðCTACÞ

�
ð f ðxÞ � f ðx�ÞÞ:

This provides the same convergence rate as performing the random search algorithm

given by Equation (1.2) on the function gðxÞ ¼ 1
2x

TðCTACÞxþ bTx. Consider an

implementation of this algorithm using the Hessian approximation technique

described in Section 2. Given a current iterate xk�1 and Hessian approximation Bk�1,

we can proceed as follows. First, form the new Hessian approximation Bk given by

Equation (2.2), choosing the update vector uniformly at random from the unit

sphere. Observe that by Corollary 2.2, if A is positive definite, then Bk be will be

positive definite as well almost surely for all sufficiently large k, in which case, obtain

the Cholesky factorization B�1k ¼ CkC
T
k . Otherwise, one suggested heuristic,

implemented below, is to obtain the projection of Bk onto the positive semi-definite

cone, denoted Bþk , and perform the Cholesky factorization CkC
T
k ¼ ðB

þ
k þ �IÞ

�1 for

some �4 0. Finally, we can find the next iterate xk by a line search in the direction

Ckdk where dk is uniformly distributed on the unit sphere.
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Since Bk!A almost surely by Corollary 2.2, it follows Ck ! A�
1
2 almost surely

as well. Therefore, it follows that

E½ f ðxkþ1Þ � f ðx�Þjxk�

f ðxkÞ � f ðx�Þ
� 1�

1

n�ðCT
kACkÞ

! 1�
1

n
:

Thus, the uniformly random search algorithm incorporating the Hessian update
provides linear convergence with asymptotic rate 1� 1

n, independent of the
conditioning of the original matrix.

Below are two examples of the algorithm’s behaviour with a convex quadratic
function f(x)¼ 0.5xTAxþ bTx, where b¼ [1, 1, . . . , 1]T. The first example uses a
Hilbert Matrix of size 7 (with condition number on the order of 108) while the second
uses the matrix A¼Diag(1, 7, 72, . . . , 76). In each case, we compare uniformly the
random search with the Cholesky-weighted random search described earlier, using
the projection heuristic when the Hessian estimate is not positive definite.
Additionally, each search vector and Hessian update vector, when applicable, was
chosen independently in each example and, when applicable, an exact Hessian
update was implemented.

3.2. A conjugate directions algorithm

Coordinate descent algorithms have a long and varied history in differentiable
minimization. In the worst case, examples of continuously differentiable functions
exist in [9] where a coordinate descent algorithm will fail to converge to a first-order
stationary point. On the other hand, for twice-differentiable, strictly convex
functions, variants of coordinate descent methods were shown to be linearly
convergent in [6]. In either case the simplicity of such algorithms, along with the lack
of a need for gradient information, often makes them appealing.

Let us briefly return to the example of a convex quadratic function
f ðxÞ ¼ 1

2 x
TAxþ bTx. Consider algorithms, similar to coordinate descent algorithms,

that choose search directions by cycling through some fixed set W¼ {w1, . . . ,wn},
performing an exact line search at each iteration. If the search directions in W
happen to be A-conjugate, satisfying wT

i Awj ¼ 0 for all i 6¼ j, then we actually reach
the optimal solution in n iterations. Alternatively, if our set of search directions fails
to account for the function’s second-order behaviour, convergence can be

10 D. Leventhal and A.S. Lewis
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significantly slower. Explicitly generating a set of directions that are conjugate with

respect to the Hessian requires knowledge of the function’s Hessian information.

Methods were proposed in [8], and expanded upon in [3,7,13] among others, that

begin as coordinate descent algorithms and iteratively adjust the search directions,

gradually making them conjugate with respect to the Hessian matrix. Further, these

adjustments are based on the results of previous line searches without actually

requiring full knowledge of the Hessian or any gradients.
We propose an alternative approach for arbitrary twice-differentiable functions.

If an estimate of the Hessian was readily available, we could take advantage of it

by generating search directions iteratively that are conjugate with respect to

the estimate. This suggests that we can design an algorithm using the Hessian

estimation technique in Section 2 to dynamically generate new search directions that

have the desired conjugacy properties. We can formalize this in the following

algorithm.

Algorithm 3.1 Let f be a twice-differentiable function, x0 an initial starting point, B0

and initial Hessian estimate and {v�n, v�(n�1), . . . , v�1} an initial set of search

directions. For k¼ 0, 1, 2, . . .

(1) Compute the vector vk that is Bk-conjugate to vk�1, . . . , vk�nþ1.
(2) Compute xkþ1 as a result of a (two-way) line search in the direction vk.
(3) Compute Bkþ1 according to Equation (2.2), letting dk be uniformly

distributed on the unit sphere and computing

Bkþ1 ¼ Bk þ ðdkðr
2f ðxkþ1Þ � BkÞdkÞdkd

T
k :

One simple initialization scheme takes B0¼ I and {v�n, . . . , v�1}¼ {e1, . . . , en}, the

standard basis vectors.
Since Bk is our Hessian approximation at the current iterate xk, a reasonable

initial step size is given by xkþ1¼ xk� tkvk, where tk ¼
vT
k
rf ðxkÞ

vT
k
Bkvk

, corresponding to an

exact line search in the direction vk of the quadratic model. The advantage to this

approach is that each iteration requires only directional derivatives and, being highly

iterative, this interpolates nicely with the Hessian update derived in Section 2.

Specifically, when using the fixed step size mentioned earlier, each iteration takes

exactly five function evaluations: f(xk), f(xk� �vk), and f(xk� �dk) where vk and dk
are the search direction and the random unit vector, respectively.

The essence of this algorithm lies in using our randomized Hessian estimation

technique to update a quadratic model and then performing a line search. Since we

are relying solely on function evaluations, this algorithm has the ‘flavour’ of

derivative-free optimization. However, it should be noted that a different perspective

can be taken with regards to this algorithm, permitting a comparison with Newton-

like methods.
Typical Newton-like methods maintain, along with the current iterate xk, a

(positive-definite) Hessian estimate Bk and proceed by performing some type of line

search in the direction �B�1k rf ðxkÞ. For simplicity, consider a step size of 1, i.e.

xkþ1¼xk � B�1k rf ðxkÞ. Recall that computing B�1k rf ðxkÞ, equivalent to solving

the system Bky¼rf(xk) for y, can be done indirectly by searching in n different

Bk-conjugate directions.
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Specifically, suppose we have a set of directions {v1, . . . , vn} that are Bk-conjugate,

satisfying vTi Bkvj ¼ 0 for all i 6¼ j and take x0¼ xk, our current iterate. For i¼ 1, . . . , n,

let xi ¼ xi�1 �
vTi rf ðxkÞ

vT
i
Bkvi

vi. Then it follows that

xn ¼ x0 �
Xn
i¼1

vTi rf ðxkÞ

vTi Bkvi
vi ¼ xk � B�1k rf ðxkÞ,

the Newton-like step. Given this interpretation of Newton-like methods, consider the

version of Algorithm 3.1 where, at each iteration, the step size is fixed beforehand at

tk ¼
vT
k
rf ðxkÞ

vT
k
Bkvk

. Then one can interpret Algorithm 3.1 as an iterated version of a

Newton-like method. Specifically, while the Newton-like method indirectly involves

computing the quantities vTi rf ðxkÞ and vTi Bkvi with the iterate xk and Hessian

estimate Bk fixed, Algorithm 3.1 allows for a dynamically changing gradient and

Hessian approximation at each conjugate direction step.
Given this connection between Algorithm 3.1 and traditional Newton-like

methods, it seems natural to expect superlinear convergence under similar

assumptions. This is demonstrated in the next theorem.

THEOREM 3.2 Consider the strictly convex quadratic function f ðxÞ ¼ 1
2 x

TAxþ bTx

where A is a positive definite matrix. Then for any initial point x0, initial Hessian

estimate B0 and initial search directions, Algorithm 3.1 is n-step superlinearly

convergent almost surely when implemented with an exact line search.

The proof of this result can be found in the Appendix.
In the following example, we again consider two convex quadratic functions

1
2 x

TAxþ bTx where, again, A is a Hilbert matrix of dimension 7 and A¼Diag(1, 7,

72, . . . , 76), respectively with b¼ [1, 1, . . . , 1]T. The above algorithm was implemented

with an exact line search and exact directional second derivatives.

Additionally, we considered two examples of this algorithm on a variant of the

Rosenbrock function, given by

f ðxÞ ¼
Xn�1
i¼1

h
ð1� xiÞ

2
þ 10ðxiþ1 � x2i Þ

2
i
,
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for n¼ 2, 3. It was implemented with �¼ 10�4, initial iterate [0, 0, . . . , 0] and a
backtracking line search with initial step size equal to that suggested by the exact
quadratic model, estimated via finite differencing, thereby making each iteration
require five function evaluations plus any extra cost incurred by the line search.
Below, we plot the difference between the present and optimal function against the
number of function evaluations required.

4. Conclusion

Randomization provides an interesting perspective for a variety of algorithms.
Consider the perspective adhered to in this article in which our cost measure is the
number of function evaluations required, assuming line searches are relatively cheap
being a one-dimensional optimization problem, and with derivative information only
available through (and well-approximated by) finite differencing. It was then shown
in Section 1 that random search is comparable to steepest descent. Then, using the
Hessian estimation technique introduced in Section 2, Section 3 demonstrated how
these techniques can be used to accelerate random search. Finally, we devised a
conjugate directions algorithm that incorporates second derivative information
without directly requiring gradient information while sharing certain behaviours
with more traditional Newton-like methods.

We make no claim that the conceptual techniques described earlier, in their pure
form, are competitive with already-known derivative-based or derivative-free
algorithms. We simply intend to illustrate how incorporating randomization
provides a novel approach to the design of algorithms, even in very simple
optimization schemes, suggesting that it may deserve further consideration. Note
that all the algorithms considered in this paper, at each iteration, require only
directional derivative or directional second-order information, creating a connection
between the realms of derivative-free and derivative-based algorithms when this
derivative information is well-approximated by finite differencing.
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Appendix

The appendix to this article is dedicated to prove Theorem 3.2, the superlinear convergence of
Algorithm 3.1 on convex quadratic functions. Before doing so, we define some notation. For a
matrix, A, the spectral norm of A is the quantity kAk29maxkxk¼1kAxk and the Frobenius norm
of A is given by kAkF :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i,j a

2
ij

q
. If A is invertible, then kA�1k2 can also be expressed as the

smallest constant K such that kAxk2 	
1
K kxk2 for all vectors x. Let Diag(A) be the matrix

whose diagonal matches that of A and whose non-diagonal entries are zero. Further, these
norms satisfy

kAk2 � kAkF �
ffiffiffi
n
p
kAk2, ðA:1Þ

kAxk2 � �maxðAÞkxk
2
A � �maxðAÞ

2
kxk22 ðA:2Þ

and

�minðAÞkxk
2
2 � kxk

2
A ðA:3Þ
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where �max(A) and �min(A) are the maximum and minimum eigenvalues of A, respectively.
The proof of Theorem 3.2 will be broken into several lemmas, as follows.

LEMMA A.4 Let A be positive definite and {v1, . . . , vn} be unit norm vectors satisfying
jvTi Avj j5 � for all i 6¼ j. Then, for all �4 0 sufficiently small, the matrix V¼ [v1, v2, . . . , vn] is
invertible and kV�1k is uniformly bounded above.

Proof Consider any y2Rn such that kyk¼ 1. Then,

kVyk22 ¼ yTVTVy

¼ ð yTVTA
1
2ÞA�1ðA

1
2VyÞ

¼ kA
1
2VTyk2A�1

	 �minðA
�1ÞkA

1
2Vyk2 (by inequality (A.3))

¼
1

�maxðAÞ
yTVTAVy

¼
1

�maxðAÞ
½ yTDiagðVTAVÞ yþ yT½VTAV�DiagðVTAVÞ� y�

	
�minðAÞ � n�

�maxðAÞ
,

with the last inequality coming from the fact that

yTDiagðVTAVÞ y ¼
Xn
i¼1

y2i v
T
i Avi,

inequality (A.3) and the fact that jvTi Avj j5 � for all i 6¼ j. From the above bound and the
alternative definition of kV�1k2, it follows that

kV�1k22 �
�maxðAÞ

�minðAÞ � n�
:

In particular, for � sufficiently small, the result follows. g

LEMMA A.5 Let A be positive definite and {v1, . . . , vn} be unit norm vectors satisfying

jvTi Avj j5 � for all i 6¼ j. Then, for all �4 0 sufficiently small, there exists a matrix M such that

vTi Mvj ¼ 0 for all i 6¼ j, vTi Mvi ¼ vTi Avi for all i and kA�Mk¼O(�).

Proof Let V¼ [v1, v2, . . . , vn] and recall that, by Lemma A.4, V is invertible for all �4 0
sufficiently small. Consider the matrix M defined by

M ¼ A� V�TðVTAV�DiagðVTAVÞÞV�1 ¼ V�TDiagðVTAVÞV�1:

It is clear by construction that vTi Mvj ¼ 0 for all i 6¼ j and that vTi Mvi ¼ vTi Avi. Further, observe
that

kA�Mk2 ¼ kV
�TðVTAV�DiagðVTAVÞÞV�1k2

� kV�1k22kðV
TAV�DiagðVTAVÞÞkF

� kV�1k22n�

with the first inequality coming from the sub-multiplicity property for the spectral norm, the
fact that the spectral norm is invariant under matrix transposition and inequality (A.1) while
the last inequality comes from the fact that jvTi Avj j5 � for all i 6¼ j. In particular, since kV�1k
is bounded above for all �4 0 sufficiently small by Lemma A.4, the matrix M satisfies
kA�Mk2¼O(�) and the result follows. g

Proof of Theorem 3.2 Suppose that, at iteration k of the algorithm, Bk is the current Hessian
estimate. Define �k¼kBk�AkF and note that, by inequality (A.1), kBk�Ak2� �k.
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Consider n consecutive iterations of the algorithm, beginning at iterate xk and ending at
iterate xkþn. Without loss of generality, assume that the respective search directions satisfy
kvik¼ 1 for i¼ k, kþ 1, . . . , kþ n� 1. Recall that by design of the algorithm, these search
directions satisfy vTi Bjvj ¼ 0 for any j2 {k, kþ 1, . . . , kþ n� 1} and i2 { j� nþ 1, . . . , j� 1}.
Note that this implies that for any i5 j2 {k, kþ 1, . . . , kþ n� 1},

jvTi Avj j ¼ jv
T
i Bjvj þ vTi ðA� Bj Þvj j � kvikkA� Bj k2kvj k � �k ðA:4Þ

by inequality (A.1) and the definition of �k.
At each iteration i¼ k, kþ 1, . . . , kþ n� 1, Algorithm 3.1 obtains the new point by way of

exact line search, getting

xiþ1 ¼ xi �
vTi ðAxi þ bÞ

vTi Avi
vi

¼ xi �
vTi ðAxk þ bþ

Pi�1
j¼k 	jAvj Þ

vTi Avi
vi

¼ xi �
vTi ðAxk þ bÞ

vTi Avi
vi �

Pi�1
j¼k 	jv

T
i Avj

vTi Avi
vi,

where 	j is defined by 	j ¼ �
vTj rf ðxj Þ

vT
j
Avj

. Expanding this over n consecutive iterations, we obtain

xkþn ¼ xk �
Xkþn�1
i¼k

vTi rf ðxkÞ

vTi Avi
vi �

Xkþn�1
i¼k

Xi�1
j¼k

	jv
T
i Avj

vTi Avi
vi:

In particular, this implies

kxkþn � x�k �

�����xk �
Xkþn�1
i¼k

vTi rf ðxkÞ

vTi Avi
vi � x�

�����
þ
Xkþn�1
i¼k

Xi�1
j¼k

����� v
T
j rf ðxj Þ

vTj Avj

vTi Avj

vTi Avi

�����: ðA:5Þ

Let Vk¼ [vk, vkþ1, . . . , vkþn�1]. Since Bk!A almost surely by Corollary 2.2, it follows that for
k sufficiently large, �k is sufficiently small almost surely. Therefore, suppose that k is
sufficiently large so that Vk is invertible by Lemma A.4 and define Mk as in Lemma A.5.
Recall that since vk, . . . , vkþn�1 are conjugate with respect to Mk and vTi Avi ¼ vTi Mkvi, it
follows that �����xk �

Xkþn�1
i¼k

vTi rf ðxkÞ

vTi Avi
vi � x�

����� ¼ kxk �M�1k rf ðxkÞ � x�k: ðA:6Þ

Next, recall that since the algorithm is implemented with an exact line search, the objective
function is non-increasing at each iteration. Specifically, for all j, f(xjþ1)� f (xj). By
Equation (1.1), it can be seen that

1
2kxjþ1 � x�k2A ¼ f ðxjþ1Þ � f ðx�Þ � f ðxjÞ � f ðx�Þ ¼ 1

2kxj � x�k2A:

This implies that the sequence {xk}k	0 is bounded. Additionally, along with inequality (A.2),
this implies that for j	 k we have,

jvTj rf ðxj Þj � kvj kkrf ðxj Þk

¼ kAðxj � x�Þk

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�maxðAÞ

p
kxj � x�kA

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�maxðAÞ

p
kxk � x�kA

� �maxðAÞkxk � x�k:

16 D. Leventhal and A.S. Lewis
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Combining the above inequality, inequalities (A.3)–(A.6) and Equation (A.8), we conclude
that

kxkþn � x�k � kxk �M�1k rf ðxkÞ � x�k þ
n2�maxðAÞ

�2minðAÞ
kxk � x�k�k: ðA:7Þ

Further, observe that since rf(xk)¼Axkþ b¼A(xk� x*), it follows that

kxk �M�1k rf ðxkÞ � x�k ¼ kðI�M�1k AÞðxk � x�Þk: ðA:8Þ

From this, the fact that {xk� x*}k	0 is bounded, and the fact that Mk!A almost surely, it
follows that

kxk �M�1k rf ðxkÞ � x�k ! 0

almost surely. Combining this result, the fact that �k! 0 almost surely and inequality (A.7), it
follows that kxkþn� x*k! 0 almost surely, proving that the algorithm converges almost
surely.

Finally, consider scaling inequality (A.7) by kxk� x*k, obtaining

kxkþn � x�k

kxk � x�k
�
kxk �M�1k rf ðxkÞ � x�k

kxk � x�k
þ

n2�maxðAÞ
�2
min
ðAÞ
kxk � x�k�k

kxk � x�k
:

Since, by Equation (A.8),

kxk �M�1k rf ðxkÞ � x�k

kxk � x�k
¼
kðI�M�1k AÞðxk � x�Þk

kxk � x�k
,

it follows that the first term converges to zero almost surely since Mk!A almost surely.
Further, since �k! 0 almost surely, the second term converges to zero almost surely. These
two facts together imply that

kxkþn � x�k

kxk � x�k
! 0

almost surely: by definition, this means the algorithm is n-step superlinearly convergent almost
surely. g
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