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Abstract. Identification of active constraints in constrained optimization is of interest from both prac-
tical and theoretical viewpoints, as it holds the promise of reducing an inequality-constrained problem to an
equality-constrained problem, in a neighborhood of a solution. We study this issue in the more general setting
of composite nonsmooth minimization, in which the objective is a composition of a smooth vector function c

with a lower semicontinuous function h, typically nonsmooth but structured. In this setting, the graph of the
generalized gradient ∂h can often be decomposed into a (nondisjoint) union of simpler subsets. “Identification”
amounts to deciding which subsets of the graph are “active” in the criticality conditions at a given solution. We
give conditions under which any convergent sequence of approximate critical points finitely identifies the ac-
tivity. Prominent among these properties is a condition akin to the Mangasarian–Fromovitz constraint qua-
lification, which ensures boundedness of the set of multiplier vectors that satisfy the optimality conditions at
the solution.
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1. First-order conditions for composite optimization. The composite opti-
mization model

min
x

hðcðxÞÞ;ð1:1Þ

for extended-valued functions h∶Rm → R̄ and smooth vector functions c∶Rn → Rm,
unifies a wide variety of interesting concrete optimization problems. In applications, the
function h typically has a simple structure, and it is often convex. Here we consider
the general case, while noting throughout how convexity simplifies matters. Assuming
the inner function c is everywhere defined simplifies notation; the case where its domain
is an open subset of Rn is a trivial extension. Because h can take values in the extended
reals R̄ ¼ ½−∞;þ∞�, we can easily model constraints.

In this work we study “active-set” ideas in this composite framework. In classical
nonlinear programming, if an algorithm can identify which inequality constraints hold
with equality at the optimal solution, then the problem reduces to the simpler case of
equality-constrained optimization. The identification problem is surveyed extensively in
[6], where the authors also describe an elegant general technique for solving it exactly
without assuming strict complementarity or uniqueness of Lagrange multipliers, relying
only on the Mangasarian–Fromovitz constraint qualification.

Our interest here is the more general composite optimization problem (1.1), rather
than classical nonlinear programming. Like [6], we rely only on the Mangasarian–
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Fromovitz condition (or rather its appropriate generalization). However, unlike [6], our
aim is not to solve the identification problem exactly; instead we study an easier pro-
blem, which in nonlinear programming amounts to identifying a “sufficient” set of the
constraints to reduce to equality-constrained optimization. Our approach is an extensive
generalization of the nonlinear programming case developed in [16]. Our main result is
rather easy to prove: rather than refining the classical case, its intent is to provide a
simple conceptual framework for more general active-set techniques.

We begin with a quick review of the first-order optimality conditions, which rely on
standard ideas from nonsmooth optimization and variational analysis. We refer to the
monographs [5], [20], [14], [15] for more details. In particular, we follow the notation and
terminology of [20].

Consider a point y in a closed subset S of the space Rn, endowed with its usual
Euclidean norm. A vector w ∈ Rn is tangent to S at y if there exists a sequence of points
yr ∈ S with yr → y and a sequence of scalars τr ∈ Rþ such that τrðyr − yÞ → w. The
cone of such tangent vectors is denoted TSðyÞ. On the other hand, z is normal to S at y if
there exist sequences of points yr → y and ur → y, and a sequence of scalars τr ∈ Rþ,
such that each ur is a nearest point to yr in S and τrðyr − urÞ → z. The set of such
normal vectors is denoted NSðyÞ. (This definition, in fact, describes the “limiting prox-
imal normal cone”; in our finite-dimensional setting it coincides with the normal cone of
[5], [20], [14], [15].) When S is convex, the normal cone coincides with the classical nor-
mal cone of convex analysis, and when S is a smooth manifold, it coincides with the
classical normal space. If hw; zi ≤ 0 for all w ∈ TSðyÞ and z ∈ NSðyÞ, as holds, in par-
ticular, if S is convex or a smooth manifold, then S is called Clarke regular at y.

For a lower semicontinuous function h∶Rm → R̄ with epigraph

epi h ¼ fðc;ρÞ ∈ Rm × R∶ρ ≥ hðcÞg;

at any point c̄ ∈ Rm where the value hðc̄Þ is finite, the subdifferential and horizon sub-
differential are defined by

∂hðc̄Þ ¼ fw ∈ Rm∶ðw;−1Þ ∈ N epi hðc̄; hðc̄ÞÞg;ð1:2aÞ

∂∞hðc̄Þ ¼ fw ∈ Rm∶ðw; 0Þ ∈ N epi hðc̄; hðc̄ÞÞg;ð1:2bÞ

respectively. (If hðc̄Þ is infinite, we define ∂hðc̄Þ ¼ ∅ and ∂h∞ðc̄Þ ¼ f0g.) The point c̄ is
critical if 0 ∈ ∂hðc̄Þ. If h is convex, ∂hðc̄Þ coincides with the classical object of convex
analysis, and ∂∞hðc̄Þ is the normal cone to the domain of h at c̄. If, on the other hand, h is
smooth at c̄, then ∂hðc̄Þ ¼ f∇hðc̄Þg, and ∂∞hðc̄Þ ¼ f0g. The function h is called subdif-
ferentially regular at c̄ if epi h is Clarke regular at the point ðx̄; hðc̄ÞÞ, as holds, in par-
ticular, if h is convex or smooth.

Throughout this work, we make the following rather standard blanket assumption.
Assumption 1. The function h∶Rm → R̄ is lower semicontinuous and the function

c∶Rn → Rm is continuously differentiable. The point x̄ ∈ Rm is critical for the composite
function h ∘ c, and it satisfies the condition

∂∞hðcðx̄ÞÞ ∩ Nð∇cðx̄Þ�Þ ¼ f0g:ð1:3Þ

Here, the map∇cðx̄Þ∶Rn → Rm is the Jacobian mapping, � denotes the adjoint, and
Nð·Þ denotes the null space. Equation (1.3) is called a regularity (or transversality) con-
dition.
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Assumption 1 implies, via a standard chain rule [20, Theorem 10.6], the existence of
a vector v ∈ Rm satisfying the conditions

v ∈ ∂hðcðx̄ÞÞ; ∇cðx̄Þ�v ¼ 0:ð1:4Þ

By analogy with classical nonlinear programming (as we shall see), we call a vector v ∈
Rm satisfying the conditions (1.4) a multiplier vector for the critical point x̄.

In seeking to solve the problem (1.1), we thus focus attention on pairs ðx; vÞ ∈ Rn ×
Rm solving the system

ðcðxÞ; vÞ ∈ gphð∂hÞ; ∇cðxÞ�v ¼ 0;ð1:5Þ

written in terms of the graph of the subdifferential of h. Assumption 1 implies that this
system is solvable with x ¼ x̄. Conversely, if the function h is subdifferentially regular at
the point cðxÞ, then this system implies that x is a critical point of the composite function
h ∘ c, via another standard chain rule [20, Theorem 10.6].

Solving the system (1.5) is often difficult in part because the graph gphð∂hÞ may
have a complicated structure. Active-set methods from classical nonlinear programming
and its extensions essentially restrict attention to a suitable subset of gphð∂hÞ, thereby
narrowing a local algorithmic search for a critical point. We therefore make the following
definition.

DEFINITION 1.1. An actively sufficient set for a critical point x̄ of the composite func-
tion h ∘ c is a set G ⊂ gphð∂hÞ containing a point of the form ðcðx̄Þ; v̄Þ, where v̄ is a
multiplier vector for x̄.

The central idea we explore in this work is how to “identify” actively sufficient sets
from among the parts of a decomposition of the graph gphð∂hÞ. We present conditions
ensuring that any sufficiently accurate approximate solution of system (1.5) with
the pair ½x; hðcðxÞÞ� sufficiently near the pair ½x̄; hðcðx̄ÞÞ� identifies an actively sufficient
set.

2. The case of classical nonlinear programming. To illustrate the abstract
composite optimization framework, we consider the special case of classical nonlinear
programming, which we state as follows:

8>>><
>>>:

inf f ðxÞ
subject to piðxÞ ¼ 0 ði ¼ 1; 2; : : : ; sÞ;

qjðxÞ ≤ 0 ðj ¼ 1; 2; : : : ; tÞ;
x ∈ Rn;

ðNLPÞ

where the functions f ; pi; qj∶Rn → R are all continuously differentiable.
We can model the problem (NLP) in our composite form (1.1) by defining a con-

tinuously differentiable function c∶Rn → R× Rs × Rt and a polyhedral function h∶R×
Rs × Rt → R̄ through

cðxÞ ¼ ðf ðxÞ; pðxÞ; qðxÞÞ ðx ∈ RnÞ;ð2:1aÞ

hðu; y;wÞ ¼
�
u ðy ¼ 0; w ≤ 0Þ
þ∞ ðotherwiseÞ ðu ∈ R; y ∈ Rs; w ∈ RtÞ.ð2:1bÞ

Clearly for any point x ∈ Rn, the adjoint map ∇cðxÞ�∶R× Rs × Rt → Rn is given by
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∇cðxÞ�ðθ; λ;ϕÞ ¼ θ∇f ðxÞ þ
X
i

λi∇piðxÞ þ
X
j

ϕj∇qjðxÞ:

The subdifferential and horizon subdifferential of h at any point ðu; 0; wÞ ∈
R× Rs × Rt

− are given by

∂hðu; 0; wÞ ¼ f1g× Rs × fϕ ∈ Rtþ∶hϕ; wi ¼ 0g;
∂∞hðu; 0; wÞ ¼ f0g× Rs × fϕ ∈ Rtþ∶hϕ; wi ¼ 0g:

(Elsewhere in R× Rs × Rt, these two sets are, respectively, ∅ and f0g.)
Armed with these calculations, consider any critical point x̄ (or, in particular, any

local minimizer for the nonlinear program). By assumption, x̄ is a feasible solution. Clas-
sically, the active set is

J̄ ¼ fj∶qjðx̄Þ ¼ 0g:ð2:2Þ

The regularity condition (1.3) becomes the following assumption.
Assumption 2 (Mangasarian–Fromovitz). The only pair ðλ;ϕÞ ∈ Rs × Rtþ satisfy-

ing ϕj ¼ 0 for j ∈= J̄ and
X
i

λi∇piðx̄Þ þ
X
j

ϕj∇qjðx̄Þ ¼ 0

is ðλ;ϕÞ ¼ ð0; 0Þ.
In this framework, what we have called a multiplier vector for the critical point x̄ is

just a triple ð1; λ̄; ϕ̄Þ ∈ R× Rs × Rtþ satisfying ϕ̄j ¼ 0 for j ∈= J̄ and

∇f ðx̄Þ þ
X
i

λ̄i∇piðx̄Þ þ
X
j

ϕ̄j∇qjðx̄Þ ¼ 0:ð2:3Þ

It is evident that the solvability of the system (1.4) retrieves the classical first-
order criticality conditions: existence of Lagrange multipliers under the Mangasarian–
Fromovitz constraint qualification.

Nonlinear programming is substantially more difficult than solving nonlinear sys-
tems of equations, because we do not know the active set J̄ in advance. Active-set meth-
ods try to identify J̄ , since, once this set is known, we can find a stationary point by
solving the system

∇fðxÞ þ
X
i

λi∇piðxÞ þ
X
j∈J̄

ϕj∇qjðxÞ ¼ 0;

piðxÞ ¼ 0 ði ¼ 1; 2; : : : ; pÞ;
qjðxÞ ¼ 0 ðj ∈ J̄Þ;

which is a nonlinear system of nþ pþ jJ̄ j equations for the vector ðx; λ;ϕJ̄ Þ ∈ Rn×
Rp × RjJ̄ j. Our aim here is to formalize this process of identification, generalizing the
approach of [16] to the broader framework of composite minimization.

3. Main result. We start with a useful tool.
LEMMA 3.1. Under Assumption 1, the set of multiplier vectors for x̄ is nonempty and

compact.
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Proof. We have already observed the existence of a multiplier vector. Since the
subdifferential ∂hðcðx̄ÞÞ is a closed set, the set of multipliers must also be closed. Assum-
ing for contradiction that this set is unbounded, we can find a sequence fvrg with jvrj →
∞ and

vr ∈ ∂hðcðx̄ÞÞ; ∇cðx̄Þ�vr ¼ 0:

By defining wr ≔ vr ∕ jvrj, we have jwrj≡ 1, and hence without loss of generality we can
assume wr → w̄ with jw̄j ¼ 1. Clearly, since wr ∈ Nð∇cðx̄Þ�Þ and the null space is
closed, we have w̄ ∈ Nð∇cðx̄Þ�Þ. On the other hand, w̄ ∈ ∂∞hðcðx̄ÞÞ follows from the
definition of the horizon subdifferential. Since w̄ ≠ 0 we have a contradiction to condi-
tion (1.3). ▯

We are ready to present the main result.
THEOREM 3.2. Suppose Assumption 1 holds, and consider any closed set G ⊂

gphð∂hÞ. There exists a number ϵ > 0 such that if a sequence of points xr → x̄ and pairs
ðcr; vrÞ ∈ gphð∂hÞ satisfy cr → cðx̄Þ, hðcrÞ → hðcðx̄ÞÞ, and ∇cðxrÞ�vr → 0, and if
furthermore distððcr; vrÞ; GÞ < ϵ for infinitely many r ¼ 1; 2; 3; : : : , thenG is an actively
sufficient set for x̄.

Proof. Suppose the result fails. Then G is not an actively sufficient set, and yet
there exists a sequence of strictly positive numbers ϵj ↓ 0 as j → ∞ such that, for each
j ¼ 1; 2; : : : , the following property holds. There exist sequences

xrj ∈ Rn; crj ∈ Rm; vrj ∈ ∂hðcrjÞ; r ¼ 1; 2; : : : ;

satisfying

xrj → x̄; crj → cðx̄Þ; hðcrjÞ → hðcðx̄ÞÞ; ∇cðxrjÞ�vrj → 0;

as r → ∞, and yet

distððcrj; vrjÞ; GÞ < ϵj; r ¼ 1; 2; : : : :

To prove boundedness of fvrjg∞r¼1
for each j, we use a slight extension of the proof of

Lemma 3.1. Supposing for contradiction that jvrjj→r ∞, we define wr ≔ vrj ∕ jvrjj; thus
jwrj≡ 1, and without loss of generality wr → w̄ with jw̄j ¼ 1. We have from
∇cðxrjÞ�wr →r 0 and from continuity of ∇c that w̄ ∈ Nð∇cðx̄Þ�Þ. Further, by (1.2),
and outer semicontinuity of N epih (see [20, Proposition 6.6]), we have

vrj ∈ ∂hðcrjÞ ⇒ ðvrj;−1Þ ∈ N epi hðcrj; hðcrjÞÞ ⇒ ðwr;−1 ∕ jvrjjÞ ∈ N epihðcrj; hðcrjÞÞ
⇒ ðw̄; 0Þ ∈ N epi hðcðx̄Þ; hðcðx̄ÞÞÞ ⇒ w̄ ∈ ∂∞hðcðx̄ÞÞ;

which contradicts (1.3). For each j, we can therefore assume without loss of generality
that the sequence fvrjg∞r¼1

converges to some vector vj, which must be a multiplier vector
at x̄. By continuity, we deduce

distððcðx̄Þ; vjÞ; GÞ ≤ ϵj:

By an argument similar to the one above, the sequence fvjg∞j¼1 is bounded, so after
taking a subsequence of the indices j, we can suppose that it converges to some multi-
plier vector v̄. Noting that the set G is closed, we have by taking limits as j → ∞ that
ðcðx̄Þ; v̄Þ ∈ G, contradicting the assumption thatG is not an actively sufficient set. ▯

IDENTIFYING ACTIVITY 601

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

7/
13

 to
 1

28
.8

4.
12

6.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



An easy corollary extends from one potential actively sufficient set to many.
COROLLARY 3.3. Suppose Assumption 1 holds, and consider any finite family G

of closed subsets of gphð∂hÞ. There exists a number ϵ > 0 such that if a sequence of
points xr → x̄ and pairs ðcr; vrÞ ∈ gphð∂hÞ satisfy cr → cðx̄Þ, hðcrÞ → hðcðx̄ÞÞ, and
∇cðxrÞ�vr → 0, then any set G ∈ G satisfying distððcr; vrÞ; GÞ < ϵ for infinitely many
r ¼ 1; 2; 3; : : : is an actively sufficient set for x̄.

Proof. For each set G ∈ G, we apply Theorem 3.2, deducing the existence of a num-
ber ϵG > 0 such that the conclusion of the theorem holds. The desired result then holds
for ϵ ¼ minG ϵG. ▯

The following result is a simple special case, easily proved directly.
COROLLARY 3.4. Under the assumptions of Corollary 3.3, there exists a number ~ϵ > 0

such that

distððcðx̄Þ; v̄Þ; GÞ > ~ϵð3:1Þ

for all multiplier vectors v̄ for the critical point x̄, and all sets G ∈ G that are not actively
sufficient for x̄.

Proof. Recall that all G ∈ G are closed, so if G is not actively sufficient, we have
distððcðx̄Þ; v̄Þ; GÞ > ϵG for some ϵG > 0. We obtain the result by setting ~ϵ to the mini-
mum of ϵG over the finitely many non-actively-sufficient sets G ∈ G. ▯

We end this section with another corollary.
COROLLARY 3.5. Suppose Assumption 1 holds. Consider any finite family G of closed

subsets of gphð∂hÞ. Then for any sequence of points xr ∈ Rn, vectors cr ∈ Rm, subgra-
dients vr ∈ ∂hðcrÞ, and sets Gr ∈ G (for r ¼ 1; 2; : : : ), satisfying

xr → x̄; jcr − cðxrÞj → 0; hðcrÞ → hðcðx̄ÞÞ;
∇cðxrÞ�vr → 0; distððcr; vrÞ; GrÞ → 0

as r → ∞, the set Gr is actively sufficient for x̄ for all r sufficiently large.
Proof. Apply Corollary 3.3. ▯
This last result is a little weaker than Corollary 3.3, which requires only that the

distance distððcr; vrÞ; GrÞ be sufficiently small, rather than shrinking to zero.
We note that the transversality condition (1.3) is crucial to the analysis of this sec-

tion, its role being to ensure boundedness of the sequence fvrg of multipliers. It is inter-
esting to consider whether identifiability results can be proved in the presence of a
weaker condition, thereby making them applicable to such problems as optimization
with equilibrium constraints, which usually have unbounded optimal multipler sets.
In the context of nonlinear programming, some algorithms include devices to prevent
the multiplier estimates from growing too large (see, for example, [22]). Extension of
these approaches and their associated identification results to the more general setting
of this paper is far from obvious, but worth exploring in future work.

4. Subdifferential graph decomposition. To apply the ideas in the previous
section, we typically assume the availability of a decomposition of gphð∂hÞ (the graph
of the subdifferential of h) into some finite union of closed, not necessarily disjoint sets
G1; G2; : : : ; Gk ⊂ Rm × Rm. For this decomposition to be useful, the sets Gi should be
rather simple so that the restricted system

ðcðxÞ; vÞ ∈ Gi; ∇cðxÞ�v ¼ 0
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is substantially easier to solve than the original criticality system. The more refined the
decomposition, the more information we may be able to derive from the identification
process. Often we have in mind the situation where each of the sets Gi is a polyhedron.
We might, for example, assume that whenever some polyhedron is contained in the list
ðGiÞ, so is its entire associated lattice of closed faces.

Example 4.1 (scalar examples). We give some simple examples in the case m ¼ 1.
Consider first the indicator function for Rþ, defined by hðcÞ ¼ 0 for c ≥ 0 and þ∞ for
c < 0. We have

∂hðcÞ ¼
8<
:

∅ if c < 0;
ð−∞; 0� if c ¼ 0;
f0g if c > 0:

Thus an appropriate decomposition is gphð∂hÞ ¼ G1 ∪ G2 ∪ G3, where

G1 ¼ f0g× ð−∞; 0�; G2 ¼ fð0; 0Þg; G3 ¼ ½0;∞Þ× f0g:

Similar examples are the absolute value function j · j, for which a decomposition is
gphð∂j · jÞ ¼ G1 ∪ G2 ∪ G3, where

G1 ¼ ð−∞; 0�× f−1g; G2 ¼ f0g× ½−1; 1�; G3 ¼ ½0;∞Þ× f1gð4:1Þ

(further refinable by including the two sets f0;�1g), and the positive-part function
ðcÞ ¼ maxðc; 0Þ, for which a decomposition is gphð∂posÞ ¼ G4 ∪ G5 ∪ G6, where

G4 ¼ ð−∞; 0�× f0g; G5 ¼ f0g× ½0; 1�; G6 ¼ ½0;∞Þ× f1gð4:2Þ

(again refinable). A last scalar example, which involves a nonconvex function h, is given
by hðcÞ ¼ 1− e−αjcj for some constant α > 0. We have

∂hðcÞ ¼
8<
:

f−αeαcg if c < 0;
½−α;α� if c ¼ 0;
fαe−αcg if c > 0:

An appropriate partition is gphð∂hÞ ¼ G1 ∪ G2 ∪ G3, where

G1 ¼ fðc;−αeαcÞ∶c ≤ 0g; G2 ¼ f0g× ½−α;α�; G3 ¼ fðc;αe−αcÞ∶c ≥ 0g:

Example 4.2 (an l1-penalty function). Consider a function h∶R2 → R that is an
l1-penalty function for the constraint system c1 ¼ 0, c2 ≤ 0, that is,

hðcÞ ¼ jc1j þmaxðc2; 0Þ:ð4:3Þ

Using the notation of the previous example, we have

∂hðc1; c2Þ ¼ ∂ðj · jÞðc1Þ× ∂posðc2Þ:

A partition of gphð∂hÞ into nine closed sets can be constructed by using interleaved
Cartesian products of (4.1) and (4.2).

Example 4.3 (classical nonlinear programming). Consider once again the setup of
section 2. The classical notion of active set in nonlinear programming arises from a cer-
tain combinatorial structure in the graph of the subdifferential ∂h of the outer function h
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defined in (2.1b):

gphð∂hÞ ¼ fððu; 0; wÞ; ð1; λ;ϕÞÞ∶w ≤ 0;ϕ ≥ 0; hw;ϕi ¼ 0g:ð4:4Þ

We can decompose this set into a finite union of polyhedra as follows:

gphð∂hÞ ¼
[

J⊂f1;2; : : : ;tg
GJ;

where

GJ ¼ fððu; 0; wÞ; ð1; λ;ϕÞÞ∶w ≤ 0;ϕ ≥ 0; wj ¼ 0 ðj ∈ JÞ;ϕj ¼ 0 ðj ∈= JÞg:ð4:5Þ

According to our definition, GJ is an actively sufficient set exactly when J ⊂ J̄ (defined
in (2.2)), and there exist vectors λ̄ ∈ Rs and ϕ̄ ∈ Rtþ satisfying the stationarity condition
(2.3) with ϕ̄j ¼ 0 for all j ∈= J . We call such an index set J sufficient at x̄. We pursue this
example further in the next section.

Much interest lies in the case in which the function h is polyhedral so that gphð∂hÞ is
a finite union of polyhedra. However, the latter property holds more generally for the
“piecewise linear-quadratic” functions defined in [20]; see, in particular, [20, Propo-
sition 10.21].

Of course, we cannot decompose the graph of the subdifferential ∂h into a finite
union of closed sets unless this graph is itself closed. This property may fail, even for
quite simple functions. For example, the lower semicontinuous function h∶R → R de-
fined by hðcÞ ¼ 0 for c ≤ 0 and hðcÞ ¼ 1− c for c > 0 has subdifferential given by

∂hðcÞ ¼
8<
:

f0g if c < 0;
½0;∞Þ if c ¼ 0;
f−1g if c > 0;

so gphð∂hÞ is not closed. On the other hand, the subdifferentials of lower semicontinuous
convex functions are closed.

Semialgebraic sets and functions offer a rich class of examples for this decomposition
approach. A subset of Rn is semialgebraic if it can be expressed as a finite union of sets,
each of which is defined by finitely many polynomial inequalities. The semialgebraic
property is a powerful tool, in part because it is preserved under linear images (an ap-
plication of the Tarski–Seidenberg quantifier elimination theorem). Consequently, semi-
algebraic sets are often easy to recognize without knowing an explicit representation in
terms of polynomials. A function is semialgebraic when it has a semialgebraic graph. In
general, for any semialgebraic function h, a standard quantifier elimination argument
shows that the set gphð∂hÞ is semialgebraic. If this set is also closed, then it stratifies into
a finite union of smooth manifolds with boundaries. A good recent reference on semi-
algebraic geometry is [1]. In concrete cases, a decomposition may be reasonably straight-
forward.

We end this section with two examples.
Example 4.4 (Euclidean norm). The graph of the subdifferential of the Euclidean

norm on Rn decomposes into the union of the following two closed sets:

fð0; vÞ∶jvj ≤ 1g and

��
c;

1

jcj c
�
∶c ≠ 0

�
∪ fð0; vÞ∶jvj ¼ 1g:

604 A. S. LEWIS AND S. J. WRIGHT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

7/
13

 to
 1

28
.8

4.
12

6.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Example 4.5 (maximum eigenvalue). Consider the maximum eigenvalue function
λmax on the Euclidean space Sk of k-by-k symmetric matrices (with the inner product
hX;Y i ¼ traceðXY Þ). In this space, the following sets are closed:

Sk
r ¼ fY ∈ Sk∶Y has rank ≤ rg ðr ¼ 0; 1; : : : ; kÞ;

mS
k ¼ fX ∈ Sk∶λmax ðXÞ has multiplicity ≥ mg ðm ¼ 1; 2; : : : ; kÞ:

Trivially we can decompose the graph gphð∂λmaxÞ into its intersection with each of the
sets mS

k × Sk
r. However, we can simplify, since it is well known (see [10], for example)

that ∂λmaxðXÞ consists of matrices of rank no more than the multiplicity of λmaxðXÞ.
Hence we can decompose the graph into the union of the sets

Gm;r ¼ gphð∂λmaxÞ ∩ ðmSk × Sk
rÞð1 ≤ r ≤ m ≤ kÞ:

To apply the theory we have developed, we need to measure the distance from any given
pair ðX;Y Þ in the graph to each of the sets Gm;r. This is straightforward, as follows. A
standard characterization of ∂λmax [10] shows that there must exist an orthogonal matrix
U , a vector x ∈ Rk with nonincreasing components, and a vector y ∈ Rkþ satisfyingP

iyi ¼ 1 and yi ¼ 0 for all indices i > p, where p is the multiplicity of the largest com-
ponent of x such that the following simultaneous spectral decomposition holds:
X ¼ UT ðDiag xÞU and Y ¼ UT ðDiag yÞU . Now define a vector ~x ∈ Rk by replacing
the first m components of x by their mean. (Notice that the components of ~x are then
still in nonincreasing order, and the largest component has multiplicity at least p.)
Define a vector ~y ∈ Rk by setting all but the largest r components of y to zero and
then rescaling the resulting vector to ensure its components sum to one. (Notice that
~yi ¼ 0 for all indices i > p.) Finally, define matrices ~X ¼ UT ðDiag ~xÞU and ~Y ¼
UT ðDiag ~yÞU . Then, by the same subdifferential characterization, we have ~Y ∈
∂λmaxð ~XÞ, so, in fact, ð ~X; ~Y Þ ∈ Gm;r. Hence the distance from ðX;Y Þ to Gm;r is at mostffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jx− ~xj2Q þ jy− ~yj2
p

. In fact, this easily computable estimate is exact, since it is well
known that ~Y is a closest matrix to Y in the set Sk

r and, by [12, Example A.4], ~X is a
closest matrix to X in the set mS

k.
Now consider a nonlinear eigenvalue optimization problem of the form

min
x

λmaxðcðxÞÞ:

Combining the distance computation above with a result such as Corollary 3.5 gives an
approach to bounding the multiplicity, at optimality, of the largest eigenvalue λmaxðc̄Þ,
along with the rank of the corresponding multiplier matrix.

5. Nonlinear programming revisited. Our intent in this work is not to develop
fresh results for classical nonlinear programming, but rather to generalize previous re-
sults in an intuitive framework suggesting new applications. Nonetheless, it is worth-
while to verify how our main result recaptures the classical case that we discussed
in section 2 and Example 4.3. The following result is not hard to prove directly
from the Mangasarian–Fromovitz condition, but we present it as an illustration of
our technique.

COROLLARY 5.1. Consider a critical point x̄ ∈ Rn for the nonlinear program (NLP),
where the objective function and each of the constraint functions are all continuously
differentiable. Suppose the Mangasarian–Fromovitz condition (Assumption 2) holds.
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Then there exists a number ϵ̄ > 0 such that if the sequences xr ∈ Rn, λr ∈ Rs, ϕr ∈ Rtþ
(for r ¼ 1; 2; 3; : : : ) satisfy

xr → x̄;ð5:1aÞ

∇fðxrÞ þ
Xs
i¼1

λri∇piðxrÞ þ
Xt

j¼1

ϕr
j∇qjðxrÞ → 0;ð5:1bÞ

minfqjðxrÞ∶ϕr
j > 0; j ¼ 1; 2; : : : ; tg → 0ð5:1cÞ

(interpreting min ∅ ¼ 0), then any index set J ⊂ f1; 2; : : : ; tg satisfying

qjðxrÞ > −ϵ̄ ðfor all j ∈ JÞ and ϕr
j < ϵ̄ ðfor all j ∈= JÞ

for infinitely many r is sufficient for x̄.
Proof. By applying Corollary 3.3 to the problem discussed in section 2 with the

graph decomposition described in Example 4.3 and simplifying slightly, we deduce
the existence of a number ϵ > 0 such that if the sequences xr ∈ Rn, wr ∈ Rt

−,
λr ∈ Rs, ϕr ∈ Rtþ satisfy hwr;ϕri ¼ 0 for all r ¼ 1; 2; 3; : : : and

xr → x̄;

wr → qðx̄Þ;

∇f ðxrÞ þ
Xs

i¼1

λri∇piðxrÞ þ
Xt

j¼1

ϕr
j∇qjðxrÞ → 0;

then any index set J ⊂ f1; 2; : : : ; tg satisfying distððwr;ϕrÞ;MJ Þ < ϵ for infinitely many
r, where

MJ ¼ fðw;ϕÞ ∈ Rtþ × Rt
−∶wj ¼ 0 ðj ∈ JÞ; ϕj ¼ 0 ðj∈=JÞg;

is sufficient for x̄. (To be precise, using the notation (2.1), we set cr ¼ ðfðx̄Þ; 0; wrÞ and
vr ¼ ð1; λr;ϕrÞ, and we note that distððcr; wrÞ; GJ Þ ¼ distððwr;ϕrÞ;MJ Þ, where GJ is
defined in (4.5).) Assuming the hypotheses of the theorem, and setting ϵ̄ ¼ ϵ ∕

ffiffi
t

p
, we

show that this observation can be applied with the sequence wr ∈ Rt
− defined by

wr
j ¼

�
0 if ϕr

j > 0;
minfqjðxrÞ; 0g if ϕr

j ¼ 0:

Clearly each hwr;ϕri ¼ 0 for all r ¼ 1; 2; 3; : : : , so we only need to check wr → qðx̄Þ. If
this fails, there is an index j, a number δ > 0, and a subsequence R of N such that jwr

j −
qjðx̄Þj > δ for all r ∈ R and either ϕr

j ¼ 0 for all r ∈ R or ϕr
j > 0 for all r ∈ R. Notice

qjðxrÞ → qðx̄Þ ≤ 0. Hence in the first case we obtain the contradiction

wr
j ¼ minfqjðxrÞ; 0g → minfqjðx̄Þ; 0g ¼ qjðx̄Þ;

while in the second case we have wr
j ¼ 0, and hence qjðx̄Þ < −δ. Thus, (5.1c) is violated,

giving a contradiction.
By considering the point ðŵ; ϕ̂Þ ∈ MJ defined by

ŵr
j ¼

�
wr

j if j∈= J;
0 if j ∈ J;

ϕ̂r
j ¼

�
ϕr
j if j ∈ J;

0 if j∈= J;
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we have that

dist2ððwr;ϕrÞ;MJ Þ ≤ kðwr;ϕrÞ− ðŵ; ϕ̂Þk2 ¼
X
j∈J

ðwr
jÞ2 þ

X
j∈=J

ðϕr
jÞ2 < tϵ̄2;

where the last inequality follows from wr
j ≤ 0, ϕr

j ≥ 0, and

j ∈ J ⇒ qjðxrÞ > −ϵ̄ ⇒ wr
j > −ϵ̄; j∈= J ⇒ ϕr

j < ϵ̄:

From ϵ̄ ¼ ϵ ∕
ffiffi
t

p
, we thus have distððcr; vrÞ; GJ Þ ¼ distððwr;ϕrÞ;MJ Þ < ϵ, completing

the proof. ▯

6. Partial smoothness. We next observe a connection between the decomposi-
tion ideas we have introduced and the notion of “partial smoothness” [11]. This notion
abstracts and generalizes a variety of earlier work on the identification problem, includ-
ing, in particular, [3], [2], [4]. For simplicity, we restrict the discussion in this section to
the convex case, although extensions are possible. In the convex case, partial smoothness
is equivalent to the idea introduced in [21] of an “identifiable surface.”

Consider a lower semicontinuous convex function h∶Rm → R̄, a point c̄ ∈ Rm, any
vector v̄ ∈ ri ∂hðc̄Þ, and a setM containing c̄. We call h partly smooth at c̄ relative toM
when the following properties hold:

(i) M is a manifold around c̄;
(ii) the restricted function hjM is C 2;
(iii) the subdifferential mapping ∂h is continuous at c̄ when restricted to M;
(iv) the affine span of ∂hðc̄Þ− v̄ is NMðc̄Þ.

We assume that these properties hold and, in addition, that M is closed.
First note that the graph of the subdifferential ∂h is the union of the following two

sets:

G1 ¼ fðc; vÞ∶c ∈ M; v ∈ ∂hðcÞg; G2 ¼ clfðc; vÞ∶c ∈= M; v ∈ ∂hðcÞg:

We have some simple observations.
LEMMA 6.1. The set G1 is closed.
Proof. As is well known (see, for example, [19, Theorem 24.4]), since h is convex and

lower semicontinuous, gphð∂hÞ is closed. Indeed we can write it as the lower level set of a
lower semicontinuous function:

gphð∂hÞ ¼ fðc; vÞ∶hðcÞ þ h�ðvÞ− hc; vi ≤ 0g;

where h� denotes the Fenchel conjugate of h. Since G1 ¼ gphð∂hÞ ∩ ðM× RmÞ, and
since M is closed by assumption, the result follows. ▯

LEMMA 6.2. ðc̄; v̄Þ∈=G2.
Proof. If this property fails, then there is a sequence of points cr∈=M (r ¼ 1; 2; : : : )

approaching c̄ and a corresponding sequence of subgradients vr ∈ ∂hðcrÞ approaching v̄.
A standard subdifferential continuity argument can now be used to show that
hðcrÞ → hðc̄Þ. To be precise, it follows from lower semicontinuity of h (and of h�) that
lim infr hðcrÞ ≥ hðc̄Þ and lim infr h

�ðvrÞ ≥ h�ðv̄Þ. Thus,
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lim sup
r

hðcrÞ ¼ lim sup
r

ðhcr; vri− h�ðvrÞÞ ¼ hc̄; v̄i− lim inf
r

h�ðvrÞ

≤ hc̄; v̄i− h�ðv̄Þ ¼ hðc̄Þ ≤ lim inf
r

hðcrÞ;

where the first and last equalities follow from [20, Proposition 11.3]. An easy modifica-
tion of [8, Theorem 5.3] (see [13, Theorem 6.11]) implies the contradiction cr ∈ M for all
large r. ▯

We can now interpret how partial smoothness leads to identification in the light of
our main result.

COROLLARY 6.3. Suppose Assumption 1 holds. Suppose that the critical point x̄ has a
unique multiplier vector v̄ and that v̄ ∈ ri ∂hðcðx̄ÞÞ. Finally, assume that h is convex and
also partly smooth at the point cðx̄Þ relative to a closed set M ⊂ Rm. Then any suffi-
ciently accurate solution of the criticality conditions near x̄ must identify the set M.
More precisely, for any sequence of points xr ∈ Rn, vectors cr ∈ Rm, and subgradients
vr ∈ ∂hðcrÞ (for r ¼ 1; 2; : : : ), satisfying

xr → x̄; jcr − cðxrÞj → 0; hðcrÞ → hðcðx̄ÞÞ; ∇cðxrÞ�vr → 0

as r → ∞, we must have cr ∈ M for all sufficiently large r.
Proof. By Lemma 6.1, gphð∂hÞ ¼ G1 ∪ G2 is a decomposition into closed sets. By

Lemma 6.2, the set G2 is not actively sufficient. Corollary 3.5 then implies that there is
ϵ̂ > 0 such that distððcr; vrÞ; G2Þ > ϵ̂ for all r sufficiently large. The result follows. ▯

For a variety of algorithmic approaches to identification in the partly smooth set-
ting, see [7] and [9]. These works discuss, in particular, conditions under which gradient
projection schemes, Newton-like methods, and proximal point methods identify the set
M in the result above. They also discuss how a simple proximal-type subproblem can
accomplish the same goal in more general algorithmic contexts.

7. Identifying activity via a proximal subproblem. In this section we consider
the question of whether closed sets G that are actively sufficient at a solution x̄ of the
composite minimization problem (1.1) can be identified from a nearby point x by solving
the subproblem

min
d

hx;μðdÞ ≔ hðcðxÞ þ∇cðxÞdÞ þ μ

2
jdj2:ð7:1Þ

Properties of local solutions of this subproblem and of a first-order algorithm based on it
have been analyzed by the authors in [13]. In that work, we gave conditions guarantee-
ing, in particular, that if the function h is partly smooth relative to some manifold M
containing cðx̄Þ, where x̄ is the critical point, then the subproblem (7.1) “identifies” M;
that is, nearby local minimizers must lie on M.

The identification result from [13] requires a rather strong regularity condition at
the critical point x̄. When applied to the case of classical nonlinear programming de-
scribed above, this condition reduces to the linear independence constraint qualification,
in particular, always implying uniqueness of the multiplier vector. In the simplest case,
when, in addition, strict complementarity holds, there is a unique sufficient index set (in
the terminology of section 5), and the identification result Corollary 6.3 applies.

By contrast, in this section, we pursue more general identification results, needing
only the transversality condition (1.3). Certain additional assumptions on the function h
are required, whose purpose is essentially to ensure that the solution of (7.1) is well
behaved.
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We start with some technical results from [13], and then we state our main result. In
what follows, we use the idea of “prox-regularity” of a function h. We refer the reader to
[20] for the rather technical definition. Here we simply observe that an intuitive and
broadly applicable sufficient condition for prox-regularity of h at a point c̄ with finite
value is the property that every point sufficiently close to the point ðc̄; hðc̄ÞÞ has a unique
nearest point in the epigraph of h. For more details, see [17, Theorem 3.5] and [18,
Theorem 1.3]. In particular, lower semicontinuous convex functions are everywhere
prox-regular, as are sums of continuous convex functions and C2 functions.

For the results that follow, we need to strengthen our underlying Assumption 1 as
follows.

Assumption 3. In addition to Assumption 1, the function c is C2 around the critical
point x̄, and the function h is prox-regular at the point c̄ ¼ cðx̄Þ.

The following result is a restatement of [13, Theorem 6.5]. It concerns existence of
local solutions to (7.1) with nice properties.

THEOREM 7.1. Suppose Assumption 3 holds. Then there exist numbers μ̄ ≥ 0, δ > 0,
and k > 0 and a mapping d∶Bδðx̄Þ× ðμ̄;∞Þ → Rn such that the following properties
hold.

(a) For all points x ∈ Bδðx̄Þ and all scalars μ > μ̄, the point dðx;μÞ is a local mini-
mizer of the subproblem (7.1) and, moreover, satisfies jdðx;μÞj ≤ kjx− x̄j.

(b) Given any sequences of points xr → x̄ and scalars μr > μ̄, if either hðcðxrÞÞ →
hðc̄Þ or μrjxr − x̄j2 → 0, then

hðcðxrÞ þ∇cðxrÞdðxr;μrÞÞ → hðc̄Þ:ð7:2Þ

(c) When h is convex and lower semicontinuous, the results of parts (a) and (b) hold
with μ̄ ¼ 0.

The next result is a slightly abbreviated version of [13, Lemma 6.7].
LEMMA 7.2. Suppose Assumption 3 holds. Then for any sequences μr > 0 and xr →

x̄ such that μrjxr − x̄j → 0, and any corresponding sequence of critical points dr for the
subproblem (7.1) that satisfy the conditions

dr ¼ Oðjxr − x̄jÞ and hðcðxrÞ þ∇cðxrÞdrÞ → hðc̄Þ;ð7:3Þ

there exists a bounded sequence of vectors vr that satisfy

0 ¼ ∇cðxrÞ�vr þ μrd
r;ð7:4aÞ

vr ∈ ∂hðcðxrÞ þ∇cðxrÞdrÞ:ð7:4bÞ

If we assume, in addition, that μr > μ̄, where μ̄ is defined in Theorem 7.1, the vectors
dr ≔ dðxr;μrÞ satisfy the properties (7.3), and hence the results of Lemma 7.2 apply.

We now prove the main result of this section.
THEOREM 7.3. Suppose Assumption 3 holds, and consider a closed set G ⊂ gphð∂hÞ.

Consider any sequences of scalars μr > 0 and points xr → x̄ satisfying the condition
μrjxr − x̄j → 0, and let dr be any corresponding sequence of critical points of the
subproblem (7.1) satisfying (7.3). Consider any corresponding sequence of vectors vr

satisfying the conditions (7.4) for which

distððcðxrÞ þ∇cðxrÞdr; vrÞ; GÞ → 0:ð7:5Þ
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Then G is an actively sufficient set at x̄.
Proof. We apply Corollary 3.5 with G ¼ fGg and cr ≔ cðxrÞ þ∇cðxrÞdr. Because

of the various properties of xr, dr, vr, andμr, from Theorem 7.1 and Lemma 7.2, we have
the following estimates:

xr − x̄ → 0;

vr ∈ ∂hðcrÞ;
jcr − cðxrÞj ¼ j∇cðxrÞdrj ¼ OðjdrjÞ ¼ Oðjxr − x̄jÞ → 0;

hðcrÞ− hðcðx̄ÞÞ → 0;

j∇cðxrÞ�vrj ¼ μrjdrj ¼ μrOðjxr − x̄jÞ → 0;

distððcr; vrÞ; GÞ → 0:

The result follows. ▯
Note again that Theorem 7.1 and Lemma 7.2 show that vectors dr satisfying the

conditions of Theorem 7.3 can be obtained when μr > μ̄, and we can take μ̄ ¼ 0 when h
is convex and lower semicontinuous.

As we have seen, in particular in the case of classical nonlinear programming, we
typically have in mind some “natural” decomposition of the subdifferential graph
gphð∂hÞ into the union of a finite family G of closed subsets. We then somehow generate
sequences, μr, xr, dr, and vr of the type specified in the theorem, and thereby try to
identify actively sufficient sets in G, preferring smaller sets since the corresponding re-
stricted criticality system is then more refined. Since G is a finite family, Theorem 7.3
guarantees that we must identify at least one actively sufficient set in this way—but
possibly not all actively sufficient sets. In other words, a sequence of iterates generated
by the algorithm based on (7.1) and corresponding multiplier vectors may “reveal” some
of the actively sufficient sets but not others. We illustrate this point with an example
based on a degenerate nonlinear optimization problem in two variables.

Example 7.1. Consider the map c∶R2 → R3 defined by

cðxÞ ¼

2
64

−x1
x21 þ x22 − 1

ðx1 þ 1Þ2 þ x22 − 4

3
75

and the function h∶R3 → R̄ defined by

hðcÞ ¼
�

c1 if c2; c3 ≤ 0;
þ∞ otherwise:

Minimizing the composite function h ∘ c thus amounts to maximizing x1 over the set in
R2 defined by the constraints jxj ≤ 1 and jx− ð−1; 0ÞT j ≤ 2. The unique minimizer of
h ∘ c is the point x̄ ¼ ð1; 0ÞT , at which cðx̄Þ ¼ ð−1; 0; 0ÞT . The set of multiplier vectors is

∂hðcðx̄ÞÞ ∩ Nð∇ðcðx̄ÞÞ�Þ ¼
�
α

�
1;
1

2
; 0

�
T

þ ð1− αÞ
�
1; 0;

1

4

�
T

∶α ∈ ½0; 1�
�
:

We can decompose gphð∂hÞ as the union of the following four closed sets:

610 A. S. LEWIS AND S. J. WRIGHT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

7/
13

 to
 1

28
.8

4.
12

6.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



G1 ¼ fðc1; c2; c3; 1; 0; 0Þ∶c2 ≤ 0; c3 ≤ 0g;
G2 ¼ fðc1; 0; c3; 1; v2; 0Þ∶v2 ≥ 0; c3 ≤ 0g;
G3 ¼ fðc1; c2; 0; 1; 0; v3Þ∶c2 ≤ 0; v3 ≥ 0g;
G4 ¼ fðc1; 0; 0; 1; v2; v3Þ∶v2 ≥ 0; v3 ≥ 0g:

(We can refine further, but this suffices for our present purpose.) In this decomposition,
the actively sufficient subsets are G2, G3, G4.

The subproblem (7.1), applied from some point x ¼ ðx1; 0ÞT with x1 close to 1, re-
duces to

minimize − d1 þ
μ

2
ðd21 þ d22Þ

subject to d1 ≤
1

2x1
−

x1
2
;

d1 ≤
2

x1 þ 1
−

x1 þ 1

2
;

d ∈ R2:

If x1 ¼ 1− ϵ for some small ϵ (not necessarily positive), the constraints reduce to

d1 ≤ ϵþ 1

2
ϵ2 þOðϵ3Þ;

d1 ≤ ϵþ 1

4
ϵ2 þOðϵ3Þ:

Providing ϵ ≪ 1
μ
, the solution of the subproblem has d1 ≈ ϵþ 1

4 ϵ
2 and d2 ¼ 0. The cor-

responding linearized values of c2 and c3 are

c2ðxÞ þ∇c2ðxÞTd≈
1

4
ϵ2; c3ðxÞ þ∇c3ðxÞTd ¼ 0;

and the corresponding multiplier vector is v≈ ð1; 0; 14ÞT . Thus this iterate “reveals” the
actively sufficient sets G3 and G4, but not G2.

Subsequent iterates generated by this scheme have the identical form ð1− ϵ; 0ÞT
with successively smaller values of ϵ, so the sequence satisfies the property (7.5) only
for G ¼ G3 and G ¼ G4, but not for G ¼ G2.

Consider again the nonlinear programming formulation of sections 2 and 5. In that
framework, for a given point x ∈ Rn, the proximal subproblem (7.1) is the following
quadratic program:

minimize f ðxÞ þ∇f ðxÞTdþ μ

2
jdj2ð7:6aÞ

subject to piðxÞ þ∇piðxÞTd ¼ 0 ði ¼ 1; 2; : : : ; sÞ;ð7:6bÞ

qjðxÞ þ∇qjðxÞTd ≤ 0 ðj ¼ 1; 2; : : : ; tÞ;ð7:6cÞ
d ∈ Rn:ð7:6dÞ

We derive the following corollary as a simple application of Theorem 7.3.
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COROLLARY 7.4. Consider the nonlinear program (NLP), where the functions f , pi
(i ¼ 1; 2; : : : ; s), and qj (j ¼ 1; 2; : : : ; t) are all C2 around the critical point x̄, and sup-
pose that the Mangasarian–Fromovitz constraint qualification, Assumption 2, holds.
Consider sequences of scalars μr > 0 and points xr → x̄ satisfying μrjxr − x̄j → 0, let
dr be the corresponding (unique) solution of (7.6), and consider an additional sequence
of nonnegative tolerances ϵr → 0. Then for all sufficiently large r, the index set JðrÞ ⊂
f1; 2; : : : ; tg defined by

JðrÞ ≔ fj∶qjðxrÞ þ∇qjðxrÞTdr ≥ −ϵrgð7:7Þ

is sufficient for x̄.
Proof. Let J ⊂ f1; 2; : : : ; tg be any set such that JðrÞ ¼ J for infinitely many r.

The result is proved if we can show that J is actively sufficient. We can assume without
loss of generality that JðrÞ≡ J . Noting convexity of the function h defined in (2.1b) and
the equivalence of the transversality condition (1.3) and Assumption 2, we have from
Theorem 7.1 that the unique solution of the subproblem (7.6) satisfies dr ¼ Oðjxr − x̄jÞ
and

hðcðxrÞ þ∇cðxrÞdrÞ ¼ f ðxrÞ þ∇f ðxrÞTdr → f ðx̄Þ ¼ hðcðx̄ÞÞ:

Moreover, the distance between the point

ððf ðxrÞ þ∇f ðxrÞTdr; pðxrÞ þ∇pðxrÞdr; qðxrÞ þ∇qðxrÞdrÞ; ð1; λr;ϕrÞÞ

and the set GJ defined in (4.5) approaches zero, where λr and ϕr are the multipliers for
the linear constraints in the subproblem (7.6). (This claim follows from (7.7) and the fact
that qjðxrÞ þ∇qjðxrÞTdr < −ϵr < 0 for all j∈= J so that ϕr

j ¼ 0.) We conclude from
Theorem 7.3 that GJ is an actively sufficient set at x̄, so the index set J is sufficient.

▯
Similar results hold for a nonsmooth penalty formulation of the nonlinear program

(NLP). For example, the l1-penalty formulation corresponds to the function h defined
as follows:

hðu; v;wÞ ¼ uþ ν

�Xs
i¼1

jvij þ
Xt

j¼1

maxðwj; 0Þ
�
:

The corresponding proximal subproblem (7.1) at some given point x ∈ Rn is as follows:

min
d∈Rn

f ðxÞ þ∇f ðxÞTdþ μ

2
jdj2

þ ν

�Xs

i¼1

jpiðxÞ þ∇piðxÞTdj þ
Xs

j¼1

maxðqjðxÞ þ∇qjðxÞTd; 0Þ
�

for a given penalty parameter ν > 0. A result similar to Corollary 7.4 for this formulation
would lead to an identification result like Theorem 3.2 of [16], provided that ν is large
enough to bound the l∞ norm of all multipliers that satisfy the stationarity conditions
for (NLP). A notable difference, however, is that [16, Theorem 3.2] uses a trust-region of
the form kdk∞ ≤ Δ to restrict the size of the solution d, whereas this subproblem uses
the prox term μ

2 jdj2. Although the use of an l∞ trust-region allows the subproblem to be
formulated as a linear program, the radius Δ must satisfy certain conditions, not easily

612 A. S. LEWIS AND S. J. WRIGHT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

7/
13

 to
 1

28
.8

4.
12

6.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



verified, for the identification result to hold. By contrast, there are no requirements onμ

in the subproblems above, beyond positivity.
A possible extension we do not pursue here allows an extra term 1

2 hd; Bdi for some
monotone operator B, in addition to the prox term μ

2 jdj2. This generalization allows
SQP-type subproblems to be considered, which potentially could be useful in analyzing
algorithms combining identification and second-order steps into a single iteration (as
happens with traditional SQP methods).

8. Discussion. We have shown how certain interesting subsets of gphð∂hÞ can be
identified from a sequence of points xr → x̄ (where x̄ is a critical point of (1.1)) by mak-
ing use of information about ∇c and ∂h at xr and cðxrÞ, respectively. These subsets are
potentially useful in algorithms because they allow an algorithm for solving (1.1) to
eventually focus its attention on a reduced space, often leading to significant savings
in computational costs. The economics of different strategies depend critically on the
properties of the functions, but an obvious idea would be to base the early stages of
an algorithm on “first-order” strategy (like (7.6)), switching to steps that make more
explicit use of second-order information when the reduced space is identified with some
confidence. This strategy may save unnecessary evaluation and manipulation of full-
space second-order information remote from the solution, where it is not very helpful.
It may also save unnecessary evaluation of full-space first-order information in the final
stages of a method—another source of savings that is significant in some applications.

Any algorithm should, of course, be able to recover from an “incorrect” subset iden-
tification. The simplest strategy would be to return to the “outer loop,” discarding the
steps that were taken on the basis of the incorrect identification. Often, however, the
“inner loop”method itself will be able to make minor adjustments to the identified set. In
the case of nonlinear programming, for example, a few additional pivots might be re-
quired during the stages of an SQP method for linear programming to correctly classify
the last few active and inactive constraints.

We expect that in many practical situations, heuristics rather than rigorous pro-
cedures would be used to identify the active subsets. The results of this paper provide
theoretical support and motivation for such heuristics and procedures.
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