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Abstract Superlinear convergence of the Newton method for nonsmooth equations
requires a “semismoothness” assumption. In this work we prove that locally Lipschitz
functions definable in an o-minimal structure (in particular semialgebraic or globally
subanalytic functions) are semismooth. Semialgebraic, or more generally, globally
subanalytic mappings present the special interest of being γ -order semismooth, where
γ is a positive parameter. As an application of this new estimate, we prove that the
error at the kth step of the Newton method behaves like O(2−(1+γ )k ).
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1 Introduction

Extensions of the Newton method for solving nonsmooth equations F(x) = 0 have
been widely studied over the last two decades: early examples are [15,23] (see also
[24]). As pointed out in [22], superlinear convergence depends on “semismoothness”
of the function F , a notion extended from earlier work on optimization originating
with [20]. A good survey appears in [13].

Consider a locally Lipschitz function F : Rn → Rm , and denote the set of points
in Rn where F is differentiable by D. (By Rademacher’s theorem, the complement of
D has measure zero.) Following [22], we call F semismooth at a point x ∈ Rn if its
directional derivative

F ′(x; d) = lim
t↓0

F(x + td)− F(x)

t
(1)

exists for every vector d ∈ Rn , and as d → 0 with x + d ∈ D, we have

F ′(x + d; d)− F ′(x; d) = o(d), (2)

with as usual limd→0, d �=0 ||d||−1 o(d) = 0.
Quadratic rather than superlinear convergence of the Newton method requires

strong semismoothness instead (see [12]), where the o(d) term is replaced by O(‖d‖2),
that is, it is bounded near 0 by a function c ||d||2, where c > 0. More generally,
a mapping satisfying (2) with o(d) = O(||d||1+γ ) with γ > 0 is called γ -order
semismooth or simply γ -semismooth, see [22,26]. The class of semismooth functions
is very broad: see for example the discussion in [21].

If the function F satisfies a rather strong notion of “piecewise smoothness”, then
it must be semismooth. To be precise, let us consider functions F1, F2, . . . , Fk :
Rn → Rm . Suppose, for every point y ∈ Rn near x , each function Fj is continuously
differentiable at y, the function F is continuous at y, and F(y) = Fj (y) for some
index j . In this case, F must be semismooth at x (see [26] and also [17]).

The usefulness of the above class of piecewise smooth functions in checking semis-
moothness in concrete examples is restricted by the requirement that each function
Fj must be continuously differentiable throughout a neighborhood of the point of
interest, rather than simply on open regions where Fj agrees with F . In part due to
this complication, we take here a fresh approach to recognizing semismoothness. To
illustrate this, consider for example the function

f (x, y) =
⎧
⎨

⎩

√
y2 − x2 , if y > 2 |x |
√

3 |x | , if y ≤ 2 |x |.
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Tame functions are semismooth 7

The above function is clearly continuous and everywhere smooth except on the
sets {0} × (−∞, 0] and {(t, 2 |t |) : t ∈ R} with gradient no larger in norm than

√
3.

It is easily seen that f is (globally) Lipschitz with constant
√

3 and everywhere
directionally differentiable, and as we discuss below, f is easily recognized to be
semialgebraic. Hence f is semismooth, by the result we present here (cf. Theorem 1).
However, verifying that f is piecewise smooth (at (0, 0) for example) in the above
sense is not immediate.

A rich class of concrete functions is provided by the notion of a semi-algebraic
subset of Rn , that is, a set defined by some Boolean combination of real poly-
nomial equations and inequalities. The function F is semi-algebraic if its graph
{(x, y) : y ∈ F(x)} is semi-algebraic. The broad applicability of semi-algebraic
sets follows largely from the Tarski-Seidenberg principle, which guarantees that the
projection (x1, x2, . . . , xn) 
→ (x2, x3, . . . , xn) preserves the semi-algebraic property.
Good references are [4,6]. The qualitative properties of semialgebraic mappings are
shared by a much bigger class called mappings definable in an o-minimal structure
over R, or simply definable mappings. A slightly more general notion is that of a tame
mapping, being a mapping whose graph has a definable intersection with every “boun-
ded box” (see Definition 2). O-minimal structures over R correspond in some sense to
an axiomatization of some of the prominent geometrical properties of semialgebraic
geometry [9,11] and particularly of the stability under projection. Due to the variety
of optimization problems that can be formulated within the framework of o-minimal
structures, our main results are stated for tame functions.

The main result of this note is to establish that locally Lipschitz tame (definable)
functions are semismooth (Theorem 1). Tame sets stratify into locally finite unions
of relatively open smooth manifolds, and consequently, tame functions enjoy strong
piecewise smoothness properties. However, exploiting stratification to deduce semis-
moothness via piecewise smoothness seems not transparent due to the complication
we noted above. In part due to this complication, and as a component in our ongoing
study of semialgebraic/tame properties in optimization (see [1–3]), we propose here
a much more basic approach based on the curve selection lemma.

It is worthwhile-mentioning that semialgebraic or globally subanalytic mappings
enjoy a stronger property than semismoothness since they are actually γ -semismooth
with γ > 0. The interest of this extra information is somewhat comparable to what
can be observed for functions that satisfy the Łojasiewicz inequality [16,18]. Indeed,
for algorithms in which semismoothness plays a key role (Newton methods, Bundle
methods) the positive parameter γ somehow measures the rate of convergence, as
it is the case for the Łojasiewicz exponent in the study of subgradient methods [1].
We illustrate this idea by proving that the Newton method for semialgebraic, or more
generally, for globally subanalytic mappings converges superlinearly. More precisely,
we show that the error at the kth step behaves like O(2−(1+γ )k ).

2 Preliminaries

Notation Throughout this work we shall consider the Euclidean vector space Rn

endowed with its canonical scalar product 〈·, ·〉, and we shall denote its associated
norm by || · ||.
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8 J. Bolte et al.

Let U ⊂ Rn be a nonempty open subset of Rn . A mapping F is said to be directionally
differentiable at x ∈ U along d if the following limit

F ′(x; d) := lim
t↓0

F(x + td)− F(x)

t

exists. This defines a mapping F ′(·; ·) with domain D ⊂ U × Rn which we call the
directional derivative of F . The function F is said to be Gâteaux differentiable at x
if F ′(x; ·) is defined everywhere on Rn and linear. The linear map F ′(x; ·) is then
denoted by F ′G(x). We say that F is Fréchet differentiable at x ∈ U if it is Gâteaux
differentiable at x with in addition F(x+d)−F(x)−F ′(x; d) = o(||d||). The Fréchet
derivative is denoted by F ′. In the sequel the domains of F ′G and F ′ are respectively
denoted by DG and D. Finally, L(Rn,Rm) denotes the vector space of linear mappings
from Rn to Rm .

Let us recall a few definitions concerning o-minimal structures (see for instance
van der Dries–Miller [11] and references therein).

Definition 1 [o-minimal structure] [9, Definition 1.5] An o-minimal structure on
(R,+, .) is a sequence of Boolean algebras O = {On} of “definable” subsets of Rn ,
such that for each n ∈ N

(i) if A belongs to On , then A × R and R × A belong to On+1 ;
(ii) if Π : Rn+1 → Rn is the canonical projection onto Rn then for any A in On+1,

the set Π(A) belongs to On ;
(iii) On contains the family of algebraic subsets of Rn , that is, every set of the form

{x ∈ Rn : p(x) = 0},

where p : Rn → R is a polynomial function ;
(iv) the elements of O1 are exactly the finite unions of intervals and points.

A mapping F : S ⊂ Rn → Rm is said to be definable in O if its graph is definable in
O as a subset of Rn × Rm .

Definition 2 A subset A of Rn is called tame if for every r > 0 there exists an
o-minimal structure O over R such that the intersection of A with [−r, r ]n is definable
in O. Similarly a mapping F : U ⊂ Rn → Rm is called tame if its graph is a tame
subset of Rn × Rm .

Remark 1 Restrictions of tame functions to definable bounded sets do not necessarily
belong to an o-minimal structure. Take for instance F(p) = 1/p with p ∈ dom F :=
∪n∈N∗ {1/n}. Using items (ii) and (iv) of Definition 1 one sees that the restriction of F
to [−1, 1] cannot belong to any o-minimal structure. However if F is a tame mapping
with the property that F(B) is bounded for every bounded subset B ⊂ Rn (which is
the case when F is for instance continuous), then for all r > 0 the mapping F| [−r,r ]n
belongs to some o-minimal structure.
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Tame functions are semismooth 9

Example 1 (semialgebraic sets) The first example of o-minimal structure is given by
the class SA of semialgebraic objects. A set A ⊂ Rn is called semialgebraic if it can
be written as

A =
p⋃

j=1

q⋂

i=1

{ x ∈ Rn : Pi j (x) = 0, Qi j (x) < 0},

where the Pi j , Qi j : Rn → R are polynomial functions on Rn . The fact that SA is an
o-minimal structure relies on the Tarski-Seidenberg principle (see [6]) which asserts
that item (ii) is true in this class.

Let us also observe that any o-minimal structure on R contains the class SA of
semialgebraic sets. In other words, SA is the smallest 1 o-minimal structure on R.

Sets and functions belonging to some o-minimal structure enjoy many qualitative
properties that are quite similar to those occurring in semialgebraic geometry. The
reader is referred to [9,11] for a comprehensive account on the topic. In this paper we
will essentially use the following results.

Let O be an o-minimal structure on (R,+, .).

Monotonicity lemma [11, Theorem 4.1] Let f : I ⊂ R→ R be a definable function
and k ∈ N. Then there exists a finite partition of I into p disjoint intervals I1, . . . , Ip

such that f restricted to each nontrivial interval I j , j ∈ {1, . . . , p} is Ck and either
strictly monotone or constant.

Curve selection lemma [11, Theorem 4.6] Let A be a definable subset of Rn and let
x be an element of A (the closure of A). Then for all k ∈ N there exist ε > 0 and a Ck

definable path p : (−ε, 1)→ Rn such that p(0) = x and p((0, 1]) ⊂ A.
A major part of the interest in dealing with definable objects consists of their remar-

kable stability properties. These rely in fine on the projection stability assumption (iii)
(Definition 1). Using for instance [9, Theorem 1.13] the reader can establish easily the
following results:

Stability results Let O be an o-minimal structure over R.

(a) Given A ⊂ Rn, B ⊂ Rm and a definable mapping F : A→ B in O, then for all
C ⊂ A and E ⊂ B definable in O, the sets F(C) and F−1(E) are definable in
O.

(b) Let F : U → Rm be a definable mapping in O, where U is a nonempty open
subset of Rn. Then the mappings F ′(·; ·) : D → Rm, F ′G : DG → L(Rn,Rm)

and F ′ : D→ L(Rn,Rm) are definable in O.
(c) If F : U ⊂ Rn → Rm and G : V ⊂ F(U )→ Rp are definable mappings then

G ◦ F : U → Rp is definable in O.

1 This is due to axiom (iii). Sometimes this axiom is omitted from the definition of an o-minimal structure,
allowing smaller classes than SA, for instance the structure SL of semilinear sets.
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10 J. Bolte et al.

Example 2 (a) (Globally subanalytic sets) There exists an o-minimal structure, deno-
ted by Ran, that contains all sets of the form {(x, t) ∈ [−1, 1]n×R : f (x) = t}where
f : [−1, 1]n → R (n ∈ N) is an analytic function that can be extended analytically on
a neighborhood of the square [−1, 1]n . The sets belonging to this structure are called
globally subanalytic sets. Concerning general properties of subanalytic sets, see [5].
Early applications of this structure in optimization can be found in [10,19].
(b) (log-exp structure) There exists an o-minimal structure containing Ran and the
graph of exp : R→ R. This structure is denoted by Ran, exp.

Remark 2 In view of Example 2 (a) real-analytic mappings are obviously tame. They
are not however definable in some o-minimal structure in general. Consider for instance
f (x) = sin x (x ∈ R) whose zero set, i.e. {x ∈ R : sin x = 0}, is discrete and infinite.
By using Definition 1 (iv) and the stability result (a) we see that there does not exist
an o-minimal structure over R in which f is definable.

Due to their “polynomial nature” semialgebraic and globally subanalytic functions
of one variable admit the so-called Puiseux development.

Puiseux development [11] Let f : (0, 1) → R be a globally subanalytic function.
Then there exist some integers p, q ∈ Z, with q > 0, a sequence {ai }i=p,p+1,... with
ap �= 0 and a real number ε > 0 such that

f (x) =
+∞∑

i=p

ai xi/q for all x ∈ (0, ε).

Checking the semialgebraicity of a set in practice is often easy. On the other hand,
one needs to be careful when analytic functions come into play, as it is the case with
Ran. A formal approach to global subanalyticity can be found in [11].

3 Differentiability and semismoothness results

Let O be an o-minimal structure on (R,+, .).

3.1 Fréchet and Gâteaux derivative of tame mappings

The monotonicity lemma implies several elementary but very useful results concerning
functions of one variable.

Lemma 1 Let φ,ψ : [0, ε)→ R be definable functions continuous at 0 with φ(0) =
ψ(0) = 0.

(i) (local differentiation of inequalities) If ψ ≥ φ ≥ 0 on [0, ε) there exists ε1 ∈
(0, ε) such that ψ and φ are differentiable on (0, ε1) with ψ ′(t) ≥ φ′(t) for all
t in (0, ε1).
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Tame functions are semismooth 11

(ii) (de l’Hôpital inverse rule) Let l ∈ R and assume thatψ ′(t) > 0 for all t ∈ (0, ε)
sufficiently small. Then

lim
t→0+

φ(t)

ψ(t)
= l �⇒ lim

t→0+
φ′(t)
ψ ′(t)

= l.

Proof (i) By the monotonicity lemma the function t 
→ ψ(t) − φ(t) is C1 and
monotone on (0, ε1) for ε1 sufficiently small. Thus, (ψ−φ)′(t) has a constant sign (or
is equal to zero) for all t > 0 small enough. By integrating and using the assumption
ψ ≥ φ we obtain that for all t > 0 small enough, either ψ ′(t) = φ′(t) (thus ψ = φ),
or ψ ′(t)− φ′(t) ≥ 0.
(ii) We have (φ(t) − lψ(t))/ψ(t) → 0 as t ↓ 0, where φ − lψ vanishes at zero.
Replacing, if necessary, φ − lψ by φ̃, we see that there is no loss of generality in
assuming that l = 0. Since φ has a constant sign, replacing if necessary φ by its
opposite, we may also suppose that φ ≥ 0. Using the monotonicity lemma we obtain
that φ′(t) ≥ 0 for all t ∈ (0, ε). Since by assumption lim

t→0+
φ(t)/ψ(t) = l = 0, for

any δ > 0 and all t small enough we have δψ(t)− φ(t) ≥ 0. Applying (i) we obtain
δψ ′(s)− φ′(s) ≥ 0 for all s > 0 sufficiently small. Thus

0 ≤ lim
t→0+

φ′(t)
ψ ′(t)

≤ δ,

where the existence of the limit is due to the monotonicity lemma. The result follows
by letting δ go to zero. ��
Applying Lemma 1 (ii) with ψ(t) = t one obtains the following

Corollary 1 (right continuity of the derivative) Let φ : [0, ε) → R be a definable
function, continuous at 0 with φ(0) = 0, and let us assume that the limit

φ′(0+) = lim
t→0+

φ(t)

t

is finite (owing to the monotonicity lemma the limit always exists). Then

lim
t→0+

φ′(t) = φ′(0+).

Some regularity properties that are true for functions on the real-line fail to hold
when considering functions of several variables. For instance by using Corollary 1 we
see that the Fréchet differentiability at 0 of a definable path γ : (−1, 1)→ Rn implies
that γ is C1 around t = 0, which is no longer true in higher dimensions, see Fischer
[14]. Similarly, a definable mapping F : Rn → Rm which is Fréchet differentiable at
0, is not necessarily Fréchet differentiable in a neighborhood of 0 : take for instance
f (x, y) = x2 + |x | y2, where (x, y) ∈ R2. In an o-minimal framework, Fréchet
differentiability enjoys the following interesting characterization that we now proceed
to describe. From now on, let U denote a nonempty open definable neighborhood of
0 in Rn .
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12 J. Bolte et al.

Lemma 2 (Fréchet differentiability of definable mappings) Let η : U → Rm be a
definable mapping. The following assertions are equivalent.

(i) For all C1 definable curves p : (−1, 1)→ U such that p(0) = 0 and ||p(t)|| >
0 for t > 0, we have

lim
t→0+

η(p(t))

||p(t)|| = 0. (3)

(ii) η is Fréchet differentiable at 0 and η′(0) = 0.

Proof It suffices obviously to establish that (i) implies (ii). We argue by contradiction
so that there exist a sequence dk �= 0 converging to 0 and ε > 0 such that ||η(dk)|| ≥
ε||dk || for all integers k. Let us consider the definable set

A := {d ∈ Rn\{0} : ||η(d)|| ≥ ε ||d||},

and let us note that the point 0 belongs to the closure of A. Applying the curve selection
lemma we deduce that there exist γ > 0 and a definable C1 path p : (−γ, 1)→ Rm

such that p((0, 1)) ⊂ A and p(0) = 0, which contradicts the assumption (i). ��
Let us note that every definable locally Lipschitz mapping F admits directional

derivatives. This follows simply from the monotonicity lemma applied to each bounded
curve of the form

(0,+∞) � t 
→ F(x + td)− F(x)

t
,

where x ∈ U, d ∈ Rn . Locally Lipschitz, directionally differentiable functions are
called Bouligand differentiable [13, Sect. 3.1], and have the following well-known
property [25]. We include the brief proof for future reference.

Proposition 1 (conical approximation) If F : U → Rm is a Bouligand differentiable
mapping (so in particular if F is a definable locally Lipschitz mapping), then for all
x ∈ U,

||F(x + d)− F(x)− F ′(x; d)|| = ox (||d||).

Proof With no loss of generality we assume that x = 0. Let us introduce the mapping
η(d) = F(d)− F(0)− F ′(0, d), d ∈ U . Using the Lipschitz property of F we have
for all d, e in a neighborhood of 0 in Rn ,

||F ′(0; d)− F ′(0; e)|| =
∥
∥
∥
∥ lim

t→0+
F(td)− F(te)

t

∥
∥
∥
∥ ≤ L||d − e|| (4)

where L > 0 is a Lipschitz constant of F around 0. Since F is locally Lipschitz, we
deduce from (4) that η is also locally Lipschitz continuous. On the other hand the
definition of η implies that for all d ∈ U , η(td)/t → 0 = η′(0; d) as t ↓ 0. Hence
η is Gâteaux differentiable with η′G(0) = 0. Since η is a locally Lipschitz function in
finite dimensions, it is also Fréchet differentiable. Thus the conclusion follows. ��
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Tame functions are semismooth 13

Remark 3 The special case of semialgebraic (respectively, subanalytic) locally
Lipschitz continuous mappings is of particular interest. In this case, the function
t 
−→ ox (t) of Proposition 1 is also semialgebraic (respectively, subanalytic) and
admits a Puiseux development of the form

ox (t) =
+∞∑

i=p

ai t i/q , for all t ∈ (0, ε),

for some ε > 0 and integers p > q > 0 with ap �= 0 (recall that lim
t→0+

t−1 ox (t) = 0).

We deduce that

F(x + d)− F(x)− F ′(x; d) = Ox (||d||1+γ ),

where γ = p
q − 1 > 0. In other words there exist a positive constant c and ε > 0 such

that

||F(x + d)− F(x)− F ′(x; d)|| ≤ c ||d||1+γ

for all d, ||d|| ≤ ε. Similar results could be derived for any Lipschitz continuous
mapping definable in a “polynomially bounded” o-minimal structure over R [11,
p. 510 and Property 4.12].

One could wonder if definable Gâteaux differentiable mappings are automatically
Fréchet differentiable. The classical example of the (definable) function f : R2 → R
with

f (x, y) =

⎧
⎪⎨

⎪⎩

x y3

x2 + y4 , if (x, y) �= (0, 0)

0 , if (x, y) �= (0, 0)

reveals that this is false in general.

3.2 Semismoothness results

Theorem 1 Any locally Lipschitz tame (resp. definable) mapping F : U → Rm

(U ⊂ Rm) is semismooth.

Proof Our aim is to show that for all points x in U the mapping

d 
→ η(d) := F ′(x + d; d)− F ′(x; d)

is Fréchet differentiable at 0 with η′(0) = 0. With no loss of generality we assume
that x = 0. Since the problem is of local nature with F being continuous we can also

123



14 J. Bolte et al.

assume that F is definable (see Remark 1). In view of Lemma 2 it suffices therefore
to prove that

lim
t→0+

F ′(p(t); p(t))− F ′(0; p(t))

||p(t)|| = 0

for any C1 definable curve p : (−1, 1)→ Rm such that p(0) = 0 and p(t) ∈ U \{0}
for all t ∈ (0, 1). Let p : (−1, 1) → U be a definable C1 path such that p(0) = 0,
p(t) �= 0 if t > 0. Since the curve

(0, 1) � t 
→ p(t)

||p(t)||
is definable, the monotonicity lemma ensures its convergence (as t goes to 0) to some
vector u in the unit sphere of Rm . Hence there exists a continuous definable curve
θ : (0, 1)→ Rm such that

p(t) = ||p(t)||(u + θ(t)),

with θ(t)→ 0 as t ↓ 0. Let us set r(t) = ||p(t)|| for all t ∈ [0, 1). The monotonicity
lemma applied to each coordinate of p(t) and the fact that p(t) �= 0 yield that for
t > 0 small we have r ′(t) �= 0.

For t > 0 sufficiently small the Lipschitz property of F yields

||F(p(t))− F(r(t)u)||
r(t)

≤ L ||θ(t)||,

which tends to 0 as t↘ 0+. We thus obtain

F ′(0; u) = lim
t↓0

F(r(t)u)− F(0)

r(t)
= lim

t↓0

F(p(t))− F(0)

r(t)
.

Setting q(t) = F(p(t)) we deduce

F ′(0; u) = lim
t↓0

q(t)− q(0)

r(t)
,

and applying Lemma 1(ii) for the definable function r(t) and for each coordinate of
the definable function t 
→ q(t)− q(0) we infer that

F ′(0; u) = lim
t↓0

q ′(t)
r ′(t)

. (5)

Using the chain rule and the monotonicity lemma we have for t > 0 small

q ′(t+) = q ′(t) = F ′(p(t); p′(t)),

123



Tame functions are semismooth 15

which combined with (5) yields

lim
t→0+

F ′
(

p(t) ; p′(t)
r ′(t)

)

= F ′(0; u). (6)

Thus the curve

t 
−→ ϕ(t) :=
∥
∥
∥
∥ F ′

(

p(t); p′(t)
r ′(t)

)

− F ′(p(t); u)
∥
∥
∥
∥ (7)

is well defined for t > 0 sufficiently small. Using (4) (see the proof of Proposition 1)
we have

ϕ(t) =
∥
∥
∥
∥ F ′

(

p(t); u + [r(t)θ(t)]′

r ′(t)

)

− F ′(p(t), u)

∥
∥
∥
∥ ≤ L

∥
∥
∥
∥

[r(t)θ(t)]′

r ′(t)

∥
∥
∥
∥ .

Note that for each i = 1, . . . ,m we have r(t)θi (t)/r(t) = θi (t)→ 0 as t ↓ 0. In view
of Lemma 1(ii) we deduce that r ′(t)−1[r(t)θi (t)]′ → 0 as t ↓ 0, i = 1, . . . ,m, thus

lim
t→0+

ϕ(t) = 0. (8)

Combining (6) with (7) and (8) we deduce

lim
t→0+

F ′(p(t); u) = F ′(0; u). (9)

On the other hand, since F is Lipschitz around 0 we obtain for t > 0 sufficiently small
(see (4))

||F ′(p(t); p(t))− F ′(p(t); r(t)u)|| ≤ L r(t) ||θ(t)||, (10)

and
||F ′(0; p(t))− F ′(0; r(t)u)|| ≤ L r(t) ||θ(t)||. (11)

Combining (10), (11) and using the triangle inequality we obtain

||F ′(p(t); p(t))− F ′(0, p(t))|| ≤ ||F ′(p(t); p(t))− F ′(p(t); r(t)u)||
+||F ′(p(t); r(t)u)− F ′(0; r(t)u)||
+||F ′(0; r(t)u)− F ′(0; p(t))||
≤ r(t)

(
2L||θ(t)|| + ||F ′(p(t); u)− F ′(0; u)||) .

This completes the proof. ��
It is worth pointing out that semismooth functions need not be tame. For example,

the function f (x) = x3 sin(1/x) (with f (0) = 0) is continuously differentiable, so
certainly semismooth, but cannot be definable, since its zero set is not locally finite,
contradicting property (iv) of Definition 1.
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16 J. Bolte et al.

Remark 4 Assume that F is (globally) subanalytic and Lipschitz continuous. In an
analogous way as for the conic approximation result, the Puiseux lemma provides
additional information. For x fixed, we have indeed

F ′(x + d; d)− F ′(x; d) = Ox (||d||1+γ ) (12)

where γ is a positive rational number. Using the terminology of [22,26] one can
assert that semialgebraic or subanalytic Lipschitz continuous mappings are γ -order
semismooth or γ -semismooth with γ > 0.

4 An illustration: convergence rate of the Newton method

As pointed out in the introduction, the Newton method can be run successfully for
solving nonlinear equations involving semismooth data. In general, under rather mild
assumptions the convergence of the method is superlinear [13]. Let us recall (see
[7, p. 14], for example) that a given algorithm {xk}k≥1 is said to converge linearly
(respectively, superlinearly) to x∗ if the quotient

qk := ||xk+1 − x∗||
||xk − x∗||

satisfies lim sup
k→∞

qk < 1 (respectively, lim
k→∞ qk = 0).

As an illustration of our main results, we prove under mild assumptions that
the Newton method applied to a subanalytic locally Lipschitz mapping generates a
sequence xk that converges superlinearly to x∗ and satisfies

lim sup
k→∞

||xk+1 − x∗||
||xk − x∗||1+γ < +∞,

where γ > 0 (see Theorem 2).

Definition 3 Let F : Rn → Rm be a locally Lipschitz continuous function.

(i) The limiting Jacobian of F at x ∈ Rn is defined as

∂F(x) = {A ∈ L(Rn,Rm) : ∃uk ∈ D, F ′(uk)→ A, k →+∞}.

(ii) The Clarke Jacobian of F at x ∈ Rn is defined as (see [8, p. 70])

∂◦F(x) = co ∂F(x),

where for all S ⊂ Rm , co S stands for the closed convex envelope of S.

(As usual, D denotes the points of differentiability of F .)

Remark 5 Due to the Lipschitz property of F , the Clarke Jacobian of F is a
nonempty compact convex set [13, Proposition 7.1.4], so in particular we have
∂◦F(x) = co ∂F(x), for all x ∈ U .
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Tame functions are semismooth 17

In the remainder, we say that x is a regular point of F if each A ∈ ∂◦F(x) has a
maximal rank, that is, equal to min {n, m}. Note that the upper semicontinuity of the
multivalued mapping ∂◦F implies that the set of regular points of F is an open subset
of Rn .

When n = m, an exact Newton algorithm for solving the nonsmooth nonlinear
equation F(x) = 0 can be devised as follows:

Nonsmooth Newton algorithm

Step 1 Choose a regular point x0 ∈ Rn and set k = 0.
Step 2 If F(xk) = 0 then stop.
Step 3 Take ∆(xk) in ∂◦F(xk), compute xk+1 via

F(xk)+∆(xk)(xk+1 − xk) = 0,

k ← k + 1 and go to Step 2.

An important issue of the above algorithm is obviously the computation of xk+1 in
Step 3. This is in general a delicate matter tightly linked to the convergence of the
algorithm (see [13] and references therein). We will not tackle this problem here.

The following result is a stronger version of [13, Theorem 7.5.3] in the case of
subanalytic mappings.

Theorem 2 Let F : Rn → Rn be a locally Lipschitz (globally) subanalytic function
and a regular point x∗ ∈ Rn such that F(x∗) = 0. Then there exists δ > 0 such that
for all x0 ∈ B(x∗, δ) the nonsmooth Newton algorithm is well defined and generates
a sequence {xk}k∈N which converges to x∗. Moreover there exists a rational number
γ > 0 such that

||xk+1 − x∗|| = O(exp[−(1+ γ )k]), (13)

which implies in particular that

||xk+1 − x∗|| ≤ c

2(1+γ )k

for some positive constant c.

The proof relies on the following lemma:

Lemma 3 Let F : Rn → Rn be a locally Lipschitz subanalytic function and x ∈ Rn.
Then there exists a positive rational number γ such that

||F(y)− F(x)−∆(y)(y − x)|| = Ox (||y − x ||1+γ ), (14)

where ∆(y) is any element of ∂◦F(y).

Proof Using Proposition 1 and Remark 3 we have

F(y)− F(x)− F ′(x; y − x) = Ox (||y − x ||1+γ1) (15)
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18 J. Bolte et al.

where γ1 is a positive rational number. To obtain (14), it suffices therefore to establish
that

||F ′(x; d)−∆(x + d)d|| = Ox (||d||1+γ2), with γ2 > 0 in Q.

The constant γ2 = γ posited in Remark 4 does the job: indeed, let us fix d ∈ Rn .
By definition of the Clarke Jacobian for a Lipschitz function and the Carathéodory

theorem we obtain a finite sequence λ1, . . . , λn2+1 ≥ 0 with
∑n2+1

1 λi = 1 and n2+1
sequences {di,k}k∈N with di,k → d as k →+∞ such that x + di,k ∈ D and

∆(x + d) =
n2+1∑

i=1

λi lim
k→+∞ F ′(x + di,k). (16)

In view of Remark 4, we get

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

n2+1∑

i=1

λi F ′(x; di,k)−
n2+1∑

i=1

λi F ′(x + di,k, d)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

≤
n2+1∑

i=1

λi ||F ′(x; di,k)− F ′(x + di,k; di,k)+ F ′(x + di,k; d − di,k)||

≤
n2+1∑

i=1

λi

(
||F ′(x; di,k)− F ′(x + di,k; di,k)|| + ||F ′(x + di,k; d − di,k)||

)

≤ Ox (||d||1+γ2)+ L
n2+1∑

i=1

||d − di,k ||

where L > 0 is the Lipschitz constant of f around x + d. Taking the limit k → ∞
we obtain the asserted result. ��

The proof of Theorem 2 is now standard. The above result shows, in the terminology
of [13, Definition 7.5.13], that the multifunction ∂◦F is a “(1+γ )-order linear Newton
approximation” of the function F at the point x . Superlinear convergence now follows
in an analogous fashion to [13, Theorem 7.5.15]: see the discussion in [13, p. 696].
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