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Shor’s r-algorithm is an iterative method for unconstrained optimization, designed for minimizing non-
smooth functions, for which its reported success has been considerable. Although some limited conver-
gence results are known, nothing seems to be known about the algorithm’s rate of convergence, even in
the smooth case. We study how the method behaves on convex quadratics, proving linear convergence
in the two-dimensional case and conjecturing that the algorithm is always linearly convergent, with an
asymptotic convergence rate that is independent of the conditioning of the quadratic being minimized.

Keywords Shor’s r-algorithm; space dilation; linear convergence; unconstrained optimization;
nonsmooth optimization.

1. Introduction

Shor’s r-algorithm $hor, 1985 Section 3.6) was designed primarily to minimize nonsmooth functions,
something that it does quite effectively according to extensive results of Shor and others, particularly
Kappel & Kuntsevich 2000. The r-algorithm, which can be viewed as a variable metric method that
does not satisfy the secant equation, should not be confused with Shor’s subgradient method with space
dilation (Shor, 1985 Section 3.3), which is related to the symmetric rank-one quasi-Newton method
(Todd 1986. The r-algorithm also uses space dilation, but in the direction of the difference of two suc-
cessive gradients (or subgradients, in the nonsmooth case). The r-algorithm’s crucial payafaeter

below) ranges between 0 and 1: for the boundary cases0O andy = 1, the method reduces respec-

tively to steepest descent and to a variant of the conjugate gradient m&hog 1985 p.70). Some

limited convergence results are known; a result is given for continuous, piecewise smooth functions in
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Shor (1985 Theorem 3.13). However, nothing seems to be known about the convergence rate of the
algorithm, even in the smooth case.

This paper studies the rate of convergence of the r-algorithm on convex quadratics, conjecturing that
the method is linearly convergent in this case, with a proof winea 2. We also make the stronger
conjecture that, fop € (0, 1), the algorithm is linearly convergent with a rate that is independent of
the conditioning of the quadratic to which it is applied, a result that would interpolate nicely between
well known results for steepest descent and conjugate gradient. Our analysis makes use of properties of
the trace and determinant to try to bound the condition number of the matrix that is generated by the
r-algorithm. It was M. J. D. Powell who pioneered this kind of technique in the convergence analysis of
variable metric method$Ppwell 1971, 1972 1976.

2. Shor’s r-algorithm

For a smooth functiorf : R" — R, the algorithm fixes a constapt € (0, 1), begins with an initial
point xg € R", defines an initial matrixBg = | (the identity matrix), and then iterates as follows, for
stepk=0,1,2,...:

X1 = Xk — BBy V f (x)

wheret, minimizes f (Xk+1)
Me1= B (Vf(xkp1) — V f(xk)) normalized
Bks1=Bk(l — yrk+1r|;r+1).

Here and below, “normalized” means normalized using the 2-norm. In practice, an inexact line search
would be used to obtaitx, but for the purposes of our analysis, we make the following assumption
throughout:

Exact line search The step sizé& globally minimizesf (Xi+1).

Notice that setting = 0 would give the method of steepest descent.

We can interpret the algorithm as making steepest descent steps in a transformed space, as follows.
At stepk, given the current iteratg, and the current transformation matiy, we first make the change
of variablesy = Bk_lx. In terms of this new variable, we wish to minimize the function

hi(y) = £(x) = f(Bky).

Our current point iy, = Bk‘lxk. Starting from this point, a steepest descent step takes us to the new
point

Ye+1 = Yk — tkVhi(y),

wherety minimizeshy(yk+1), and fromyg41 we invert the change of variables to obtaipn.1. Hence
we deduce the iteration:

Xk+1 = BiYks+1 = Bk (yk — thhk(yk)) = Xk — tk Bk By V f (X0).

The update to the transformation matBy is motivated by the next assumption, that again we make
throughout:

Convex quadratic: f(x) = %XT Ax for a symmetric positive definite matriX.
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In this case it is easy to verify the relationship
X{ (Vf(x1) = Vf(xp) =0.

In other words, one steepest descent iteration on a convex quadratic results in a difference of succes-
sive gradients that is orthogonal to the direction to the minimizer. The transformation represented by
the matrixBy dilates the space in the direction of this gradient difference, thereby encouraging future
iterations in orthogonal directions. In particular, if we get 1, all future iterations must be orthogonal
to the gradient difference, resulting in the conjugate gradient iteration. More generally, the method can
be viewed as a variable metric method, but one for which the updated matrix does not satisfy the well
known secant equation.

The classical theory for the method of steepest descent relates the rate of decrease in the function
value to the conditioning of the quadratic. Specifically, we have

2
X, Axg < | ———=) xg Axo,
154 (K(A)+1 0 A0

wherex (A) = ||A]l||A™Y|, the condition number oA (Luenberger1984. In subsequent iterations,
applying the same inequality in the transformed space shows

XkT+1AXk+1 = YJ+1 By ABiYk+1

2
k(BJAB) — 1Y 1.7
< —=——— By A
(K(BkTABk)-l-l) Yic Bre ABOK

2
[ <(BIAB) -1\
_(K(BJABK)H) X A

sinceyk41 is obtained fromyy by one iteration of steepest descent on the function

1
hi(y) = 5y" B} ABy.

Consequently, to understand the speed of Shor’s r-algorithm in the case of a convex quadratic with an
exact line search, we must understand how the condition number of the matrix

A« = B AB

evolves as the step countegrows.
To study the Shor iteration, we make some changes of variables. In our quadratic case, assuming the
iteration does not terminate with some= 0, the iteration becomes
xg ABcBJ Axc
%] ABB] ABB] Axc

tk

Xit1 = Xk — T BB Axc
rkr1= By A(xks1 — Xk) normalized

Bk41=Bk(l — yrk+1r|2-+1).
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Notice that the iteration is well-defined becawuge# O. If we define a new (nonzero) variable

z« = B) Ax,
we obtain
o — N2
ZI Axzk
By AXc1 = Zk — tk Az
rk+1 = Axzx normalized
Bir1=Bi(l — yMkgaryy)-
By definition,

k1= B|I+1Axk+1 = -y rk+1r|<T+1) B|-<r AXey1

=( -y r|<+1f|<T+1)(Zk — tAxkzk)

2
T llzk |l
=(l - }’rk+lrk+1)(zk — < Tk+1
Mkt1Zk

T 12k |I?
=2z — 7Tz + (1 —7) Mk+1,
+ Mo 12
+

where once agaiq(T 112« # 0 becauseay # 0. Hence we can rewrite the iteration as follows:
rk+1 = Axzx normalized

Bk+1=Bk(l —y rk+1fkT+1)

T 121
Zet1 =2 — |7z + A —y) =5 M1
k12K

Normalizing each vecta to obtain the corresponding unit vectay results in the following iteration.

Shor matrix iteration Given any n-by-n symmetric positive definite matrix ahd any unit vector
Ug € R", compute the following sequences foekl, 2, 3, .. .:

[ ry = Ax_1Uk_1 normalized

Ck = rkTuk_l
D=1 — yl‘kl’g—
Ax = Dk Ak—1Dxk

Uk = Uk—1 — (y Ck + 4 )rk normalized

Note thatAy is positive definite for alk. If we allowed the boundary cases= 0 andy = 1, we
would haveAy = Ag for all k in the former case, while in the latter case, the equivalence with conjugate
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gradient implies that the rank & would drop by one at each step, terminating with= 0 for some
k <n.

As noted earlier, we are interested in how the condition numbag) evolves. We begin with the
following elementary result for the trace, determinant and condition number.

LEMMA 2.1 We have
tr A = trAcca— 7 (2— 7)rg Acoark,
Ax—
detAy = (1 — y)2detA1, and x(AW) < '(‘1(—k;;
-7
Proof. The equalities are immediate, observing for the second that the nfiatrhas one eigenvalue

equal to 1— y and the rest all one. For the inequality, fetax(-) and Amin(-) denote maximum and
minimum eigenvalue respectively and observe that for any vector

0T Aw = Amin(Ak—1)0 T D20 > Amin(Ak—1)(L — 7)?[lv |1
and
0T Ao < Amaxd(Ak=1)0 T D20 < Amax(Ak—1) v |12,

O
Thus trAx decreases witk, detAx decreases linearly, arq Ax) does not grow superlinearly. However,
numerical experiments suggest the following conjecture.

CONJECTURE2.2 Givenany e (0, 1), any positive definite initial matriXdg and any initial vectouo,
the condition numbers of the matricés, A1, A2, ... generated by the Shor matrix iteration stay
bounded.

Suppose this holds, and set
i = lim supx (Ax).
k

Then our observation about the convergence rate of steepest descent in the transformed space implies
that the function valueéxkT Ax¢ generated by Shor’s r-algorithm converge to zero linearly with asymp-

totic rate
i —1\?
k+1)

Indeed, experiments suggest a much stronger conjecture.

CONJECTURE2.3 For eachdimensiam= 1,2, 3, ... and eacly e (0, 1), there exists a finite constant
p(n, y) associated with the Shor matrix iteration, independent of the initial positive definite ngtrix
and the initial vectoup, such that the condition number of the iterafgssatisfy

lim supr (A) < p(n, 7).
k

This conjecture would imply that Shor’s algorithm converges linearly on convex quadratics at an asymp-
totic linear rate independent of the initial conditioning of the quadratic. Such a result would interpolate
nicely between known results for steepest descent=(0), for which the conjecture is not true, and
conjugate gradienty( = 1), which has finite termination. See Figfor a typical example. The graph
plots the condition number of the matrd against the iteration coukt for various choices of . The
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FiG. 1. Conditioning of theAy matrices generated by the Shor algorithm when the initial matrix is the 10-by-10 Hilbert matrix.

initial matrix Ag was a Hilbert matrix of size 10, and the initial unit vectgrwas generated randomly.
For values ofy that are very close to 1, the method nearly solves the optimization problamteps,
but then the next step results in a huge increase in the condition number which is reduced in subsequent
iterations. This pattern repeats, suggesting tat y) — oo asy — 1. On the other hand, while it
seems quite possible thatn, y ) can be taken arbitrarily close to 1 as— 0, choosingy close to 0
is not desirable as the transient decrease in the condition number is slower theycieser0. These
observations motivate a choicepfthat is not too close to 0 or 1.

The trace and determinant of a positive definite matrix give crude bounds on its condition number,
as shown in the following result.

PROPOSITION2.4 For anyn-by-n symmetric positive definite matriR, define

1 trA
A = —
u(A) -

(detA)l/n’
Then
1< u(A) < k(A < 4uA)".

Proof. The first inequality is just the arithmetic-geometric mean inequality, while the second is imme-
diate. The third inequality follows easily froMerikoski et al. (1997, Theorem 2). O

In order to keep the presentation self-contained, we also note the following simple proof of a weaker
version of the third inequality, replacing the factor 48y (n — 1)"~1. Denote the eigenvalues #fby
M=l >=--->=An>0.Then

A1 A+ A2+ -+ n
A)=— and u(A) = .
x(A) n #(A) N(Ag-Ap----- n)l/n
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We have
n n 1/n
D= w(A)(Hzi) :
i=1 i=1

so dividing by, shows
n—-1

n n 1/n
Ai Ai Ai
i=1

i=1 i=1

n—-1 i
= ny(A)(H f)
1 n

n-1

1
n-1 n n—-1

o n
< nu(A ,
1(A) (n — 1)
where the last inequality follows from the arithmetic-geometric mean inequality again. Thus

1/n n:u(A)
a < —(n — 1)(n—l)/n .

Sincex(A) < a, this provides the weaker upper boundsg), which is all we need for what follows.

Thus, for fixedn, the condition numbek (Ax) remains bounded if and only if (Ax) remains
bounded. Since we know that d&t decreases by the constant factbr— y )2 at every step, we can
state our conjectures about the condition number in terms of the tra8g i@&ther than its condition
number. Then Conjectu2becomes:

CONJECTURE2.5 Given any initiah-by-n matrix Ag and initial vectotug, the matriced\g, A1, Ao, ...
generated by the Shor matrix iteration have the property that the quantity

2k
L—y)77 tr A

stays bounded.

The experimental observations of Figsuggest that the conditioning of the matrigksgenerated
by the Shor iteration is in some sense “self-correcting”: over a long sequence of iterations, any ill-
conditioning evolves away, settling into a stable state of relatively small fluctuations. However, the
closery isto 1, the less stable is this behaviour. As we observed above, sindg detreases linearly,
the behaviour of tAx gives a reasonable measure of the conditioning, and this behaviour suggests a
partial explanation for the self-correcting mechanism. By Len@riathe reduction in trace is least
whenry is close to an eigenvector corresponding to the smallest eigenvalye of In this case, since
rk is Axk—1Ux—1 hormalized, the unit vectorg anduk_1 must be close, so the scarmust be close to
one, and then the formula for the new unit veatpimplies that it must be almost orthogonalug_1. In
particular, the iteration does not allow the vectiar$o “line up” in the direction of a single eigenvector.

In the two-dimensional case, this self-correcting behaviour is enough to verify Conj@c2ukife
present a proof for the cage= 1/2, depending on the fact that, while the condition numbeiptan
increase from one iteration to the next, ati@o iterations it must decrease.

THEOREM 2.6 For the Shor matrix iteration in dimensian= 2 and with constant = 1/2, for any
stepk such that the matrice&y_1 and A1 are both defined,

k(A1) < r(Ak-1).
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Consequently, the Shor r-algorithm (with = 1/2) for minimizing a two-variable strictly convex
guadratic either terminates or converges linearly.

Proof. Since the functior s t3 + =7 is increasing fot > 1, it suffices to prove

1 1
A + — )4 —,
VE(Ay1) )] < VE(Ak-1) )

or equivalently

tr Axya tr A1
< .
JdetAyi1 /detAx_1
By Lemmaz2.1,
1
A = —detAx_1.
det K+1 16de Ak 1
On the other hand,

3
tr A =1tr A1 — ZI’J Ax_1rk
3 7
tr Agpr=tr A — Zrk+1Akrk+1-
Hence we want to show
_ _ 3,7 T
tr Ak—1 > 4tr Agpr = 4(tr Ac—1 4(rk A 1rk + rk+1Akrk+1) ,

or in other words

T T
Mg Ak_lrk+rk+1Akrk+1 > tr Ag_1.

Let us summarize our task, in simplified notation. Given any unit vactar R? (formerly uyx_1)
and any 2-by-2 symmetric positive definite matfixformerly Ac_1), we define

1
r= Fu
IFull
c=r"u
1
D=1-2rr"
2
G=DFD
1 1
DZU—E(C+ E)r
1
w =
IGoll

In our former notation; = ry, ¢ = ¢, D = Dy, G = Ay, v is some positive multiple of the unit vector
Uk, andw = rg41. We want to show the inequality

rTFr+w' Guw > trF,
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or in other words

0T G3

vTG2p

rTFr + > trF.

Without loss of generality we can assume- [1, 0]T. Indeed, if we prove the result in this special
case, we can deduce the case for genetay a simple change of variables: choose any orthogonal
matrixU satisfyingUr = [1, 0], and then apply the special case with the veatmeplaced byJ u and
the matrixF replaced byy FUT.

So, we can assunre= [1,0]" and then, by the definition af, we must haves = [c, s]T where
c® +s? = 1. Noticec > 0 sinceF is positive definite. Without loss of generality, by rescaling if
necessary, we can assume the bottom row of the mattias norm one, and then we must have

a -s
F= [ :| for somea > 0.
-s

c
We deduce
1 1
c_ |z Ofla S|z 0 _ |3 -3
0 1f|-s c||0 1 -3 c
We want to show
T G3p
a+DTGZD >a+c,

or in other words

=[] -3+ D1)

—s(a+ 40)}

we deduce & = s[-s, 2]T, so
8cGv = (4G)(2cv) =
v = (46)(2) |: 2+ 6¢2

Finally, we have
256c°(n T G20 — cv ' G%) = (8cGo) ' (4G)(8cGo) — 4c(8cGo) T (8cG)
= (8cGv) T (4(G — cl))(8cGo)

, | —s(a+4c) T a—4c —-2s||—s(a+4c)
=S
2 + 6¢2 -2s 0 2 + 6¢2

—g? (sz(a — 4c)(a + 40)? + 4s%(a + 4c) (2 + 6c2))

L 1

=s*a+4c)(@°+82+8 > 0
as required, using the fact that£ 0 sincev # 0 by assumption. a
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Numerical experiments show that it is not always the casexttWtn—1) < x(Ak—1) forn > 2,
so proving linear convergence for> 2 will require a different approach. Nonetheless, both the obser-
vations of Fig.1 and the relationship with the conjugate gradient method indicate that whatever result
might be established, it will probably involve a characterization of behaviourrostaps.

3. Concluding remarks

Our interest in Shor’s r-algorithm has two different motivations. One is its apparently substantial prac-
tical success in minimizing nonsmooth functions. The other is that the algorithm interpolates between
two pillars of optimization, steepest descent and conjugate gradient, and seems to have interesting con-
vergence properties that remain to be established. We hope that our analysis of the r-algorithm in the
simplest setting imaginable will stimulate further research on its theoretical behaviour.
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