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The speed of Shor’s R-algorithm
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Shor’s r-algorithm is an iterative method for unconstrained optimization, designed for minimizing non-
smooth functions, for which its reported success has been considerable. Although some limited conver-
gence results are known, nothing seems to be known about the algorithm’s rate of convergence, even in
the smooth case. We study how the method behaves on convex quadratics, proving linear convergence
in the two-dimensional case and conjecturing that the algorithm is always linearly convergent, with an
asymptotic convergence rate that is independent of the conditioning of the quadratic being minimized.
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1. Introduction

Shor’s r-algorithm (Shor, 1985, Section 3.6) was designed primarily to minimize nonsmooth functions,
something that it does quite effectively according to extensive results of Shor and others, particularly
Kappel & Kuntsevich (2000). The r-algorithm, which can be viewed as a variable metric method that
does not satisfy the secant equation, should not be confused with Shor’s subgradient method with space
dilation (Shor, 1985, Section 3.3), which is related to the symmetric rank-one quasi-Newton method
(Todd, 1986). The r-algorithm also uses space dilation, but in the direction of the difference of two suc-
cessive gradients (or subgradients, in the nonsmooth case). The r-algorithm’s crucial parameterγ (see
below) ranges between 0 and 1: for the boundary casesγ = 0 andγ = 1, the method reduces respec-
tively to steepest descent and to a variant of the conjugate gradient method (Shor, 1985, p.70). Some
limited convergence results are known; a result is given for continuous, piecewise smooth functions in
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Shor (1985, Theorem 3.13). However, nothing seems to be known about the convergence rate of the
algorithm, even in the smooth case.

This paper studies the rate of convergence of the r-algorithm on convex quadratics, conjecturing that
the method is linearly convergent in this case, with a proof whenn = 2. We also make the stronger
conjecture that, forγ ∈ (0, 1), the algorithm is linearly convergent with a rate that is independent of
the conditioning of the quadratic to which it is applied, a result that would interpolate nicely between
well known results for steepest descent and conjugate gradient. Our analysis makes use of properties of
the trace and determinant to try to bound the condition number of the matrix that is generated by the
r-algorithm. It was M. J. D. Powell who pioneered this kind of technique in the convergence analysis of
variable metric methods (Powell, 1971, 1972, 1976).

2. Shor’s r-algorithm

For a smooth functionf : Rn → R, the algorithm fixes a constantγ ∈ (0, 1), begins with an initial
point x0 ∈ Rn, defines an initial matrixB0 = I (the identity matrix), and then iterates as follows, for
stepk = 0, 1, 2, . . .:

xk+1 = xk − tk Bk BT
k ∇ f (xk)

wheretk minimizes f (xk+1)

rk+1 = BT
k (∇ f (xk+1) − ∇ f (xk)) normalized

Bk+1 = Bk(I − γ rk+1r T
k+1).

Here and below, “normalized” means normalized using the 2-norm. In practice, an inexact line search
would be used to obtaintk, but for the purposes of our analysis, we make the following assumption
throughout:

Exact line search: The step sizetk globally minimizesf (xk+1).

Notice that settingγ = 0 would give the method of steepest descent.
We can interpret the algorithm as making steepest descent steps in a transformed space, as follows.

At stepk, given the current iteratexk and the current transformation matrixBk, we first make the change
of variablesy = B−1

k x. In terms of this new variable, we wish to minimize the function

hk(y) = f (x) = f (Bky).

Our current point isyk = B−1
k xk. Starting from this point, a steepest descent step takes us to the new

point

yk+1 = yk − tk∇hk(yk),

wheretk minimizeshk(yk+1), and fromyk+1 we invert the change of variables to obtainxk+1. Hence
we deduce the iteration:

xk+1 = Bkyk+1 = Bk

(
yk − tk∇hk(yk)

)
= xk − tk Bk BT

k ∇ f (xk).

The update to the transformation matrixBk is motivated by the next assumption, that again we make
throughout:

Convex quadratic: f (x) = 1
2xT Ax for a symmetric positive definite matrixA.
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In this case it is easy to verify the relationship

xT
1 (∇ f (x1) − ∇ f (x0)) = 0.

In other words, one steepest descent iteration on a convex quadratic results in a difference of succes-
sive gradients that is orthogonal to the direction to the minimizer. The transformation represented by
the matrixBk dilates the space in the direction of this gradient difference, thereby encouraging future
iterations in orthogonal directions. In particular, if we setγ = 1, all future iterations must be orthogonal
to the gradient difference, resulting in the conjugate gradient iteration. More generally, the method can
be viewed as a variable metric method, but one for which the updated matrix does not satisfy the well
known secant equation.

The classical theory for the method of steepest descent relates the rate of decrease in the function
value to the conditioning of the quadratic. Specifically, we have

xT
1 Ax1 6

(
κ(A) − 1

κ(A) + 1

)2

xT
0 Ax0,

whereκ(A) = ‖A‖‖A−1‖, the condition number ofA (Luenberger, 1984). In subsequent iterations,
applying the same inequality in the transformed space shows

xT
k+1Axk+1 = yT

k+1BT
k ABkyk+1

6

(
κ(BT

k ABk) − 1

κ(BT
k ABk) + 1

)2

yT
k BT

k ABkyk

=

(
κ(BT

k ABk) − 1

κ(BT
k ABk) + 1

)2

xT
k Axk,

sinceyk+1 is obtained fromyk by one iteration of steepest descent on the function

hk(y) =
1

2
yT BT

k ABky.

Consequently, to understand the speed of Shor’s r-algorithm in the case of a convex quadratic with an
exact line search, we must understand how the condition number of the matrix

Ak = BT
k ABk

evolves as the step counterk grows.
To study the Shor iteration, we make some changes of variables. In our quadratic case, assuming the

iteration does not terminate with somexk = 0, the iteration becomes

tk =
xT

k ABk BT
k Axk

xT
k ABk BT

k ABk BT
k Axk

xk+1 = xk − tk Bk BT
k Axk

rk+1 = BT
k A(xk+1 − xk) normalized

Bk+1 = Bk(I − γ rk+1r T
k+1).
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Notice that the iteration is well-defined becausexk 6= 0. If we define a new (nonzero) variable

zk = BT
k Axk,

we obtain

tk =
‖zk‖2

zT
k Akzk

BT
k Axk+1 = zk − tk Akzk

rk+1 = Akzk normalized

Bk+1 = Bk(I − γ rk+1r T
k+1).

By definition,

zk+1 = BT
k+1Axk+1 = (I − γ rk+1r T

k+1)BT
k Axk+1

= (I − γ rk+1r T
k+1)(zk − tk Akzk)

= (I − γ rk+1r T
k+1)

(
zk −

‖zk‖2

r T
k+1zk

rk+1

)

= zk −
(
γ r T

k+1zk + (1 − γ )
‖zk‖2

r T
k+1zk

)
rk+1,

where once againr T
k+1zk 6= 0 becausexk 6= 0. Hence we can rewrite the iteration as follows:

rk+1 = Akzk normalized

Bk+1 = Bk(I − γ rk+1r T
k+1)

zk+1 = zk −
(
γ r T

k+1zk + (1 − γ )
‖zk‖2

r T
k+1zk

)
rk+1.

Normalizing each vectorzk to obtain the corresponding unit vectoruk results in the following iteration.

Shor matrix iteration Given any n-by-n symmetric positive definite matrix A0 and any unit vector
u0 ∈ Rn, compute the following sequences for k= 1, 2, 3, . . . :






rk = Ak−1uk−1 normalized

ck = r T
k uk−1

Dk = I − γ rkr T
k

Ak = Dk Ak−1Dk

uk = uk−1 −
(
γ ck +

1 − γ

ck

)
rk normalized.

Note thatAk is positive definite for allk. If we allowed the boundary casesγ = 0 andγ = 1, we
would haveAk = A0 for all k in the former case, while in the latter case, the equivalence with conjugate
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gradient implies that the rank ofAk would drop by one at each step, terminating withxk = 0 for some
k 6 n.

As noted earlier, we are interested in how the condition numberκ(Ak) evolves. We begin with the
following elementary result for the trace, determinant and condition number.

LEMMA 2.1 We have

tr Ak = tr Ak−1 − γ (2 − γ )r T
k Ak−1rk,

detAk = (1 − γ )2 detAk−1, and κ(Ak) 6
κ(Ak−1)

(1 − γ )2
.

Proof. The equalities are immediate, observing for the second that the matrixDk has one eigenvalue
equal to 1− γ and the rest all one. For the inequality, letλmax(∙) andλmin(∙) denote maximum and
minimum eigenvalue respectively and observe that for any vectorv,

vT Akv > λmin(Ak−1)v
T D2

kv > λmin(Ak−1)(1 − γ )2‖v‖2

and

vT Akv 6 λmax(Ak−1)v
T D2

kv 6 λmax(Ak−1)‖v‖2.

�
Thus trAk decreases withk, detAk decreases linearly, andκ(Ak) does not grow superlinearly. However,
numerical experiments suggest the following conjecture.

CONJECTURE2.2 Given anyγ ∈ (0, 1), any positive definite initial matrixA0 and any initial vectoru0,
the condition numbers of the matricesA0, A1, A2, . . . generated by the Shor matrix iteration stay
bounded.

Suppose this holds, and set

κ̄ = lim sup
k

κ(Ak).

Then our observation about the convergence rate of steepest descent in the transformed space implies
that the function values12xT

k Axk generated by Shor’s r-algorithm converge to zero linearly with asymp-
totic rate

(
κ̄ − 1

κ̄ + 1

)2

.

Indeed, experiments suggest a much stronger conjecture.

CONJECTURE2.3 For each dimensionn = 1, 2, 3, . . . and eachγ ∈ (0, 1), there exists a finite constant
ρ(n, γ ) associated with the Shor matrix iteration, independent of the initial positive definite matrixA0
and the initial vectoru0, such that the condition number of the iteratesAk satisfy

lim sup
k

κ(Ak) 6 ρ(n, γ ).

This conjecture would imply that Shor’s algorithm converges linearly on convex quadratics at an asymp-
totic linear rate independent of the initial conditioning of the quadratic. Such a result would interpolate
nicely between known results for steepest descent (γ = 0), for which the conjecture is not true, and
conjugate gradient (γ = 1), which has finite termination. See Fig.1 for a typical example. The graph
plots the condition number of the matrixAk against the iteration countk, for various choices ofγ . The
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FIG. 1. Conditioning of theAk matrices generated by the Shor algorithm when the initial matrix is the 10-by-10 Hilbert matrix.

initial matrix A0 was a Hilbert matrix of size 10, and the initial unit vectoru0 was generated randomly.
For values ofγ that are very close to 1, the method nearly solves the optimization problem inn steps,
but then the next step results in a huge increase in the condition number which is reduced in subsequent
iterations. This pattern repeats, suggesting thatρ(n, γ ) → ∞ asγ → 1. On the other hand, while it
seems quite possible thatρ(n, γ ) can be taken arbitrarily close to 1 asγ → 0, choosingγ close to 0
is not desirable as the transient decrease in the condition number is slower the closerγ is to 0. These
observations motivate a choice ofγ that is not too close to 0 or 1.

The trace and determinant of a positive definite matrix give crude bounds on its condition number,
as shown in the following result.

PROPOSITION2.4 For anyn-by-n symmetric positive definite matrixA, define

μ(A) =
1

n

tr A

(detA)1/n
.

Then

1 6 μ(A) 6 κ(A) 6 4(μ(A))n.

Proof. The first inequality is just the arithmetic-geometric mean inequality, while the second is imme-
diate. The third inequality follows easily fromMerikoskiet al. (1997, Theorem 2). �

In order to keep the presentation self-contained, we also note the following simple proof of a weaker
version of the third inequality, replacing the factor 4 bynn/(n − 1)n−1. Denote the eigenvalues ofA by
λ1 > λ2 > ∙ ∙ ∙ > λn > 0. Then

κ(A) =
λ1

λn
and μ(A) =

λ1 + λ2 + ∙ ∙ ∙ + λn

n(λ1 ∙ λ2 ∙ ∙ ∙ ∙ ∙ λn)1/n
.
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We have
n∑

i =1

λi = nμ(A)

(
n∏

i =1

λi

)1/n

,

so dividing byλn shows

α =
n−1∑

i =1

λi

λn
<

n∑

i =1

λi

λn
= nμ(A)

(
n∏

i =1

λi

λn

)1/n

= nμ(A)

(
n−1∏

i =1

λi

λn

) 1
n−1

n−1
n

6 nμ(A)

(
α

n − 1

) n−1
n

,

where the last inequality follows from the arithmetic-geometric mean inequality again. Thus

α1/n <
nμ(A)

(n − 1)(n−1)/n
.

Sinceκ(A) < α, this provides the weaker upper bound onκ(A), which is all we need for what follows.
Thus, for fixedn, the condition numberκ(Ak) remains bounded if and only ifμ(Ak) remains

bounded. Since we know that detAk decreases by the constant factor(1 − γ )2 at every step, we can
state our conjectures about the condition number in terms of the trace ofAk rather than its condition
number. Then Conjecture2.2becomes:

CONJECTURE2.5 Given any initialn-by-n matrix A0 and initial vectoru0, the matricesA0, A1, A2, . . .
generated by the Shor matrix iteration have the property that the quantity

(1 − γ )−
2k
n tr Ak

stays bounded.

The experimental observations of Fig.1 suggest that the conditioning of the matricesAk generated
by the Shor iteration is in some sense “self-correcting”: over a long sequence of iterations, any ill-
conditioning evolves away, settling into a stable state of relatively small fluctuations. However, the
closerγ is to 1, the less stable is this behaviour. As we observed above, since detAk decreases linearly,
the behaviour of trAk gives a reasonable measure of the conditioning, and this behaviour suggests a
partial explanation for the self-correcting mechanism. By Lemma2.1, the reduction in trace is least
whenrk is close to an eigenvector corresponding to the smallest eigenvalue ofAk−1. In this case, since
rk is Ak−1uk−1 normalized, the unit vectorsrk anduk−1 must be close, so the scalarck must be close to
one, and then the formula for the new unit vectoruk implies that it must be almost orthogonal touk−1. In
particular, the iteration does not allow the vectorsrk to “line up” in the direction of a single eigenvector.

In the two-dimensional case, this self-correcting behaviour is enough to verify Conjecture2.2. We
present a proof for the caseγ = 1/2, depending on the fact that, while the condition number ofAk can
increase from one iteration to the next, aftertwo iterations it must decrease.

THEOREM 2.6 For the Shor matrix iteration in dimensionn = 2 and with constantγ = 1/2, for any
stepk such that the matricesAk−1 andAk+1 are both defined,

κ(Ak+1) < κ(Ak−1).
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Consequently, the Shor r-algorithm (withγ = 1/2) for minimizing a two-variable strictly convex
quadratic either terminates or converges linearly.

Proof. Since the functiont 7→ t
1
2 + t−

1
2 is increasing fort > 1, it suffices to prove

√
κ(Ak+1) +

1
√

κ(Ak+1)
<
√

κ(Ak−1) +
1

√
κ(Ak−1)

,

or equivalently

tr Ak+1√
detAk+1

<
tr Ak−1√
detAk−1

.

By Lemma2.1,

detAk+1 =
1

16
detAk−1.

On the other hand,

tr Ak = tr Ak−1 −
3

4
r T
k Ak−1rk

tr Ak+1 = tr Ak −
3

4
r T
k+1Akrk+1.

Hence we want to show

tr Ak−1 > 4tr Ak+1 = 4
(
tr Ak−1 −

3

4
(r T

k Ak−1rk + r T
k+1Akrk+1)

)
,

or in other words

r T
k Ak−1rk + r T

k+1Akrk+1 > tr Ak−1.

Let us summarize our task, in simplified notation. Given any unit vectoru ∈ R2 (formerly uk−1)
and any 2-by-2 symmetric positive definite matrixF (formerly Ak−1), we define

r =
1

‖Fu‖
Fu

c = r T u

D = I −
1

2
rr T

G = DF D

v = u −
1

2

(
c +

1

c

)
r

w =
1

‖Gv‖
Gv.

In our former notation,r = rk, c = ck, D = Dk, G = Ak, v is some positive multiple of the unit vector
uk, andw = rk+1. We want to show the inequality

r T Fr + wT Gw > tr F,
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or in other words

r T Fr +
vT G3v

vT G2v
> tr F.

Without loss of generality we can assumer = [1, 0]T . Indeed, if we prove the result in this special
case, we can deduce the case for generalr by a simple change of variables: choose any orthogonal
matrixU satisfyingUr = [1, 0]T , and then apply the special case with the vectoru replaced byUu and
the matrixF replaced byU FU T .

So, we can assumer = [1, 0]T and then, by the definition ofc, we must haveu = [c, s]T where
c2 + s2 = 1. Noticec > 0 sinceF is positive definite. Without loss of generality, by rescaling if
necessary, we can assume the bottom row of the matrixF has norm one, and then we must have

F =

[
a −s

−s c

]

for somea > 0.

We deduce

G =

[
1
2 0

0 1

][
a −s

−s c

][
1
2 0

0 1

]

=

[
a
4 − s

2

− s
2 c

]

.

We want to show

a +
vT G3v

vT G2v
> a + c,

or in other words

vT G3v > cvT G2v.

Since

v =

[
c

s

]

−
1

2

(
c +

1

c

)
[

1

0

]

we deduce 2cv = s[−s, 2c]T , so

8cGv = (4G)(2cv) = s

[
−s(a + 4c)

2 + 6c2

]

.

Finally, we have

256c2(vT G3v − cvT G2v) = (8cGv)T (4G)(8cGv) − 4c(8cGv)T (8cGv)

= (8cGv)T (4(G − cI ))(8cGv)

= s2

[
−s(a + 4c)

2 + 6c2

]T [
a − 4c −2s

−2s 0

][
−s(a + 4c)

2 + 6c2

]

= s2
(
s2(a − 4c)(a + 4c)2 + 4s2(a + 4c)(2 + 6c2)

)

= s4(a + 4c)(a2 + 8c2 + 8) > 0

as required, using the fact thats 6= 0 sincev 6= 0 by assumption. �
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Numerical experiments show that it is not always the case thatκ(Ak+n−1) < κ(Ak−1) for n > 2,
so proving linear convergence forn > 2 will require a different approach. Nonetheless, both the obser-
vations of Fig.1 and the relationship with the conjugate gradient method indicate that whatever result
might be established, it will probably involve a characterization of behaviour overn steps.

3. Concluding remarks

Our interest in Shor’s r-algorithm has two different motivations. One is its apparently substantial prac-
tical success in minimizing nonsmooth functions. The other is that the algorithm interpolates between
two pillars of optimization, steepest descent and conjugate gradient, and seems to have interesting con-
vergence properties that remain to be established. We hope that our analysis of the r-algorithm in the
simplest setting imaginable will stimulate further research on its theoretical behaviour.
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