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1. Introduction. The method of alternating projections finds a point in the intersection of two closed convex
sets by iteratively projecting a point first onto one set and then onto the other. Popular because of its simplicity
and intuitive appeal, the method has been rediscovered many times in the literature. The survey article (Bauschke
and Borwein [3]) covers much of the history; a careful development of the method appears in Deutsch [14].
Many practitioners have experimented with the method and its enhancements, in a wide variety of applications:
typical examples are signal processing (Combettes [10]), finance (Higham [22]), and the perceptron algorithm
in machine learning (see, for example, Widrow and Wallach [41]). The method extends in an obvious manner
to find points in the intersection of several sets.
The attractive theory and extensive practice of alternating projections for convex feasibility makes it tempting

to experiment with analogous heuristics for nonconvex feasibility problems. Inverse eigenvalue problems have
been an area of particular interest in this respect (Chu [8], Chen and Chu [6]), and, in particular, pole placement
(Yang and Orsi [42]) and the construction of tight frames in information theory (Tropp et al. [37]). Two very
important application areas well suited to such techniques are low-order control design problems (see, for
example, Grigoriadis and Skelton [20], Grigoriadis and Beran [19], Orsi et al. [31] for enhancements), and
phase retrieval in image processing (see, for example, Weber and Allebach [40], Bauschke et al. [4]). For the
specific problem of finding a matrix from a given affine family with a specified partial spectrum, Chen and
Chu [6] prove a global descent result for a nonconvex alternating projection approach. However, existing general
theory is sparse and much weaker than the convex case (Combettes and Trussell [11], Tropp et al. [37]), and
has not explained some substantial practical successes with such methods. Our aim in this work is to enhance
theoretical understanding of nonconvex alternating projections. We consider the simplest case, that of alternating
projections onto two smooth manifolds, intersecting transversally. Locally, the manifolds can be approximated
by affine subspaces and since in the case of subspaces the method of alternating projections converges linearly,
one might also expect (as expressed in Orsi [30], supported by numerical evidence) linear convergence in the
manifold case. Our main result is a proof of local linear convergence. For a more general and abstract study of
conditions under which the method of alternating projections converges linearly, see Lewis et al. [27].
Some of the appeal of the alternating projection method for convex feasibility problems is the ease of the

projection subproblem. If a closed set in a Euclidean space is convex, then any point has a unique nearest
point in the set (and indeed the converse is also true, by the Motzkin-Bunt theorem; Borwein and Lewis [5]).
Furthermore, providing the set is reasonably described, computing the projection is tractable computationally:
modern interior point methods provide one avenue (Nesterov and Nemirovskii [28]).
By contrast, for nonconvex sets the projection mapping can no longer be single valued and may be hard to

compute. Furthermore, even if two closed nonconvex sets have a nonempty intersection, very simple examples
show we cannot expect alternating projections to converge in general. On the other hand, smooth manifolds
belong to a large class of interesting sets that admit unique projections locally (specifically, prox-regular sets;
Poliquin et al. [33]). Furthermore, for some fundamental nonconvex sets, the projection problem is computa-
tionally cheap. An obvious example is projection onto the unit sphere. More generally, projection onto any set
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defined by a single quadratic equation or inequality is an easy problem numerically. By arguments analogous
to the theory for the classical trust region subproblem (Nocedal and Wright [29]), any optimal solution of the
projection problem

min
x
��x− a�2� x�Ax+ b�x= c�

associates with a (scalar) Lagrange multiplier solving the Lagrangian dual problem. This latter problem is a
univariate maximization, solvable very efficiently by diagonalizing the symmetric matrix A and applying a
specially designed Newton-type method. The approach for an inequality constraint is similar.
Some more complex sets have tractable projections. In particular, the paper by Tropp et al. [37] discusses

projection onto the set of unit vectors satisfying an upper bound on their peak-to-average power ratio (or,
equivalently, their infinity norm).
The singular-value decomposition provides some efficient and well-known nonconvex projection techniques.

One example is the orthogonal Procrustes problem, which, for a given real rectangular matrix C, seeks the
projection onto the set of matrices �CQ� Q�Q= I�: see §12.4.1 in Golub and Van Loan [18]. Another example
is the problem of projecting a real rectangular matrix A onto the set of matrices with rank r or less (Horn and
Johnson [24]). If A has singular value decomposition UDV �, where the matrices U and V are orthogonal, and
the matrix D is nonnegative on its main diagonal and zero off it, then by replacing by zero all the main diagonal
entries of D except the r largest, we obtain a nearest matrix to A (with respect to the Frobenius norm) from
the set of matrices with rank no more than r . Notice that, since both the two sets above are not convex, the
nearest matrices we construct in this fashion may not be unique: different singular value decompositions may
correspond to different nearest matrices.
The spectral decomposition for symmetric matrices gives access to a broad range of projection techniques

onto nonconvex spectral sets: that is, sets of matrices defined via inequalities of their eigenvalues. For example,
given any symmetric matrix, a nearest matrix—with respect to the Frobenius norm, with given eigenvalues (and
multiplicities)—is easy to compute. This observation is used in Orsi [30] in an alternating projection method
to solve nonnegative inverse eigenvalue problems. Equally easy to compute is a nearest matrix from the set of
matrices having largest eigenvalue multiplicity at least k. The (locally identical) set of matrices having largest
eigenvalue multiplicity exactly k is a manifold, and Oustry [32] uses the corresponding projection as part of
an eigenvalue optimization algorithm. We summarize general results about projections onto spectral sets of
symmetric matrices in the appendix.
After outlining our notation in §2, we discuss the notion of angle between subspaces (and manifolds) in §3,

a key idea both in the classical convergence theory for alternating projection on subspaces and for our exten-
sion to manifolds. We prove our main result—that the alternating projection method on transversal manifolds
converges linearly locally—in §4. Just as in the classical theory for subspaces, the angle predicts the rate of
linear convergence for the method. In §5, we relate this constant to a natural measure of the conditioning of
the underlying feasibility problem. Finally in §6, we illustrate the theory with a numerical example, seeking
a low-rank solution of a linear matrix equation. Our aim in this work is not to develop efficient numerical
schemes. Indeed, even for the classical alternating projection method on subspaces many authors have observed
the slow convergence of the raw method, and have experimented with enhancements. Our goal here is primarily
to initiate a solid theoretical explanation for observed successes of heuristics based on nonconvex alternating
projections.

2. Notation and basic results. We begin with elementary definitions. In this paper, we will consider a
Euclidean space Ɛ (in other words, a finite-dimensional real space with inner product denoted �·� ·	 and the
induced norm � · �). We denote by � its (closed) unit ball, by ���x� the ball of radius � centered at the point
x ∈ Ɛ, and by � the unit sphere. A sequence �xk�k in Ɛ converges linearly with rate �< 1 to x if there is some
constant � such that

�xk− x� ≤ ��k for k large enough�

More precisely, this inequality is R-linear convergence (Dennis and Schnabel [12]): the infimum of all possible
constants �, namely

lim sup
k→

�xk− x�1/k�

is the rate of R-linear convergence.
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Manifolds. In this work we use only local inequalities of manifolds, so we follow as nontechnical an
approach as possible. A smooth manifold in Ɛ is, loosely speaking, a set consisting locally of the solutions of
some smooth equations. More precisely, we say (following Rockafellar and Wets [35]) that a set � ⊂ Ɛ is a
Ck-manifold (of codimension d) around a point x̄ ∈� if there is an open set U ⊂ Ɛ containing x̄ such that

�∩U = �x ∈U� F �x�= 0��
where F � U→�d is a Ck function with surjective derivative throughout U . Note that k, the degree of smooth-
ness of �, will be omitted in statements if it is obvious or not useful.
We remark that, if � is a manifold around x̄, then it is also a manifold around any nearby point in �. We

make some comments about the above definition. Details may be found in any text on elementary differential
geometry: see for example Auslender [1]. The tangent space to � at x ∈� is given by

T��x�= ker�F �x�
(which is actually independent of the choice of F ). The normal space at� at x is then its orthogonal complement,
namely

N��x�= range�F �x�∗�
Using the implicit function theorem (see Theorem I.1.3 in Auslender [1]), we can write down a useful equivalent
definition of a manifold: a set �⊂ Ɛ is a Ck manifold (of codimension d) around a point x̄ ∈� if there is an
open set U ⊂ Ɛ containing x̄, an open set W ⊂�dim Ɛ−d, and a Ck function G� W → Ɛ with injective derivative
throughout W such that G�W�=�∩U .
Example 2.1 (Affine Manifold). Particularly easy examples of smooth manifolds are affine subspaces. If

� is an affine subspace of Ɛ, the equation F �x�= 0 can be taken to be affine: that is, of the form ��x�− b= 0
with � � Ɛ→ �m a linear map and a vector b ∈ �d. The tangent space ker� is the same at any point in the
affine subspace.
Example 2.2 (Fixed Rank Matrices). Let Ɛ=Mn�m��� be the space of n×m-matrices with the classical

inner product �A�B	 = trace�A�B�. Routine calculations show that the set of matrices with fixed rank r ,
�r = �X ∈Mn�m���� rank�X�= r��

is a smooth manifold around any matrix A ∈�r . With the help of the singular value decomposition A=UDV �
(the two matrices U = $u1� u2� � � � � un& and V = $v1� v2� ( ( ( � vm& being orthogonal, and the diagonal entries in
the diagonal matrix D being written in decreasing order) the tangent space at A to �r is

T�r
�A�= �H ∈Mn�m���� ui�Hvj = 0� for all r < i≤ n� r < j ≤m��

This simple example will illustrate our forthcoming developments.
Let � and � be two Ck manifolds around x ∈�∩� . The classical sufficient assumption to ensure that the

intersection �∩� is also a manifold around x is the following standard transversality assumption:
Definition 2.1 (Transversality). Suppose � and � are two Ck manifolds around a point x ∈�∩� . We

say that � and � are transverse at x if
T��x�+T� �x�= Ɛ�

In this case, the intersection �∩� is a Ck manifold around x and there holds T�∩� �x�= T��x�∩T� �x�.

Projections. The projection of an element x ∈ Ɛ onto a subset M ⊂ Ɛ is defined by

PM�x� �= argmin��x− y�� y ∈M��
This set is nonempty providing M is nonempty and closed, and has at most one element if M is convex. Indeed,
M is nonempty, closed, and convex if and only if the projector operator PM � Ɛ→ Ɛ is everywhere defined and
single valued. If furthermore the boundary of the closed convex M is a Ck manifold, the projection mapping
PM is C

k−1 (Holmes [23]).
Despite the importance of convexity, many nonconvex sets have associated projections that are well behaved

in some weaker sense. The following lemma and example illustrate this, and further examples appear in the
appendix. The lemma is not new, but since it is a basic tool for us we discuss its proof in some detail.
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Lemma 2.1 (Projection Onto a Manifold). Let �⊂ Ɛ be a manifold of class Ck (with k≥ 2) around a
point x̄ ∈�. Then each point x near x̄ has a unique projection P��x� on �. Furthermore, the function P� is of
class Ck−1 around x̄, with derivative

�P��x̄�= PT��x̄��
Proof. To see that the projection P� is single valued and continuous around the point x̄, it suffices to note

that � is prox-regular at x̄ by Proposition 2.3 in Poliquin et al. [33], and then apply Theorem 1.3 in Poliquin
et al. [33]. For a step-by-step proof, see §9.3 in Borwein and Lewis [5].
The technique we use for the remainder of the proof is standard: see, for example, Robinson [34]. In abstract

language, given a point y ∈ Ɛ close to the point x̄, we compare the solution x ∈ Ɛ of the generalized equation
y− x ∈N��x� and x ∈�

to the solution of a linearized version. For completeness, we give an elementary development.
Using the definition of a manifold, there is an open set U ⊂ Ɛ containing x̄ such that

�∩U = �x ∈U� F �x�= 0��
where F � U → �d is a Ck function with surjective derivative throughout U . By choosing a smaller neighbor-
hood U if necessary, we can assume the corresponding restriction of the projection P�� U →� is everywhere
single valued.
Now define a Ck−1 function G� U ×�d→ Ɛ×�d by

G�x� z�= �x+�F �x�∗z� F �x���
An easy calculation shows that the derivative �G�x̄�0�� Ɛ×�d→ Ɛ×�d is given by

�G�x̄�0��w� z�= �w+�F �x̄�∗z��F �x̄�w��
If �w� z� ∈ ker�G�x̄�0�, we deduce �F �x̄��F �x̄�∗z = 0, and then taking the inner product with z shows
�F �x̄�∗z= 0. Since �F �x̄�∗ is injective, z= 0, and consequently w = 0. We have therefore shown that linear
map �G�x̄�0� is invertible.
The inverse function theorem now applies to show that the map G has a Ck−1 inverse G−1 � V ×W →U ×�d,

where the open set V ⊂ Ɛ contains the point x̄ and the open set W ⊂ �d contains zero. Specifically, the map
G−1 �G is the identity on a set Q× S, where the open set Q⊂U contains x̄ and the open set S ⊂�d contains
zero. Furthermore, we have

��G−1��x̄�0�= �G�x̄�0�−1�
Every point y ∈U satisfies

y−P��y� ∈N��P��y��= range�F �P��y��∗�
Hence for any sequence yj→ x̄ in Ɛ, there exists a sequence zj ∈�d satisfying

yj −P��yj�= �F �P��yj��∗zj
for all large j . By continuity, P��yj�→ x̄ and �F �P��yj��→ �F �x̄�. The sequence �zj�j must be bounded.
Otherwise, by restricting to a subsequence, we can suppose �zj�→ and �zj�−1zj approaches a unit vector
u, which must lie in ker�F �x̄�∗, contradicting the fact that �F �x̄�∗ is injective. We claim zj→ 0. If this fails,
again by restricting to a subsequence, we can suppose zj approaches a nonzero vector z, which again must lie
in ker�F �x̄�∗, giving another contradiction.
Using the above argument, we deduce the following inequality: All points y ∈ Ɛ close to the point x̄ satisfy

y ∈ V and P��y� ∈Q, and furthermore there exists a vector z ∈ S such that
G�P��y�� z�= �P��y�+�F �P��y��∗z� F �P��y���= �y�0��

Applying the inverse map G−1 to both sides then shows �P��y�� z�=G−1�y�0�, so
P��y�= PƐ�G−1�y�0���
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where PƐ � Ɛ×�d→ Ɛ is the canonical projection. Hence, on a neighborhood of x̄, we have

P� = PƐ �G−1 �P∗Ɛ � (1)

where the adjoint P∗Ɛ � Ɛ→ Ɛ×�d is just the embedding y �→ �y�0�. Since both PƐ and its adjoint are linear, we
deduce that P� is C

k−1 around x̄, and furthermore

�P��x̄�= PƐ � ���G−1��x̄�0�� �P∗Ɛ = PƐ ��G�x̄�0�−1 �P∗Ɛ � (2)

We will conclude by proving that the right-hand side of (2) is locally the projection onto the tangent space.
For any y ∈ V , set

w= �PƐ ��G�x̄�0�−1 �P∗Ɛ ��y��
By construction, there exists z ∈�d such that

�G�x̄�0��w� z�= �y�0�1
hence w+�F �x̄�∗z= y and �F �x̄�w= 0. This results in

w= y−�F �x̄�∗��F �x̄��F �x̄�∗�−1�F �x̄�y = Pker�F �x̄�y = PT��x̄�y�
which finally yields

PT��x̄� = PƐ ��G�x̄�0�−1 �P∗Ɛ �
Combining this with Equation (2) proves the final claim. �

Example 2.3 (Projection Onto Fixed Rank Matrices). The singular value decomposition gives an easy
way to project any n×m matrix X onto the set of matrices with rank no more than r . Specifically, given any
singular value decomposition X =UDV �, a nearest matrix with rank no more than r is

�X =
r∑
i=1
2iuivi

��

where the 2i are the r largest singular values (see Horn and Johnson [24]). We remark that this nearest matrix
may not be unique: different singular value decompositions may result in different nearest matrices.
The set of matrices with rank no more than r is not a manifold. However, locally this same technique allows

us to project onto the manifold �r we considered in Example 2.2, of matrices of rank exactly r . To see this,
consider a matrix �X ∈�r . Denote the distance from �X to the set of matrices with rank strictly less than r
by 3. The result in the preceding paragraph, with r replaced by r − 1 and X replaced by �X, guarantees 3 > 0.
Now suppose the matrix X considered above satisfies �X − �X�< 3/2. Since �X has rank r , and �X is a nearest
matrix with rank no more than r , we must have � �X −X� ≤ ��X −X�< 3/2. Hence by the triangle inequality
� �X − �X�< 3, so �X has rank at least r , and therefore exactly r . Thus in fact �X is a nearest matrix to X in the
manifold �r .

3. Angles between subspaces. Let M and N be two subspaces of Ɛ. Following Friedricks [17] and Deutsch
[14], we define the angle between M and N as the angle between 0 and 5/2 whose cosine is

c�M�N� �=max��x� y	� x ∈�∩M ∩ �M ∩N�⊥
y ∈�∩N ∩ �M ∩N�⊥�� (3)

The quantity c�M�N� is well defined unless one subspace is a subspace of the other, in which case we set
c�M�N�= 0. The compactness ensures that the maximum is always attained, and this yields easily c�M�N� < 1.
Note also that there holds (see Deutsch [14, 9.5])

�PMPN −PM∩N� = c�M�N�� (4)

and more generally (Deutsch [14, Theorem 9.31]),

��PMPN �n−PM∩N� = c�M�N�2n−1 (5)

for n= 1�2� ( ( ( � Computation of the angle between two subspaces using the singular value decomposition is
discussed in §12.4 of Golub and Van Loan [18].
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3.1. Inequalities of the angle between two subspaces. We begin by developing some basic inequalities of
the angle, useful in our later discussion of metric regularity. We start with a technical tool.

Lemma 3.1. Let M and N be two subspaces of the space Ɛ. Consider two vectors m ∈�∩M ∩ �M ∩N�⊥
and n ∈�∩N ∩ �M ∩N�⊥ such that c�M�N�= �m�n	. Then

PM�n�= PM∩�M∩N�⊥�n�= c�M�N�m� (6)

Proof. Consider first the decomposition

n= PM�n�+PM⊥�n�� (7)

Observe from
n ∈ �M ∩N�⊥ and n−PM�n�= PM⊥�n� ∈M⊥ ⊂ �M ∩N�⊥

that we have PM�n� ∈M ∩ �M ∩N�⊥, and that we also have
PM⊥�n� ∈M⊥ ⊂ �M ∩ �M ∩N�⊥�⊥�

Thus Equation (7) gives PM�n�= PM∩�M∩N�⊥�n�. We consider now two cases. First, if PM�n�= 0, then n ∈M⊥,
which yields �n�m	 = 0. Thus (6) holds. Second, if PM�n� �= 0, then the minimum

min
x∈�∩M∩�M∩N�⊥

1
2�n− x�2

is attained at a unique point, namely PM�n�/�PM�n��. Observe that this minimum can be rewritten

min
x∈�∩M∩�M∩N�⊥

(
1
2 ��n�2+�x�2�−�x�n	

)= 1− max
x∈�∩M∩�M∩N�⊥

�x�n	�

By the choice of n and m, we thus have m= PM�n�/�PM�n��. Hence
�PM�n�� = �m�PM�n�	 = �m�n	�

and then (6) holds. The proof is complete. �

This result permits us to prove that the angle between two subspaces is equal to the angle between their
orthogonal complements, as stated in the next lemma. A proof in the Hilbert space case appears in Deutsch [13],
apparently for the first time in print, although the observation is attributed there to earlier work. We include a
short finite-dimensional proof here.

Lemma 3.2. Let M and N be two subspaces of Ɛ. Then

c�M�N�= c�M⊥�N⊥��
Proof. If one subspace is a subspace of the other, the result is immediate. Otherwise, denote c= c�M�N�,

and consider vectors m ∈ �∩M ∩ �M ∩N�⊥ and n ∈ �∩N ∩ �M ∩N�⊥ such that �m�n	 = c. Then consider
the two following vectors:

�m= ��n− cm� and n̄= ��cn−m�� with �= 1/√1− c2�
Let us check that �m ∈�∩M⊥ ∩ �M⊥ ∩N⊥�⊥. First, by definition, we have �m ∈N +M = �M⊥ ∩N⊥�⊥. Second,
Lemma 3.1 shows �m= �PM⊥�n� ∈M⊥. Third, we obtain

� �m�2 = �2��n�2+ c2�m�2− 2c�m�n	�= 1�
Similarly, we obtain n̄ ∈�∩N⊥ ∩ �M⊥ ∩N⊥�⊥. Finally, we observe that

� �m� n̄	 = �2�n− cm�cn−m	 = c�2�n− cm�n	 = c�
Thus by definition of the Angle (3), we see that

c�M⊥�N⊥�≥ � �m� n̄	 = c= c�M�N��
Changing the roles of M and N with their orthogonal complements, we get the reverse inequality c�M�N�≥
c�M⊥�N⊥� with the same argument. �
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We also state the following technical result that will be useful afterward:

Lemma 3.3. Let M and N be two nontrivial subspaces of Ɛ such that M ∩N = �0�. Then
1− c�M�N�= min

x∈��m∈M�n∈N
��x−m�2+�x− n�2��

Proof. Denote by R the right-hand side of the equality to be proved. Developing the sum of squared norms,
we get

R− 2 = min
m∈M�n∈N

(
�n�2+�m�2− 2max

x∈�
�x�m+ n	

)
= min
m∈M�n∈N

��n�2+�m�2− 2�m+ n��
= min
m∈M∩�� n∈N∩�

min
��7∈�

��2+72− 2��m+7n���

Observe now that the function fm�n���7�= �2+72−2��m+7n� has compact lower-level sets, and is smooth
on �2\��0�0�� (since M ∩N = �0�), and that it has a local maximum at �0�0�. Hence fm�n achieves its minimum
at a critical point. Some algebra then gives

min
��7∈�

fm�n���7�=−1− ��m�n	��

So minimizing with respect to m and n gives

R− 2= min
m∈M∩�� n∈N∩�

�−1− ��m�n	���

and changing signs if necessary (remember M and N are subspaces) yields

R− 2=−1− max
m∈M∩�� n∈N∩�

�m�n	 =−1− c�M�N��

the last equality holding again because of the assumption M ∩ N = �0�. Finally, we thus get R = 2 +
�−1− c�M�N��= 1− c�M�N� which is the targeted equality. �

3.2. Angle between two manifolds. Let us now generalize the previous framework: in view of the definition
of the angle between two subspaces, the following definition makes sense:
Definition 3.1 (Angle Between Two Manifolds). Let � and � be two manifolds in Ɛ around a point

x ∈� ∩ � . The angle between � and � at x is the angle between the tangent spaces T��x� and T� �x�. In
other words, it is the angle between 0 and 5/2 with cosine

c���� � x� �= c�T��x��T� �x���

If � and � are actually subspaces, it is clear that the angle between them does not depend on the point in their
intersection, and that the two definitions coincide. Let us add a lemma that formalizes an obvious smoothness
inequality.

Lemma 3.4 (Smoothness of the Angle). Let � and � be two transverse Ck manifolds in the space Ɛ
(with k≥ 2) around the point x̄ ∈�∩� . Then the function

c���� � ·��


�∩� → $0�1&
x �→ c���� � x�

is of class Ck−1 around x̄.

Proof. From inequality (4) and Definition 3.1, we know for any point x ∈�∩� that

c���� � x�= �PT��x�PT� �x�−PT��x�∩T� �x��� (8)

Moreover, the projectors x �→ PT��x� are C
k−1: the columns of the derivative of a local Ck parametrization of the

manifold form a basis for the tangent space that is a Ck−1 function of the base point, so the projectors (expressed
with this basis) are also Ck−1. Inequality (8) now proves the result. �
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4. Alternating projections onto manifolds. We are now ready to consider the alternating projection algo-
rithm. We consider two manifolds � and � in the space Ɛ, and study the alternating projection sequence defined
iteratively as follows:

x0 ∈ Ɛ given, xk+1 = P�P� �xk�� (9)

When � and � are actually affine subspaces, this algorithm is well defined and converges (von Neumann [39]),
and its behavior is well understood (see Bauschke and Borwein [2]). In particular, we have the following theorem
(see Smith et al. [36], Bauschke and Borwein [2, 4.11]):

Theorem 4.1 (Alternating Projections for Two Affine Subspaces). Let M and N be two affine sub-
spaces of the space Ɛ. Then the alternating Projection Sequence (9) converges linearly with rate the cosine of
the angle between the two subspaces, c�M�N�, independent of the starting point.

When � and � are general smooth manifolds, we will see in Theorem 4.3 that Sequence (9) is also well
defined in a neighborhood of a point x̄ belonging to the intersection �∩� (assuming transversality), and that
the previous convergence result generalizes. The next result gives the main tool.

Theorem 4.2 (Asymptotical Improvement). Let � and � be two transverse C2 manifolds around a point
x̄ ∈�∩� . Then

lim sup
x→x̄� x��∩�

�P�P� �x�−P�∩� �x��
�x−P�∩� �x��

≤ c���� � x̄��

Proof. Lemma 2.1 implies that there exists 3 > 0 such that the projection operators P�, P� , and P�∩� are
well defined and of class C1, on the ball B3�x̄�. Restricting further to points x ∈ B3/2�x̄�, we have

�x̄−P� �x�� ≤ �x̄− x�+�x−P� �x�� ≤ 2�x− x̄� ≤ 3�
so P� �x� ∈ B3�x̄�, and therefore P�P� is also well defined and C1 on B3/2�x̄�. We thus ensure that the fraction
in the result makes sense.
Let �xr�r be an arbitrary sequence of points in B3/2�x̄�\��∩� � tending to x̄. To simplify notation, we use

x̄r = P�∩� �xr�. Of course x̄r ∈�∩� , so
P�P� �xr�− x̄r = P�P� �xr�−P�P� �x̄r ��

Observe also that the continuity of P�∩� yields that x̄r tends to x̄, too, so the previous equation and continuous
differentiability shows

P�P� �xr�− x̄r = ��P�P� ��x̄r ��xr − x̄r �+ o��xr − x̄r��� (10)

Using Lemma 2.1 and the chain rule we get

��P�P� ��x̄r �= PT��x̄r �PT� �x̄r �� (11)

The transversality assumption now shows

PT��x̄r �∩T� �x̄r ��xr − x̄r �= PT�∩� �x̄r ��xr − x̄r �= 0�

since xr − x̄r ∈N�∩� �x̄r �= T�∩� �x̄r �
⊥. So we can write

PT��x̄r �PT� �x̄r ��xr − x̄r �=
(
PT��x̄r �PT� �x̄r �−PT��x̄r �∩T� �x̄r �

)
�xr − x̄r ��

Combined with Equations (10) and (11), this gives

�P�P� �xr�− x̄r�
�xr − x̄r�

≤ �PT��x̄r �PT� �x̄r �−PT��x̄r �∩T� �x̄r ��+ o�1��

that is,
�P�P� �xr�− x̄r�
�xr − x̄r�

≤ c���� � x̄r �+ o�1��

by Equation (4) and Definition 3.1. Taking the lim sup in this inequality, the result now follows by Lemma 3.4. �
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A refinement of the above argument, using Equation (5) in place of Equation (4), shows the generalization

lim sup
x→x̄� x��∩�

��P�P� �n�x�−P�∩� �x��
�x−P�∩� �x��

≤ c���� � x̄�2n−1 (12)

for n= 1�2� ( ( ( �
Observe that, with the hypotheses of the above theorem, we have that, for all constants c > c���� � x̄�, there

exists a radius � > 0 such that

∀x ∈ B��x̄�� �P�P� �x�−P�∩� �x�� ≤ c�x−P�∩� �x��� (13)

We can now prove our main result.

Theorem 4.3 (Linear Convergence). In the space Ɛ, let � and � be two transverse manifolds around a
point x̄ ∈�∩� . If the initial point x0 ∈ Ɛ is close to x̄, then the method of alternating projections

xk+1 = P�P� �xk� �k= 0�1�2� ( ( ( �
is well defined, and the distance d�∩� �xk� from the iterate xk to the intersection �∩� decreases Q-linearly
to zero. More precisely, given any constant c strictly larger than the cosine of the angle of intersection between
the manifolds, c���� � x̄�, if x0 is close to x̄, then the iterates satisfy

d�∩� �xk+1�≤ c ·d�∩� �xk� �k= 0�1�2� ( ( ( �� (14)

Furthermore, xk converges linearly to some point x∗ ∈�∩� : for some constant �> 0,

�xk− x∗� ≤ �ck �k= 0�1�2� ( ( ( �� (15)

Proof. Choose c such that 1> c > c���� � x̄� and � > 0 such that (13) is satisfied. Set 3 �= �1− c��/4
and choose any starting point x0 ∈ B3�x̄�.
First step� inequalities of xk. Let us prove by induction that the sequence of points xk is well defined, and

that both xk and its projection x̄k = P�∩� �xk� belong to the neighborhood B��x̄� and satisfy the inequalities
�xk− x̄k−1� ≤ 3ck� (H1)
�xk− x̄k� ≤ 3ck� (H2)
�x̄k− x̄k−1� ≤ 23ck� (H3)

�x̄k− x̄� ≤ 2
( k∑
i=0
ci
)
3� (H4)

�xk− x̄� ≤ 2
( k∑
i=0
ci
)
3� (H5)

Setting x̄−1 = x̄0 and using
�x0− x̄0� ≤ �x0− x̄� ≤ 3�

it is easy to see that inequalities (H1)–(H5) hold for k= 0. Assume now that these inequalities hold for some
k≥ 0: we prove they also hold with k replaced by k+ 1. Note that if xk belongs to �∩� , there is nothing to
prove. Otherwise, since xk belongs to B��x̄�, the next iterate xk+1 is well defined, and inequality (13) holds, so

d�∩� �xk+1�≤ �xk+1− x̄k� ≤ c�xk− x̄k� = c ·d�∩� �xk��
(H1) With the help of inequality (H2), the above inequality yields

�xk+1− x̄k� ≤ 3ck+1� (16)

(H2) Note that �xk+1− x̄k+1� ≤ �xk+1− x̄k� by definition of x̄k+1. With inequality (16), this implies
�xk+1− x̄k+1� ≤ 3ck+1� (17)

(H3) We get inequality (H3) from inequalities (16) and (17) by observing

�x̄k+1− x̄k� ≤ �x̄k+1− xk+1�+�xk+1− x̄k� ≤ 23ck+1� (18)
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(H4) Finally, note that
�x̄k+1− x̄� ≤ �x̄k+1− x̄k�+�x̄k− x̄��

so inequalities (18) and (H4) enable us to write

�x̄k+1− x̄� ≤ 23 ck+1+ 23
k∑
i=0
ci ≤ 23

k+1∑
i=0
ci� (19)

(H5) Similarly,
�xk+1− x̄� ≤ �xk+1− x̄k�+�x̄k− x̄��

so we have from inequalities (16) and (H4)

�xk+1− x̄� ≤ 3 ck+1+ 23
k∑
i=0
ci ≤ 23

k+1∑
i=0
ci� (20)

Observe now that inequality (19) yields

�x̄k+1− x̄� ≤ 23/�1− c�≤ �/2�
and inequality (20) yields

�xk+1− x̄� ≤ �/2�
So x̄k+1 and xk+1 belong to B��x̄� too. This ends the proof by induction.
Second step� convergence. We first prove the convergence of the sequence of projections �x̄k�k: this sequence

in �∩� ∩B��x̄� is Cauchy. To see this, use inequality (H3) to write, for all indices k�p≥ 0 with p≥ k,

�x̄p− x̄k� ≤
p∑

i=k+1
�x̄i− x̄i−1� ≤ 23

p∑
i=k+1

ci ≤ 23
1− c c

k+1� (21)

So �x̄k�k converges to an element x
∗ in �∩� . Passing to the limit in p in inequality (21), we obtain

�x̄k− x∗� ≤
23
1− c c

k+1�

With the help of inequality (H2), this implies

�xk− x∗� ≤ �xk− x̄k�+�x̄k− x∗� ≤
(
1+ 2c

1− c
)
3ck�

which yields inequality (15) and completes the proof. �

Remark 4.1 (Stronger Bound). In fact, the distance dk from the iterate xk to the intersection of the
two manifolds � ∩ � decreases to zero with R-linear rate �c���� � x∗��2, a faster rate than predicted by
inequality (14). To see this refinement, we argue as follows:
Fix any constant c in the interval �c���� � x∗��1�, and any integer n> 0. We claim

lim sup
r

d1/rr ≤ c2−1/n� (22)

Our result then follows by taking the infimum over c and n.
To verify the claim, note first that Theorem 4.3 and inequality (12) guarantee that there is an integer t0 such

that dt+n < c2n−1dt for all integers t > t0, and hence by induction

dt+kn < c
k�2n−1�dt for all t > t0� k= 1�2�3� ( ( ( � (23)

If inequality (22) fails, then there is a constant < > 0 and a sequence of integers r1 < r2 < r3 < · · · , all satisfying
lim sup

j

d
1/rj
rj > c

2−1/n+ <� (24)

By considering the sequence �rj� modulo n, and taking a further subsequence, we can suppose each rj has
the form a+ bjn for some fixed integer a and sequence of integers b1 < b2 < b3 < · · · . Choose any integer b
satisfying a+ bn> t0. Then we have

drj = da+bjn = da+bn+�bj−b�n < c�bj−b��2n−1�da+bn�
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using inequality (23). We deduce
drj < c

�n−1$rj−a&−b��2n−1�da+bn�

Raising both sides to the power 1/rj and letting j→ now contradicts inequality (24). This completes the
proof of our claim (22), and the result follows.
Naturally, the convergence of Theorem 4.3 is only local, since the projections themselves are well defined only

locally, in general. However by adding a convexity assumption, we can get global convergence while preserving
the local rate. A result of this kind is the following:

Corollary 4.1. Let A and B be two closed convex subsets of Ɛ such that the boundaries bdA and bdB
are smooth manifolds. If the intersection A∩B is nonempty, then the alternating projection method

x0 given, xk+1 = PAPB�xk�
is well defined and converges to a point x∗ ∈ A ∩ B. If furthermore bdA and bdB are transversal at x∗, the
sequence �xk�k in fact converges linearly, with R-linear rate c�bdA�bdB�x∗�.

Proof. Since A and B are closed and convex, the sequence �xk�k is well defined for any starting point x0. The
classical theory of alternating projections (see for example Cheney and Goldstein [7]) implies global convergence
to a point x∗ ∈A∩B. Theorem 4.3 then gives the local linear convergence. �

For a discussion of the classical linear convergence theory for alternating projections on convex sets, see
Bauschke and Borwein [3].

5. Metric regularity and linear rate. Section 4 shows that the rate of convergence of the method of
alternating projections for two transverse manifolds is related to the angle between the manifolds. The speed
of basic algorithms is often closely associated with Lipschitzian inequalities of the underlying generalized
equations, error bounds for these equations (see Facchinei and Pang [16], for example), and metric regularity (see
Rockafellar and Wets [35]). Metric regularity, in turn, is related to the conditioning of a well-posed generalized
equation, measured in terms of the size of allowable linear perturbations to the equation that preserve well
posedness (see the discussion in Dontchev et al. [15]). In this section, we pursue this pattern in our context by
relating the angle between the manifolds to the metric regularity of a natural associated generalized equation.
To accomplish this, we use a variety of tools from variational analysis: we refer the reader to Rockafellar and
Wets [35] for terminology.

5.1. Regular intersection. Given two Euclidean spaces Ɛ and 	 , a set-valued map =� 	 ⇒ Ɛ is metrically
regular at a point ȳ ∈ 	 for a point z̄ ∈=�ȳ� if there exists a constant � such that for all points y ∈ 	 near ȳ
and all points z ∈ Ɛ near z̄ we have

d=−1�z��y�≤ �d=�y��z��
This inequality is fundamental, in particular for our understanding of well-behaved systems of equations and
inequalities. For example, given a vector z, the quantity on the left-hand side measures the distance from an
approximate solution y of the generalized equation z ∈=�y� to the set of exact solutions, whereas the quantity
on the right-hand side is a multiple of the error when we substitute y into the generalized equation. The infimum
of such constants � is called the regularity modulus: the smaller this modulus is, the better the generalized
equation behaves.
We consider the metric regularity of the problem of finding a point in the intersection of two closed sets M

and N in the space Ɛ. To use variational tools for this analysis, we introduce the multifunction >� Ɛ2 ⇒ Ɛ
defined by

>�x� y�=


�x− y� if x ∈M and y ∈N�
� otherwise.

Thus we have
0 ∈>�x� y� ⇐⇒ x= y ∈M ∩N�

Therefore we say M and N have regular intersection at x if > is metrically regular at �x� x� for 0. In that case,
we define the regularity modulus of the intersection at x via the regularity modulus of >:

regM�N �x� �= reg>��x�x� � 0�� (25)
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Lemma 5.1 (Coderivatives of >). Let M and N be two closed sets, and let x be a point in the intersection
M ∩N . Then the coderivative of the multifunction > at the point �x� x� is related to the normal cones to M and
N at x by

∀ z ∈ Ɛ� D∗>��x�x� � 0��z�= �z+NM�x��−z+NN �x��� (26)

Proof. Let us write > as the sum

>�x� y�= x− y+?�x� y��
where the multifunction ? � Ɛ2 ⇒ Ɛ is defined by

?�x� y�=
{
0 if x ∈M and y ∈N�
� otherwise.

Since the function F � �x� y� �→ x− y is smooth, the calculus rule (Rockafellar and Wets [35, 10.43]) yields
D∗>��x�x� � 0��z�= �F �x�x�∗�z�+D∗?��x�x� � 0��z��

so
D∗>��x�x� � 0��z�= �z�−z�+D∗?��x�x� � 0��z�� (27)

Thus we just have to compute D∗?��x�x��0��z�. Observe that
graph? =M ×N × �0�⊂ Ɛ3�

and for x ∈M ∩N this yields
Ngraph?�x� x�0�=NM�x�×NN �x�× Ɛ�

Returning to the definition of coderivatives (Rockafellar and Wets [35, 8.33]), we compute

�u� v� ∈D∗?��x�x��0��z� ⇐⇒ �u� v�−z� ∈Ngraph?�x� x�0�
⇐⇒ �u� v� ∈NM�x�×NN �x��

Thus Equation (27) gives
D∗>��x�x��0��z�= �z�−z�+NM�x�×NN �x��

which is exactly Equation (26). �

We can use this result to recognize regular intersections, as follows:

Theorem 5.1 (Condition for Regularity). Two closed sets M and N have regular intersection at a point
x ∈M ∩N if and only if

−NM�x�∩NN �x�= �0��
In this case, we also have

1
regM�N �x�

= min
�z�=1

√
d�z�−NM�x��2+d�z�NN �x��2� (28)

Proof. We apply Rockafellar and Wets [35, 9.43]: the metric regularity of > at �x� x� for 0 is equivalent to

�0�0� ∈D∗>��x�x��0��z� =⇒ z= 0�
In view of Lemma 5.1, this means

�0 ∈ z+NM�x� and 0 ∈−z+NN �x�� =⇒ z= 0�
that is, −NM�x�∩NN �x�= �0�. Now combining Rockafellar and Wets [35, 9.43] and the Mordukhovich criterion
Rockfellar and Wets [35], we obtain

1
reg>��x�x��0� = min�z�=1

d��0�0��D∗>��x�x��0��z���

and Equation (28) follows, using Equations (25) and (26). �
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5.2. Regular intersection of two manifolds. The regularity of the intersection is easier to grasp when
dealing with manifolds. The following result proves that the nonsmooth regularity notion we introduced via
metric regularity coincides with the regularity notion from smooth geometry, namely transversality.

Theorem 5.2 (Regularity for Two Manifolds). Consider two manifolds � and � around a point x ∈
�∩� . Then their intersection is regular at x if and only if they are transverse at x. In this case, the intersection
�∩� is a smooth manifold around x, and, assuming that x does not lie in both the interiors of � and � , the
regularity modulus is related to the angle between them by

reg��� �x�=
1√

1− c���� � x� � (29)

Proof. The normal cone N��x� is linear in this case, so the condition for regularity of Theorem 5.1 becomes
�0�=N��x�∩N� �x�. Taking orthogonal complements, the condition is then

Ɛ= �N��x�∩N� �x��
⊥ =N��x�

⊥ +N� �x�
⊥ = T��x�+T� �x��

which is exactly the transversality assumption (Definition 2.1). This inequality yields in particular that �∩�
is a smooth manifold around x.
Let us prove now Equation (29) when x does not lie in both the interiors of � and � . The assumption

guarantees that N��x� and N� �x� are not reduced to �0�. From Equation (28), we first get

�reg��� �x��
−2 = min

z∈��m∈N��x��n∈N� �x�
��z−m�2+�z− n�2��

Since we have N��x�∩N� �x�= �0�, we can invoke Lemma 3.3 and write
�reg��� �x��

−2 = 1− c�N��x��N� �x���

So Lemma 3.2 yields
�reg��� �x��

−2 = 1− c�T��x��T� �x��= 1− c���� � x��
which completes the proof. �

Having this connection between the regularity modulus and the angle, the asymptotical rate of convergence
of the alternating projection method of Theorem 4.3 can be written as

1− �reg��� �x̄��−2�

6. A numerical illustration. In this section we give a numerical illustration showing the linear convergence
of the alternating projection method. We focus on the following problem: using the notation of Example 2.2,
we want to find an n×m matrix X of rank r , satisfying a linear system ��X�= b. In other words, we seek a
matrix in the intersection

�r ∩ �X ∈Mn�m���� ��X�= b�
for a given linear map � � Mn�m���→ �d and vector b ∈ �d. This problem is a simple analogue of feasibility
problems appearing in control, and treated by alternating projections in Grigoriadis and Beran [19].
General features of alternating projection methods are that they can be implemented easily and that usually

the amount of calculation in one iteration is very small. In our example, a nearest point (not necessarily unique)
in �r is computed through a singular value decomposition (see Example 2.3). The projection onto the affine
subspace � of equation ��X�= b is computed directly as

P��X�=X−�∗���∗�−1���X�− b��
with ��∗ and its LU factorization computed only one time at the beginning of the algorithm. So the work of
each iteration is dominated by the singular value decomposition.
Experiments with MATLAB on randomly generated problems (that is, the operator ��X� = ��A1�X	� ( ( ( �
�Ad�X	� being constructed with random matrices, and the vector b being chosen so that ��X�= b has a rank r
solution) always exhibit the linear convergence predicted by Theorem 4.3. For our experiments, we take, in
general, matrix dimensions m ≥ n, rank r rather small (lower than 10), and we pick the number of linear
equations d satisfying

mr < d ≤ r �m+ n− r��



Lewis and Malick: Alternating Projections on Manifolds
Mathematics of Operations Research 33(1), pp. 216–234, © 2008 INFORMS 229

The left-hand inequality ensures we cannot solve the problem too easily, simply by setting all but r rows of
the matrix X to zero, and the right-hand inequality ensures (by counting dimensions) that a random problem
typically has a solution and transversality holds. Starting at a random initial matrix X0, we compute

Xk+1 = P�r �P��Xk��

and we stop the algorithm when the absolute error satisfies

���Xk�− b� ≤ 10−7�

We illustrate with one typical case.
Example 6.1 (Linear Convergence). We take n = 100, m = 110, r = 4, and d = 450. The algorithm

stops after 1,869 iterations (with around seven minutes of computing time on a standard PC). We give below a
summary of the information printed at each iteration; that is,
• iter is the number of the iteration,
• log|AX-b|= log10����Xk�− b��,
• log|X-Xpre|= log10��Xk−Xk−1��.

iter log|AX-b| log|X-Xpre|
1 −0�3010 0�4604
50 −1�3197 −2�5445
100 −1�6744 −3�0021
500 −3�1839 −4�6450

1,000 −4�6511 −6�1343
1,500 −6�0199 −7�5133
1,850 −6�9516 −8�4491
1,869 −7�0018 −8�4995

We plot in Figure 1 the value of log10����Xk�− b�� at each iteration k. We see that after 200 iterations the
quantity decreases linearly as expected, illustrating the linear convergence.
A second, very simple, example illustrates the relationship between the angle of intersection and the conver-

gence rate.
Example 6.2 (Angle and Rate of Convergence). We repeat the same experiment, but with d = 1—

that is, ��X� = �A�X	. In this case, we can simply compute the cosine of the angle at the intersection,
c��r ���X

∗�. Indeed, Lemmas 3.1 and 3.2 show

c��r ���X
∗�= c�N�r

�X∗��A�= �PN�r �X
∗��A/�A���� (30)
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Figure 1. Plot of log10����Xk�− b�� for each iteration k (with parameters n= 100, m= 110, r = 4, and d= 450).
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In practice, this case is much easier and the algorithm stops after 178 iterations. Here is the information
printed at some iterations:

iter log|AX-b| improv log|X-Xpre| c2
1 −1�1511 1.3350 0�4634 0.0004
50 −2�7735 0.9203 −5�1524 0.9197
100 −4�4291 0.9265 −6�8079 0.9265
150 −6�0846 0.9266 −8�4635 0.9266
178 −7�0117 0.9266 −9�3906 0.9266

At iteration k, the quantity 〈
xk− xk+1
�xk− xk+1�

�
P��xk�−P��xk+1�
�P��xk�−P��xk+1��

〉

provides an approximation of c��r ���X
∗�. We print at each iteration c2, the square of this quantity. We also

get improv, the improvement at each iteration; that is

���Xk�− b�
���Xk−1�− b�

�

We observe that the four quantities
• 10s with s being the slope of the graph of log10����Xk�− b��,
• c��r ���

2 the square cosine of the angle (computed with Equation (30)),
• the approximations c2 (for the final iterations),
• the improvements improv (for the final iterations)

all coincide, and the common value is here around 0�9266. This illustrates that the asymptotic convergence rate
is the square cosine of the angle, as predicted by Remark 4.1.

Appendix.

Projection onto spectral sets. In this appendix, we show that projection problems for spectral sets of
symmetric matrices (that is, sets described solely by eigenvalue inequalities) are often easy. We begin with some
basic ideas and notation, following Lewis [25, 26] and the references therein.
The space Sn of real symmetric n-by-n matrices, equipped with the trace inner product, is a Euclidean space.

A subset T is spectral if, for every matrix X ∈ T and every U in the group On of orthogonal matrices, we
have U�XU ∈ T . The eigenvalue map B� Sn→ �n maps any symmetric matrix X to its eigenvalues arranged
in nonincreasing order: B1�X�≥ B2�X�≥ · · · ≥ Bn�X�. It is easy to see that any spectral set can be written in
the form B−1�K�= �X� B�X� ∈K�, for some set K ⊂�n, and that we can further restrict K to be permutation-
invariant: for every vector x ∈K and every P in the group Pn of permutation matrices, we have Px ∈K.
Projecting a matrix Y ∈ Sn onto a spectral set B−1�K� (where the set K ⊂ �n is permutation-invariant) is

easy, providing we know how to project onto K. We proceed as follows: Calculate a spectral decomposition
Y = U�Diag�y�U , where the matrix U is orthogonal and Diag�y� denotes the diagonal matrix with diagonal
entries the components of the vector y ∈�n; next, find a nearest point x ∈K to y; now the matrix U�Diag�x�U
is a nearest matrix to Y in B−1�K�.
This approach depends on the following classical result, which can be derived from the von Neumann trace

inequality (von Neumann [38]):

sup
V∈On

trace
(
V �Diag�z�V Diag�y�

)= sup
P∈Pn
z�Py� (31)

for any vectors y� z ∈ �n. See, for example, Lewis [25] for a discussion. We justify the projection procedure
above in the following result:

Theorem A.1 (Spectral Projection). If the point x in the permutation-invariant set K ⊂�n is a nearest
point to the point y ∈�n, then for any orthogonal matrix U the matrix U�Diag�x�U is a nearest matrix in the
spectral set B−1�K� to the matrix U�Diag�y�U .
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Proof. We can assume without loss of generality that the matrix U is the identity. Now using Equation (31),
the permutation-invariance of the set K, and the assumption on the point x, we have

inf
X∈B−1�K�

�X−Diag�y��2 = inf
V∈On� z∈K

∥∥V �Diag�z�V −Diag�y�∥∥2
= inf
V∈On� z∈K

��z�2+�y�2− 2trace�V �Diag�z�V Diag�y���
= inf
P∈Pn� z∈K

��z�2+�y�2− 2z�Py�
= inf
P∈Pn� z∈K

��P�z�2+�y�2− 2z�Py�
= inf
z∈K
��z�2+�y�2− 2z�y�

= inf
z∈K
�z− y�2

= �x− y�2�

The first infimum is attained by X =Diag�x�, completing the proof. �

We emphasize that the nearest points in the result above may not be unique.
A useful tool for projecting onto permutation-invariant sets is the following easy result. We denote the vectors

in �n with components in nonincreasing order by �n≥.

Lemma A.1. If the set K ⊂�n is permutation-invariant, then for any vector y ∈�n≥ we have

inf
x∈K
�x− y� = inf

x∈K∩�n≥
�x− y��

Proof. A classical inequality (Hardy et al. [21]) shows that for any vector x ∈�n≥ we have supP∈Pn y�Px=
y�x. The permutation-invariance of the set K now shows

inf
x∈K
�x− y�2 = inf

x∈K∩�n≥� P∈Pn
�Px− y�2

= inf
x∈K∩�n≥� P∈Pn

��x�2+�y�2− 2y�Px�

= inf
x∈K∩�n≥

��x�2+�y�2− 2y�x�

= inf
x∈K∩�n≥

�x− y�2�

as desired. �

Our first example, showing how to project onto the isospectral set of all symmetric matrices with a given
vector of eigenvalues, follows immediately. This result was observed in Chu and Driessel [9], Orsi [30].
Example A.1 (Isospectral Projection). Suppose the matrix Y ∈ Sn has spectral decomposition

U�Diag�B�Y ��U . Then a nearest matrix to Y among all matrices with given eigenvalues x1 ≥ x2 ≥ · · · ≥ xn is
the matrix U�Diag�x�U . This follows by applying Lemma A.1 and Theorem A.1 to the set K = Pnx.
The case x= ����� ( ( ( ���0�0� ( ( ( �0� gives Theorem 3 in Tropp et al. [37], computing the projection onto

a Grassmannian manifold.
The next example, useful in pole placement (Yang and Orsi [42]), generalizes the isospectral projection

problem.
Example A.2 (Approximate Isospectral Projection). Consider closed sets C1�C2� ( ( ( �Cn ⊂�. We ask

for the closest matrix in Sn having a list of eigenvalues B1�B2� ( ( ( � Bn (not necessarily in decreasing order)
satisfying Bi ∈Ci for each i. Applying Theorem A.1 to the set

K = Pn�C1×C2× · · ·×Cn�

gives Theorem 8 in Yang and Orsi [42].
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Another, more-challenging generalization of the isospectral projection problem appears in Chen and Chu [6].
That case concerns the set of all symmetric matrices with only some eigenvalues specified.
Example A.3 (Partial Isospectral Projection). Consider a partial list of eigenvalues x1 ≥ x2 ≥ · · · ≥ xk

(where k ≤ n). In order to solve the projection problem onto the corresponding set of symmetric matrices, we
again apply Theorem A.1, using the permutation-invariant set

K = �Pz� z ∈�n� P ∈ Pn� zi = xi �i= 1�2� ( ( ( � k���
To project a vector y ∈�n onto this set, we solve an assignment problem with cost matrix

cij =
{
�xi− yj�2 �i≤ k��
0 �i > k��

If an optimal permutation of �1�2� ( ( ( � n� for this problem is 5, giving corresponding optimal value∑k
i=1�xi− y5�i��2, then the point z ∈�n, given by

zj =
{
x5−1�j� if j ∈5�1�2� ( ( ( � k��
yj otherwise�

can serve as our desired projection, as discussed in Chen and Chu [6].
Another interesting case concerns projection onto the set of matrices with maximum eigenvalue having a

given multiplicity. The following example completes a partial result of Oustry [32].
Example A.4 (Maximum Eigenvalue Multiplicity Projection). Suppose the matrix Y ∈ Sn has spectral

decomposition U�Diag�B�Y ��U . Then a nearest matrix to Y among all matrices with maximum eigenvalue
having multiplicity at least k is the matrix U�Diag�x�U , where

xi =



k−1

k∑
j=1
Bj�Y � �i≤ k��

Bi�Y � �i > k��

To see this result, we apply Lemma A.1 and Theorem A.1 to the set K ⊂�n consisting of all vectors whose
k largest components are equal. Suppose we wish to project a point y ∈ �n≥ onto this set. By Lemma A.1, we
need to solve the problem

inf
x∈K∩�n≥

�x− y��
and it is not hard to check that a solution is given by

xi =



k−1

k∑
j=1
yj �i≤ k��

yi �i > k��

The result then follows.
Analogous techniques hold for sets of matrices described by singular value inequalities. Specifically, we

have the following results. We call a set K ⊂�n absolutely permutation-invariant if it is permutation-invariant;
furthermore, whenever a point x lies in K, so do all the points

�±x1�±x2� ( ( ( �±x3���
Consider the space of matrices Mn�m���, where m ≥ n. The singular value map 2 � Mn�m���→ �n maps a
matrix X to its vector of singular values, arranged in decreasing order: 21�X�≥ 22�X�≥ · · · ≥ 2n�X�≥ 0. Given
a vector x ∈ �n, the matrix Diag �x� ∈ Mn�m��� has entries all zero except for its principal diagonal, which
contains the entries from x.

Theorem A.2. If the point x in the absolutely permutation-invariant set K ⊂ �n is a nearest point to the
point y ∈�n, then for any orthogonal matrices U and V the matrix U Diag�x�V � is a nearest matrix in the set
2−1�K� to the matrix U Diag�y�V �.
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Lemma A.2. If the set K ⊂�n is absolutely permutation-invariant, then for any nonnegative vector y ∈�n≥
we have

inf
x∈K
�x− y� = inf

0≤x∈K∩�n≥
�x− y��

Applying these results to the set K consisting of all vectors with at most r nonzero components gives
Example 2.3 (projection onto fixed rank matrices). Considering instead the set K of vectors $±��±�� ( ( ( �±�&�
leads to Theorem 2 in Tropp et al. [37], which computes the projection onto a Stiefel manifold modeling the
set of �-tight frames.
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